“Complementary dynamics” by Zhang, Bang, Levin and Jacobson – ACM SIGGRAPH HISTORY ARCHIVES

“Complementary dynamics” by Zhang, Bang, Levin and Jacobson

  • 2020 SA Technical Papers_Zhang_Complementary dynamics

Conference:


Type(s):


Title:

    Complementary dynamics

Session/Category Title:   Animation: Pretty Solid Physics Research


Presenter(s)/Author(s):



Abstract:


    We present a novel approach to enrich arbitrary rig animations with elastodynamic secondary effects. Unlike previous methods which pit rig displacements and physical forces as adversaries against each other, we advocate that physics should complement artists’ intentions. We propose optimizing for elastodynamic displacements in the subspace orthogonal to displacements that can be created by the rig. This ensures that the additional dynamic motions do not undo the rig animation. The complementary space is high-dimensional, algebraically constructed without manual oversight, and capable of rich high-frequency dynamics. Unlike prior tracking methods, we do not require extra painted weights, segmentation into fixed and free regions or tracking clusters. Our method is agnostic to the physical model and plugs into non-linear FEM simulations, geometric as-rigid-as-possible energies, or mass-spring models. Our method does not require a particular type of rig and adds secondary effects to skeletal animations, cage-based deformations, wire deformers, motion capture data, and rigid-body simulations.

References:


