“Fluid carving: intelligent resizing for fluid simulation data” by Flynn, Egbert, Holladay and Morse – ACM SIGGRAPH HISTORY ARCHIVES

“Fluid carving: intelligent resizing for fluid simulation data” by Flynn, Egbert, Holladay and Morse

  • 2019 SA Technical Papers_Flynn_Fluid carving: intelligent resizing for fluid simulation data

Conference:


Type(s):


Title:

    Fluid carving: intelligent resizing for fluid simulation data

Session/Category Title:   Data-Driven Dynamics


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a method for intelligently resizing fluid simulation data using seam carving methods. While advances in post-processing techniques have allowed artists greater control over content late in the production process, this technology has largely remained confined to image processing. Our fluid carving system allows fluid simulation post-processing by performing content-aware non-uniform scaling on baked-out fluid simulation data. Specifically, we extend video seam carving techniques to 4-dimensional animated fluid volume data with a graph cut energy function based on mean curvature and kinetic energy. To reduce the complexity of performing graph cuts on 4D data, we provide a new graph construction formulation that greatly reduces the run-time and memory consumption, which are otherwise prohibitively expensive. We demonstrate that our system is useful for post-production fluid simulation changes and editable fluid FX libraries.

References:


    1. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly Adaptive Liquid Simulations on Tetrahedral Meshes. ACM Trans. Graph. 32, 4, Article 103 (July 2013), 10 pages. Google ScholarDigital Library
    2. Shai Avidan and Ariel Shamir. 2007. Seam Carving for Content-aware Image Resizing. ACM Trans. Graph. 26, 3, Article 10 (July 2007). Google ScholarDigital Library
    3. Morten Bojsen-Hansen and Chris Wojtan. 2016. Generalized Non-reflecting Boundaries for Fluid Re-simulation. ACM Trans. Graph. 35, 4, Article 96 (July 2016), 7 pages. Google ScholarDigital Library
    4. Y. Boykov and V. Kolmogorov. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 9 (Sep. 2004), 1124–1137. Google ScholarDigital Library
    5. Robert Bridson. 2008. Fluid Simulation. A. K. Peters, Ltd., Natick, MA, USA.Google Scholar
    6. William L. Briggs, Van Emden Henson, and Steve F. McCormick. 2000. A Multigrid Tutorial: Second Edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.Google ScholarDigital Library
    7. Billy Chen and Pradeep Sen. 2008. Video Carving. In Eurographics 2008 – Short Papers, Katerina Mania and Eric Reinhard (Eds.). The Eurographics Association. Google ScholarCross Ref
    8. Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F. O’Brien, and Jonathan R. Shewchuk. 2007. Liquid Simulation on Lattice-based Tetrahedral Meshes. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 219–228. http://dl.acm.org/citation.cfm?id=1272690.1272720Google Scholar
    9. Ellen Dekkers and Leif Kobbelt. 2014. Geometry seam carving. Computer-Aided Design 46 (2014), 120 — 128. 2013 SIAM Conference on Geometric and Physical Modeling. Google ScholarDigital Library
    10. Raanan Fattal and Dani Lischinski. 2004. Target-driven Smoke Animation. ACM Trans. Graph. 23, 3 (Aug. 2004), 441–448. Google ScholarDigital Library
    11. Nick Foster and Ronald Fedkiw. 2001. Practical Animation of Liquids. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 23–30. Google ScholarDigital Library
    12. R. Furuta, I. Tsubaki, and T. Yamasaki. 2016. Fast Volume Seam Carving with Multipass Dynamic Programming. IEEE Transactions on Circuits and Systems for Video Technology (2016), 1–1. Google ScholarCross Ref
    13. Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. 2010. Discontinuous Seam-Carving for Video Retargeting. IEEE CVPR (2010).Google ScholarCross Ref
    14. Mark Harris. 2005. Fast Fluid Dynamics Simulation on the GPU. In ACM SIGGRAPH 2005 Courses (SIGGRAPH ’05). ACM, New York, NY, USA, Article 220. Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus H. Gross, and Barbara Solenthaler. 2018. Deep Fluids: A Generative Network for Parameterized Fluid Simulations. CoRR abs/1806.02071 (2018). arXiv:1806.02071 http://arxiv.org/abs/1806.02071 Google ScholarDigital Library
    15. Theodore Kim and John Delaney. 2013. Subspace Fluid Re-simulation. ACM Trans. Graph. 32, 4, Article 62 (July 2013), 9 pages. Google ScholarDigital Library
    16. Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating Water and Smoke with an Octree Data Structure. In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). ACM, New York, NY, USA, 457–462. Google ScholarDigital Library
