“Computational LEGO technic design” by Xu, Hui, Fu and Zhang – ACM SIGGRAPH HISTORY ARCHIVES

“Computational LEGO technic design” by Xu, Hui, Fu and Zhang

  • 2019 SA Technical Papers_Xu_Computational LEGO technic design

Conference:


Type(s):


Title:

    Computational LEGO technic design

Session/Category Title:   Building Knowledge


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    No abstract available.

References:


    1. Luca Baronti, Matteo Dellepiane, and Roberto Scopigno. 2010. Using Lego Pieces for Camera Calibration: a Preliminary Study. In Eurographics (short paper). 97-100.Google Scholar
    2. Jonathan Cagan, Drew Degentesh, and Su Yin. 1998. A simulated annealing-based algorithm using hierarchical models for general three-dimensional component layout. Computer-aided design 30, 10 (1998), 781-790.Google Scholar
    3. Xuelin Chen, Honghua Li, Chi-Wing Fu, Hao (Richard) Zhang, Daniel Cohen-Or, and Baoquan Chen. 2018. 3D Fabrication with Universal Building Blocks and Pyramidal Shells. ACM Trans. on Graph. (SIGGRAPH Asia) 37, 6 (2018). Google ScholarDigital Library
    4. Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. 2014. Field-aligned Mesh Joinery. ACM Trans. on Graph. (SIGGRAPH Asia) 33, 1 (2014). Article no. 11. Google ScholarDigital Library
    5. Travis Cobbs and Peter Bartfai. 2018. LDview. http://www.ldraw.org/ [Online; accessed 18-May-2018].Google Scholar
    6. Juan De Vicente, Juan Lanchares, and Román Hermida. 2003. Placement by thermodynamic simulated annealing. Physics Letters A 317, 5-6 (2003), 415-423.Google ScholarCross Ref
    7. Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-aware Design of Printable Electromechanical Devices. In The 31st Annual ACM Symposium on User Interface Software and Technology. ACM, 457-472. Google ScholarDigital Library
    8. Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-Hornung, and Mark Pauly. 2014. Assembling Self-supporting Structures. ACM Trans. on Graph. (SIGGRAPH Asia) 33, 6 (2014). Article no. 214. Google ScholarDigital Library
    9. Moritz Geilinger, Roi Poranne, Ruta Desai, Bernhard Thomaszewski, and Stelian Coros. 2018. Skaterbots: optimization-based design and motion synthesis for robotic creatures with legs and wheels. ACM Trans. on Graph. (SIGGRAPH) 37, 4 (2018). Google ScholarDigital Library
    10. Rebecca A. H. Gower, Agnes E. Heydtmann, and Henrik G. Petersen. 1998. LEGO: Automated Model Construction. In European Study Group with Industry. 81-94.Google Scholar
    11. Yoshihito Isogawa. 2010. LEGO® Technic Idea Book: Fantastic Contraptions. No Starch Press.Google Scholar
    12. Jae Woo Kim, Kyung Kyu Kang, and Ji Hyoung Lee. 2014. Survey on Automated LEGO Assembly Construction. In Proc. WSCG. 89-96.Google Scholar
    13. Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (1983), 671-680.Google Scholar
    14. Pawel “Sariel” Kmie?. 2016. The Unofficial LEGO® Technic Builder’s Guide, 2nd Edition. No Starch Press.Google Scholar
    15. Ming-Hsun Kuo, You-En Lin, Hung-Kuo Chu, Ruen-Rone Lee, and Yong-Liang Yang. 2015. PIXEL2BRICK: Constructing Brick Sculptures from Pixel Art. Computer Graphics Forum (Pacific graphics) 34, 7 (2015), 339-348. Google ScholarDigital Library
    16. Michael Lachmann. 2018. MLCad. http://mlcad.lm-software.com/ [Online; accessed 5-Nov-2018].Google Scholar
    17. Bram Lambrecht. 2006. Voxelization of boundary representations using oriented LEGO® plates. University of California, Berkeley, http://lego.bldesign.org/ [Online; accessed 18-May-2018].Google Scholar
    18. Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. 2011. Converting 3D Furniture Models to Fabricatable Parts and Connectors. ACM Trans. on Graph. (SIGGRAPH) 30, 4 (2011). Article no. 85. Google ScholarDigital Library
    19. Seung-Mok Lee, Jae Woo Kim, and Hyun Myung. 2018. Split-and-Merge-Based Genetic Algorithm (SM-GA) for LEGO Brick Sculpture Optimization. IEEE Access 6 (2018), 40429-40438.Google ScholarCross Ref
    20. Sheng-Jie Luo, Yonghao Yue, Chun-Kai Huang, Yu-Huan Chung, Sei Imai, Tomoyuki Nishita, and Bing-Yu Chen. 2015. Legolization: Optimizing LEGO Designs. ACM Trans. on Graph. (SIGGRAPH Asia) 34, 6 (2015). Article no. 222. Google ScholarDigital Library
    21. Robert B. McGhee and Andrew A. Frank. 1968. On the stability properties of quadruped creeping gaits. Mathematical Biosciences 3 (1968), 331-351.Google ScholarCross Ref
    22. Mark F. Medress, Franklin S. Cooper, Jim W. Forgie, CC Green, Dennis H. Klatt, Michael H. O’Malley, Edward P. Neuburg, Allen Newell, DR Reddy, B Ritea, et al. 1977. Speech understanding systems: Report of a steering committee. Artificial Intelligence 9, 3 (1977), 307-316.Google ScholarCross Ref