    1. Alexis Angelidis and Karan Singh. 2007. Kinodynamic skinning using volume-preserving deformations. In Proc. SCA.Google Scholar
    2. Yunfei Bai, Danny M Kaufman, C Karen Liu, and Jovan Popović. 2016. Artist-directed dynamics for 2D animation. ACM Trans. Graph. 35, 4 (2016), 1–10.Google ScholarDigital Library
    3. David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proc. SIGGRAPH.Google ScholarDigital Library
    4. Jernej Barbic, Marco da Silva, and Jovan Popovic. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 3 (2009), 53.Google ScholarDigital Library
    5. Jernej Barbic and Doug L. James. 2005. Real-Time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (2005), 982–990.Google ScholarDigital Library
    6. Jernej Barbic and Yili Zhao. 2011. Real-time large-deformation substructuring. ACM Trans. Graph. 30, 4 (2011), 91.Google ScholarDigital Library
    7. Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. 2007. TRACKS: toward directable thin shells. ACM Trans. Graph. 26, 3 (2007).Google ScholarDigital Library
    8. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4 (2014).Google ScholarDigital Library
    9. Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popovic. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3 (2002).Google ScholarDigital Library
    10. Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4 (2010), 38:1–38:6.Google ScholarDigital Library
    11. Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numerical coarsening using discontinuous shape functions. ACM Trans. Graph. (2018).Google Scholar
    12. Jiong Chen, Max Budninskiy, Houman Owhadi, Hujun Bao, Jin Huang, and Mathieu Desbrun. 2019. Material-adapted refinable basis functions for elasticity simulation. ACM Trans. Graph. 38, 6 (2019), 161:1–161:15.Google ScholarDigital Library
    13. Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher, Robert W. Sumner, and Markus H. Gross. 2012. Deformable objects alive! ACM Trans. Graph. 31, 4 (2012), 69:1–69:9.Google ScholarDigital Library
    14. Kevin G. Der, Robert W. Sumner, and Jovan Popovic. 2006. Inverse kinematics for reduced deformable models. ACM Trans. Graph. 25, 3 (2006), 1174–1179.Google ScholarDigital Library
    15. Dimitar Dinev, Tiantian Liu, Jing Li, Bernhard Thomaszewski, and Ladislav Kavan. 2018. FEPR: fast energy projection for real-time simulation of deformable objects. ACM Trans. Graph. 37, 4 (2018), 79:1–79:12.Google ScholarDigital Library
    16. Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M. Teran. 2015. Optimization Integrator for Large Time Steps. IEEE TVCG (2015).Google Scholar
    17. Benjamin Gilles, Guillaume Bousquet, François Faure, and Dinesh K. Pai. 2011. Frame-based elastic models. ACM Trans. Graph. 30, 2 (2011), 15:1–15:12.Google ScholarDigital Library
    18. Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros, and Markus Gross. 2012. Rig-space physics. ACM Trans. Graph. 31, 4 (2012), 72.Google ScholarDigital Library
    19. Bruno Heidelberger, Matthias Teschner, Richard Keiser, Matthias Müller, and Markus H. Gross. 2004. Consistent penetration depth estimation for deformable collision response. In Proc. VMV.Google Scholar
    20. Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. (2012).Google Scholar
    21. Alec Jacobson et al. 2018. gptoolbox: Geometry Processing Toolbox. http://github.com/alecjacobson/gptoolbox.Google Scholar
    22. Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popovic, and Olga Sorkine. 2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4 (2012), 77:1–77:10.Google ScholarDigital Library
    23. Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: Real-time Shape Deformation. In ACM SIGGRAPH 2014 Courses.Google Scholar
    24. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (2007), 71.Google ScholarDigital Library
    25. Ladislav Kavan, Steven Collins, Jirí Zára, and Carol O’Sullivan. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. (2008).Google Scholar
    26. Ladislav Kavan and Olga Sorkine. 2012. Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (2012), 196:1–196:8.Google ScholarDigital Library
    27. Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook Kim, Michael J Black, and Sung-Hee Lee. 2017. Data-driven physics for human soft tissue animation. ACM Trans. Graph. 36, 4 (2017), 1–12.Google ScholarDigital Library
    28. Theodore Kim, Fernando de Goes, and Hayley N. Iben. 2019. Anisotropic elasticity for inversion-safety and element rehabilitation. ACM Trans. Graph. (2019).Google Scholar
    29. Theodore Kim and Doug L. James. 2011. Physics-based Character Skinning using Multi-Domain Subspace Deformations. In Proc. SCA. 63–72.Google Scholar
    30. Martin Komaritzan and Mario Botsch. 2018. Projective Skinning. Proc. ACM Comput. Graph. Interact. Tech. 1, 1 (2018), 12:1–12:19.Google Scholar
    31. Martin Komaritzan and Mario Botsch. 2019. Fast Projective Skinning. In Proc. MIG.Google ScholarDigital Library
    32. Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated quadratic proxy for geometric optimization. ACM Trans. Graph. 35, 4 (2016), 134:1–134:11.Google ScholarDigital Library
    33. Yeara Kozlov, Derek Bradley, Moritz Bächer, Bernhard Thomaszewski, Thabo Beeler, and Markus H. Gross. 2017. Enriching Facial Blendshape Rigs with Physical Simulation. Comput. Graph. Forum 36, 2 (2017), 75–84.Google ScholarDigital Library
    34. Caroline Larboulette, Marie-Paule Cani, and Bruno Arnaldi. 2005. Dynamic skinning: adding real-time dynamic effects to an existing character animation. In Proc. SCCG.Google ScholarDigital Library
