“Slope-space integrals for specular next event estimation” by Loubet, Zeltner, Holzschuch and Jakob
Conference:
Type(s):
Title:
- Slope-space integrals for specular next event estimation
Session/Category Title: Light Transport: Methods
Presenter(s)/Author(s):
Abstract:
Monte Carlo light transport simulations often lack robustness in scenes containing specular or near-specular materials. Widely used uni- and bidirectional sampling strategies tend to find light paths involving such materials with insufficient probability, producing unusable images that are contaminated by significant variance.This article addresses the problem of sampling a light path connecting two given scene points via a single specular reflection or refraction, extending the range of scenes that can be robustly handled by unbiased path sampling techniques. Our technique enables efficient rendering of challenging transport phenomena caused by such paths, such as underwater caustics or caustics involving glossy metallic objects.We derive analytic expressions that predict the total radiance due to a single reflective or refractive triangle with a microfacet BSDF and we show that this reduces to the well known Lambert boundary integral for irradiance. We subsequently show how this can be leveraged to efficiently sample connections on meshes comprised of vast numbers of triangles.Our derivation builds on the theory of off-center microfacets and involves integrals in the space of surface slopes.Our approach straightforwardly applies to the related problem of rendering glints with high-resolution normal maps describing specular microstructure. Our formulation alleviates problems raised by singularities in filtering integrals and enables a generalization of previous work to perfectly specular materials. We also extend previous work to the case of GGX distributions and introduce new techniques to improve accuracy and performance.
References:
1. James Arvo. 1995. Stratified Sampling of Spherical Triangles. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95). 2. Google ScholarDigital Library
2. J. Arvo. 2001. Stratified sampling of 2-manifolds. In ACM SIGGRAPH 2001 Courses.Google Scholar
3. Laurent Belcour, Ling-Qi Yan, Ravi Ramamoorthi, and Derek Nowrouzezahrai. 2017. Antialiasing Complex Global Illumination Effects in Path-space. ACM Transactions on Graphics 36, 1 (Jan. 2017). Google ScholarDigital Library
4. Eric Bruneton and Fabrice Neyret. 2011. A Survey of Non-linear Pre-filtering Methods for Efficient and Accurate Surface Shading. IEEE Transactions on Visualization and Computer Graphics (2011). http://maverick.inria.fr/Publications/2011/BN11Google Scholar
5. Xavier Chermain, Frédéric Claux, and Stéphane Mérillou. 2019. Glint Rendering based on a Multiple-Scattering Patch BRDF. Computer Graphics Forum 38, 4 (2019), 27–37. Google ScholarCross Ref
6. R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM Trans. Graph. 1, 1 (Jan. 1982), 7–24. Google ScholarDigital Library
7. Zhao Dong, Bruce Walter, Steve Marschner, and Donald P. Greenberg. 2015. Predicting Appearance from Measured Microgeometry of Metal Surfaces. ACM Trans. Graph. 35, 1 (2015), 9:1–9:13.Google ScholarDigital Library
8. Jonathan Dupuy. 2015. Photorealistic Surface Rendering with Microfacet Theory. Theses. Université Claude Bernard – Lyon I; Université de Montréal. https://hal.archives-ouvertes.fr/tel-01291974Google Scholar
9. Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor Ostromoukhov. 2013. Linear Efficient Antialiased Displacement and Reflectance Mapping. ACM Transactions on Graphics 32, 6 (Nov. 2013), Article No. 211. Google ScholarDigital Library
10. Luis E. Gamboa, Jean-Philippe Guertin, and Derek Nowrouzezahrai. 2018. Scalable Appearance Filtering for Complex Lighting Effects. ACM Trans. Graph. 37, 6, Article 277 (Dec. 2018), 13 pages. Google ScholarDigital Library
11. Johannes Hanika, Marc Droske, and Luca Fascione. 2015a. Manifold Next Event Estimation. Comput. Graph. Forum 34, 4 (July 2015), 87–97. http://dl.acm.org/citation.cfm?id=2858834.2858844Google ScholarCross Ref
12. Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015b. Improved Half Vector Space Light Transport. Comput. Graph. Forum 34, 4 (July 2015), 65–74. http://dl.acm.org/citation.cfm?id=2858834.2858842Google ScholarCross Ref
13. Eric Heitz. 2014. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of Computer Graphics Techniques (JCGT) 3, 2 (30 June 2014), 48–107. http://jcgt.org/published/0003/02/03/Google Scholar
14. Eric Heitz. 2017. Geometric Derivation of the Irradiance of Polygonal Lights. Research Report. Unity Technologies. https://hal.archives-ouvertes.fr/hal-01458129Google Scholar
15. Eric Heitz, Jonathan Dupuy, Stephen Hill, and David Neubelt. 2016. Real-Time Polygonal-Light Shading with Linearly Transformed Cosines. ACM Trans. Graph. 35, 4, Article 41 (July 2016), 8 pages. Google ScholarDigital Library
16. Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016. Product Importance Sampling for Light Transport Path Guiding. Computer Graphics Forum 35, 4 (2016), 67–77. Google ScholarCross Ref
17. Homan Igehy. 1999. Tracing Ray Differentials. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., USA, 179–186. Google ScholarDigital Library
18. Wenzel Jakob. 2013. Light transport on path-space manifolds. Ph.D. Dissertation. Cornell University.Google Scholar
19. Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Steve Marschner. 2014. Discrete Stochastic Microfacet Models. ACM Trans. Graph. 33, 4, Article 115 (July 2014), 10 pages. Google ScholarDigital Library
20. Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (July 2012), 58:1–58:13. Google ScholarDigital Library
21. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The Natural-constraint Representation of the Path Space for Efficient Light Transport Simulation. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. Google ScholarDigital Library
22. A. S. Kaplanyan, S. Hill, A. Patney, and A. Lefohn. 2016. Filtering Distributions of Normals for Shading Antialiasing. In Proceedings of High Performance Graphics (Dublin, Ireland) (HPG ’16). Eurographics Association, Goslar Germany, Germany, 151–162. Google ScholarCross Ref
23. Alexandr Kuznetsov, Miloš Hašan, Zexiang Xu, Ling-Qi Yan, Bruce Walter, Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019. Learning Generative Models for Rendering Specular Microgeometry. ACM Trans. Graph. 38, 6, Article 225 (Nov. 2019), 14 pages. Google ScholarDigital Library
24. Johann Heinrich Lambert. 1760. Photometria sive de mensura et gradibus luminis, colorum et umbrae.Google Scholar
25. Don Mitchell and Pat Hanrahan. 1992. Illumination from Curved Reflectors. SIGGRAPH Comput. Graph. 26, 2 (July 1992), 283–291. Google ScholarDigital Library
26. Thomas Müller. 2019. “Practical Path Guiding” in Production. In ACM SIGGRAPH Courses: Path Guiding in Production, Chapter 10 (Los Angeles, California). ACM, New York, NY, USA, 18:35–18:48. Google ScholarDigital Library
27. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum 36, 4 (June 2017), 91–100. Google ScholarDigital Library
28. Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse Renderer. Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019). Google ScholarDigital Library
29. Tomoyuki Nishita and Eihachiro Nakamae. 1985. Continuous Tone Representation of Three-Dimensional Objects Taking Account of Shadows and Interreflection. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’85). Association for Computing Machinery, New York, NY, USA, 23–30. Google ScholarDigital Library
30. Marc Olano and Dan Baker. 2010. LEAN Mapping. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Washington, D.C.) (I3D ’10). ACM, New York, NY, USA, 181–188. Google ScholarDigital Library
31. Christoph Peters and Carsten Dachsbacher. 2019. Sampling Projected Spherical Caps in Real Time. Proc. ACM Comput. Graph. Interact. Tech. 2, 1, Article 1 (June 2019), 16 pages. Google ScholarDigital Library
32. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.) (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 1266 pages.Google ScholarDigital Library