    23. Niloy J. Mitra and Mark Pauly. 2009. Shadow Art. ACM Trans. on Graph. (SIGGRAPH Asia) 28, 5 (2009). Article No. 156. Google ScholarDigital Library
    24. Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick Baudisch. 2014. faBrickation: Fast 3D Printing of Functional Objects by Integrating Construction Kit Building Blocks. In CHI. 3827-3834. Google ScholarDigital Library
    25. Yaghout Nourani and Bjarne Andresen. 1998. A comparison of simulated annealing cooling strategies. Journal of Physics A: Mathematical and General 31, 41 (1998), 8373.Google ScholarCross Ref
    26. Pavel Petrovi?. 2001. Solving LEGO Brick Layout Problem using Evolutionary Algorithms. In Proc. NIK (Norsk Informatikkonferanse). 87-97.Google Scholar
    27. Nico Pietroni, Marco Tarini, Amir Vaxman, Daniele Panozzo, and Paolo Cignoni. 2017. Position-based Tensegrity Design. ACM Trans. on Graph. (SIGGRAPH Asia) 36, 6 (2017). Article no. 172. Google ScholarDigital Library
    28. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans. on Graph. (SIGGRAPH) 32, 4 (2013). Article no. 81. Google ScholarDigital Library
    29. Zhi-Gang Ren, Zu-Ren Feng, Liang-Jun Ke, and Zhao-Jun Zhang. 2010. New ideas for applying ant colony optimization to the set covering problem. Computers & Industrial Engineering 58, 4 (2010), 774-784. Google ScholarDigital Library
    30. Trevor Sandy. 2018. LPub3D. https://trevorsandy.github.io/lpub3d/ [Online; accessed 29-Dec-2018].Google Scholar
    31. Philip Schneider and David H. Eberly. 2002. Geometric Tools for Computer Graphics. Morgan Kaufmann Publishers. Google ScholarDigital Library
    32. Adriana Schulz, Ariel Shamir, David I.W. Levin, Pitchaya Sitthi-Amorn, and Wojciech Matusik. 2014. Design and fabrication by example. ACM Trans. on Graph. (SIGGRAPH) 33, 4 (2014). Article no. 62. Google ScholarDigital Library
    33. Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015. Interactive Surface Design with Interlocking Elements. ACM Trans. on Graph. (SIGGRAPH Asia) 34, 6 (2015). Article no. 224. Google ScholarDigital Library
    34. Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Ligang Liu. 2016. CofiFab: Coarse-to-fine Fabrication of Large 3D Objects. ACM Trans. on Graph. (SIGGRAPH) 35, 4 (2016). Article no. 45. Google ScholarDigital Library
    35. Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive Interlocking Puzzles. ACM Trans. on Graph. (SIGGRAPH Asia) 31, 6 (2012). Article no. 128. Google ScholarDigital Library
    36. Ben Stephenson. 2016. A Multi-Phase Search Approach to the LEGO Construction Problem. In Proc. Symposium on Combinatorial Search (SoCS). 89-97.Google Scholar
    37. Romain Testuz, Yuliy Schwartzburg, and Mark Pauly. 2013. Automatic Generation of Constructible Brick Sculptures. In Eurographics (short paper). 81-84.Google Scholar
    38. The LEGO® Group. 2018a. LEGO® Digital Designer, version 4.3.11. https://www.lego.com/en-us/ldd/download/ [Online; accessed 10-January-2018].Google Scholar
    39. The LEGO® Group. 2018b. LEGO® Technic official site. https://www.lego.com/en-us/technic/ [Online; accessed 18-May-2018].Google Scholar
    40. Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, and Markus Gross. 2014. Computational Design of Linkage-based Characters. ACM Trans. on Graph. (SIGGRAPH) 33, 4 (2014). Article no. 64. Google ScholarDigital Library
    41. Pascal Van Hentenryck and Yannis Vergados. 2007. Population-based simulated annealing for traveling tournaments. In Proceedings of the National Conference on Artificial Intelligence, Vol. 22. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 267. Google ScholarDigital Library
    42. Martin Waßmann and Karsten Weicker. 2012. Maximum Flow Networks for Stability Analysis of LEGO® Structures. In Proc. Annual European Conference on Algorithms (Lecture Notes in Computer Science, vol 7501). 813-824. Google ScholarDigital Library
    43. David V. Winkler. 2005. Automated Brick Layout. In Proc. BrickFest. 145-166.Google Scholar
    44. Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017. Interactive Design and Stability Analysis of Decorative Joinery for Furniture. ACM Trans. on Graph. (SIGGRAPH) 36, 2 (2017). Article no. 20. Google ScholarDigital Library
    45. Hironori Yoshida, Takeo Igarashi, Yusuke Obuchi, Yosuke Takami, Jun Sato, Mika Araki, Masaaki Miki, Kosuke Nagata, Kazuhide Sakai, and Syunsuke Igarashi. 2015. Architecture-scale Human-assisted Additive Manufacturing. ACM Trans. on Graph. (SIGGRAPH) 34, 4 (2015). Article no. 88. Google ScholarDigital Library
    46. Grim Yun, Cheolseong Park, Heekyung Yang, and Kyungha Min. 2017. Legorization with multi-height bricks from silhouette-fitted voxelization. In Proc. CGI. Article No. 40. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org