    35. Binh Huy Le and Jessica K. Hodgins. 2016. Real-time skeletal skinning with optimized centers of rotation. ACM Trans. Graph. 35, 4 (2016), 37:1–37:10.Google ScholarDigital Library
    36. Binh Huy Le and J. P. Lewis. 2019. Direct delta mush skinning and variants. ACM Trans. Graph. 38, 4 (2019), 113:1–113:13.Google ScholarDigital Library
    37. David I.W. Levin. 2020. Bartels: A lightweight collection of routines for physics simulation. https://github.com/dilevin/Bartels.Google Scholar
    38. Duo Li, Shinjiro Sueda, Debanga R Neog, and Dinesh K Pai. 2013. Thin skin elastodynamics. ACM Trans. Graph. 32, 4 (2013), 1–10.Google ScholarDigital Library
    39. Jing Li, Tiantian Liu, and Ladislav Kavan. 2019. Fast simulation of deformable characters with articulated skeletons in projective dynamics. In Proc. SCA. ACM, 1:1–1:10.Google Scholar
    40. Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and Mathieu Desbrun. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Trans. Graph. 33, 4 (2014), 108:1–108:10.Google ScholarDigital Library
    41. Yijing Li and Jernej Barbic. 2018. Immersion of self-intersecting solids and surfaces. ACM Trans. Graph. 37, 4 (2018), 45:1–45:14.Google ScholarDigital Library
    42. Yijing Li, Hongyi Xu, and Jernej Barbič. 2016. Enriching triangle mesh animations with physically based simulation. IEEE transactions on visualization and computer graphics 23, 10 (2016), 2301–2313.Google Scholar
    43. Shilin Liu, Yang Liu, L-F. Dong, and Xin Tong. 2020. RAS: A Data-Driven Rigidity-Aware Skinning Model For 3D Facial Animation. Comput. Graph. Forum (2020).Google Scholar
    44. Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan. 2013. Fast simulation of mass-spring systems. ACM Trans. Graph. 32, 6 (2013), 1–7.Google ScholarDigital Library
    45. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 3 (2017), 1–16.Google ScholarDigital Library
    46. Wan-Chun Ma, Yi-Hua Wang, Graham Fyffe, Jernej Barbič, Bing-Yu Chen, and Paul Debevec. 2011. A Blendshape Model That Incorporates Physical Interaction. In SIGGRAPH Asia Posters.Google Scholar
    47. Richard Malgat, Benjamin Gilles, David IW Levin, Matthieu Nesme, and François Faure. 2015. Multifarious hierarchies of mechanical models for artist assigned levels-of-detail. In Proc. SCA. 27–36.Google ScholarDigital Library
    48. Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus H. Gross. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4 (2011), 72.Google ScholarDigital Library
    49. Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4 (2011), 37.Google ScholarDigital Library
    50. Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cutler. 2002. Stable real-time deformations. In Proc. SCA. ACM, 49–54.Google ScholarDigital Library
    51. Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018. Anderson acceleration for geometry optimization and physics simulation. ACM Trans. Graph. 37, 4 (2018), 42:1–42:14.Google ScholarDigital Library
    52. Roger Blanco i Ribera, Eduard Zell, J. P. Lewis, Junyong Noh, and Mario Botsch. 2017. Facial Retargeting with Automatic Range of Motion Alignment. ACM Trans. Graph. 36, 4 (July 2017).Google ScholarDigital Library
    53. Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt. 2014. Animating deformable objects using sparse spacetime constraints. ACM Trans. Graph. (2014).Google Scholar
    54. Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining Guo. 2008. Example-based dynamic skinning in real time. ACM Trans. Graph. (2008).Google Scholar
    55. Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner’s Guide to Theory, Discretization and Model Reduction. In SIGGRAPH Courses.Google Scholar
    56. Karan Singh and Eugene Fiume. 1998. Wires: A Geometric Deformation Technique. In Proc. SIGGRAPH. 405–414.Google ScholarDigital Library
    57. Breannan Smith, Fernando de Goes, and Theodore Kim. 2018. Stable Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2 (2018), 12:1–12:15.Google ScholarDigital Library
    58. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proc. SGP.Google ScholarDigital Library
    59. Yun Teng, Mark Meyer, Tony DeRose, and Theodore Kim. 2015. Subspace condensation: full space adaptivity for subspace deformations. ACM Trans. Graph. (2015).Google Scholar
    60. F. Thomas and O. Johnston. 1981. The Illusion of Life: Disney Animation.Google Scholar
    61. Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the GPU. ACM Trans. Graph. 35, 6 (2016), 212:1–212:10.Google ScholarDigital Library
    62. Yu Wang, Alec Jacobson, Jernej Barbic, and Ladislav Kavan. 2015. Linear subspace design for real-time shape deformation. ACM Trans. Graph. 34, 4 (2015), 57:1–57:11.Google ScholarDigital Library
    63. Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang. 2018. Parallel Multigrid for Nonlinear Cloth Simulation. In Proc. PG.Google ScholarCross Ref
    64. Nora S. Willett, Wilmot Li, Jovan Popović, Floraine Berthouzoz, and Adam Finkelstein. 2017. Secondary Motion for Performed 2D Animation. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST) (Oct. 2017).Google ScholarDigital Library
    65. Andrew P. Witkin and Michael Kass. 1988. Spacetime constraints. In Proc. SIGGRAPH.Google Scholar
    66. Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid method for real-time simulation of deformable objects. ACM Trans. Graph. (2019).Google Scholar
    67. Hongyi Xu and Jernej Barbic. 2014. Signed distance fields for polygon soup meshes. In Proc. GI.Google Scholar
    68. Hongyi Xu and Jernej Barbič. 2016. Pose-space subspace dynamics. ACM Trans. Graph. (2016).Google Scholar


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org