33. Boris Raymond, Gaël Guennebaud, and Pascal Barla. 2016. Multi-scale Rendering of Scratched Materials Using a Structured SV-BRDF Model. ACM Trans. Graph. 35, 4, Article 57 (July 2016), 11 pages. Google ScholarDigital Library
34. Florian Reibold, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. 2018. Selective Guided Sampling with Complete Light Transport Paths. ACM Trans. Graph. 37, 6, Article 223 (Dec. 2018), 14 pages. Google ScholarDigital Library
35. Vincent Schüssler, Eric Heitz, Johannes Hanika, and Carsten Dachsbacher. 2017. Microfacet-based Normal Mapping for Robust Monte Carlo Path Tracing. ACM Trans. Graph. 36, 6, Article 205 (Nov. 2017), 12 pages. Google ScholarDigital Library
36. B. Smith. 1967. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation 15, 5 (Sep. 1967), 668–671. Google ScholarCross Ref
37. T. S. Trowbridge and K. P. Reitz. 1975. Average irregularity representation of a rough surface for ray reflection. J. Opt. Soc. Am. 65, 5 (May 1975), 531–536. Google ScholarCross Ref
38. C. Ureña. 2000. Computation of Irradiance from Triangles by Adaptive Sampling. Computer Graphics Forum 19, 2 (2000), 165–171. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00452 Google ScholarCross Ref
39. Carlos Ureña and Iliyan Georgiev. 2018. Stratified Sampling of Projected Spherical Caps. Comput. Graph. Forum 37 (2018), 13–20.Google ScholarCross Ref
40. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 65–76. Google ScholarDigital Library
41. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line Learning of Parametric Mixture Models for Light Transport Simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (aug 2014).Google Scholar
42. Bruce Walter, Zhao Dong, Steve Marschner, and Donald P. Greenberg. 2015. The Ellipsoid Normal Distribution Function, supplemental material of Predicting Appearance from Measured Microgeometry of Metal Surfaces. ACM Trans. Graph. 35, 1 (2015), 9:1–9:13.Google Scholar
43. Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. In Proceedings of the 18th Eurographics Conference on Rendering Techniques (Grenoble, France) (EGSR’07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 195–206. Google ScholarCross Ref
44. Bruce Walter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. 2009. Single Scattering in Refractive Media with Triangle Mesh Boundaries. ACM Transactions on Graphics 28, 3 (Aug. 2009), 92:1–8. Google ScholarDigital Library
45. Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch Iridescence: Wave-Optical Rendering of Diffractive Surface Structure. ACM Trans. Graph. 36, 6, Article 207 (Nov. 2017), 14 pages. Google ScholarDigital Library
46. Chao Xu, Rui Wang, Shuang Zhao, and Hujun Bao. 2017. Real-Time Linear BRDF MIP-Mapping. Computer Graphics Forum 36, 4 (2017), 27–34. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13221 Google ScholarDigital Library
47. Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi. 2014. Rendering Glints on High-resolution Normal-mapped Specular Surfaces. ACM Trans. Graph. 33, 4, Article 116 (July 2014), 9 pages. Google ScholarDigital Library
48. Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Positionnormal Distributions for Efficient Rendering of Specular Microstructure. ACM Trans. Graph. 35, 4, Article 56 (July 2016), 9 pages. Google ScholarDigital Library
49. Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018. Rendering Specular Microgeometry with Wave Optics. ACM Trans. Graph. 37, 4, Article 75 (July 2018), 10 pages. Google ScholarDigital Library
50. Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. 2020. Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints. Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020). Google ScholarDigital Library
51. Tobias Zirr and Anton S. Kaplanyan. 2016. Real-Time Rendering of Procedural Multi-scale Materials. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Redmond, Washington) (I3D ’16). Association for Computing Machinery, New York, NY, USA, 139–148. Google ScholarDigital Library