    17. A. McAdams, E. Sifakis, and J. Teran. 2010. A Parallel Multigrid Poisson Solver for Fluids Simulation on Large Grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’10). Eurographics Association, Goslar Germany, Germany, 65–74. http://dl.acm.org/citation.cfm?id=1921427.1921438Google Scholar
    18. Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control Using the Adjoint Method. ACM Trans. Graph. 23, 3 (Aug. 2004), 449–456. Google ScholarDigital Library
    19. Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin. 2008. Fast Animation of Turbulence Using Energy Transport and Procedural Synthesis. In ACM SIGGRAPH Asia 2008 Papers (SIGGRAPH Asia ’08). ACM, New York, NY, USA, Article 166, 8 pages. Google ScholarDigital Library
    20. Michael B. Nielsen and Robert Bridson. 2011. Guide Shapes for High Resolution Naturalistic Liquid Simulation. In ACM SIGGRAPH 2011 Papers (SIGGRAPH ’11). ACM, New York, NY, USA, Article 83, 8 pages. Google ScholarDigital Library
    21. Jeremy Oborn, Sean Flynn, Parris Egbert, and Seth Holladay. 2018. Time-Reversed Art Directable Smoke Simulation. In EG 2018 – Short Papers, Olga Diamanti and Amir Vaxman (Eds.). The Eurographics Association. Google ScholarCross Ref
    22. Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hujun Bao. 2013. Interactive Localized Liquid Motion Editing. ACM Trans. Graph. 32, 6, Article 184 (Nov. 2013), 10 pages. Google ScholarDigital Library
    23. N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. 2004. Directable Photorealistic Liquids. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’04). Eurographics Association, Goslar Germany, Germany, 193–202. Google ScholarDigital Library
    24. Karthik Raveendran, Chris Wojtan, Nils Thuerey, and Greg Turk. 2014. Blending Liquids. ACM Trans. Graph. 33, 4, Article 137 (July 2014), 10 pages. Google ScholarDigital Library
    25. Michael Rubinstein, Ariel Shamir, and Shai Avidan. 2008. Improved Seam Carving for Video Retargeting. ACM Trans. Graph. 27, 3, Article 16 (Aug. 2008), 9 pages. Google ScholarDigital Library
    26. Michael Rubinstein, Ariel Shamir, and Shai Avidan. 2009. Multi-operator Media Retargeting. In ACM SIGGRAPH 2009 Papers (SIGGRAPH ’09). ACM, New York, NY, USA, Article 23, 11 pages. Google ScholarDigital Library
    27. Syuhei Sato, Yoshinori Dobashi, and Tomoyuki Nishita. 2018. Editing Fluid Animation Using Flow Interpolation. ACM Trans. Graph. 37, 5, Article 173 (Sept. 2018), 12 pages. Google ScholarDigital Library
    28. Lin Shi and Yizhou Yu. 2005. Taming Liquids for Rapidly Changing Targets. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’05). ACM, New York, NY, USA, 229–236. Google ScholarDigital Library
    29. Barry F. Smith, Petter E. Bjørstad, and William D. Gropp. 1996. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, New York, NY, USA.Google Scholar
    30. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121–128. Google ScholarDigital Library
    31. Dachao Sun. 2017. Volumetric Seam Carving. All Theses 2675 (2017). http://tigerprints.clemson.edu/all_theses/2675Google Scholar
    32. Nils Thuerey. 2016. Interpolations of Smoke and Liquid Simulations. ACM Trans. Graph. 36, 1, Article 3 (Sept. 2016), 16 pages. Google ScholarDigital Library
    33. N. Thürey, R. Keiser, M. Pauly, and U. Rüde. 2006. Detail-preserving Fluid Control. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’06). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 7–12. http://dl.acm.org/citation.cfm?id=1218064.1218066Google Scholar
    34. Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe Control of Smoke Simulations. ACM Trans. Graph. 22, 3 (July 2003), 716–723. Google ScholarDigital Library
    35. V. Vineet and P. J. Narayanan. 2008. CUDA cuts: Fast graph cuts on the GPU. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. 1–8. Google ScholarCross Ref
    36. Qichao Wang, Yubo Tao, and Hai Lin. 2015. Surface Carving-based Automatic Volume Data Reduction. Vis. Comput. 31, 11 (Nov. 2015), 1459–1470. Google ScholarDigital Library
    37. Martin Wicke, Matt Stanton, and Adrien Treuille. 2009. Modular Bases for Fluid Dynamics. ACM Trans. Graph. 28, 3, Article 39 (July 2009), 8 pages. Google ScholarDigital Library
    38. Hongkai Zhao. 2005. A fast sweeping method for Eikonal equations. Math. Comput. 74, 250 (2005), 603–627.Google ScholarCross Ref
    39. Yongning Zhu and Robert Bridson. 2005. Animating Sand As a Fluid. ACM Trans. Graph. 24, 3 (July 2005), 965–972. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org