“A multi-scale model for coupling strands with shear-dependent liquid” by Fei, Batty, Grinspun and Zheng
Conference:
Type(s):
Title:
- A multi-scale model for coupling strands with shear-dependent liquid
Session/Category Title: Fluids Aflow
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We propose a framework for simulating the complex dynamics of strands interacting with compressible, shear-dependent liquids, such as oil paint, mud, cream, melted chocolate, and pasta sauce. Our framework contains three main components: the strands modeled as discrete rods, the bulk liquid represented as a continuum (material point method), and a reduced-dimensional flow of liquid on the surface of the strands with detailed elastoviscoplastic behavior. These three components are tightly coupled together. To enable discrete strands interacting with continuum-based liquid, we develop models that account for the volume change of the liquid as it passes through strands and the momentum exchange between the strands and the liquid. We also develop an extended constraint-based collision handling method that supports cohesion between strands. Furthermore, we present a principled method to preserve the total momentum of a strand and its surface flow, as well as an analytic plastic flow approach for Herschel-Bulkley fluid that enables stable semi-implicit integration at larger time steps. We explore a series of challenging scenarios, involving splashing, shaking, and agitating the liquid which causes the strands to stick together and become entangled.
References:
1. A Acharya, RA Mashelkar, and J Ulbrecht. 1976. Flow of inelastic and viscoelastic fluids past a sphere. Rheologica Acta 15, 9 (1976), 454–470.Google ScholarCross Ref
2. Neha Agarwal and RP Chhabra. 2007. Settling velocity of cubes in Newtonian and power law liquids. Powder Technology 178, 1 (2007), 17–21.Google ScholarCross Ref
3. T B Anderson and Roy Jackson. 1967. Fluid mechanical description of fluidized beds. Equations of motion. Industrial & Engineering Chemistry Fundamentals 6, 4 (1967), 527–539.Google ScholarCross Ref
4. Nicolas Andreini, Gaël Epely-Chauvin, and Christophe Ancey. 2012. Internal dynamics of Newtonian and viscoplastic fluid avalanches down a sloping bed. Physics of Fluids 24, 5 (2012), 053101.Google ScholarCross Ref
5. Hesam Anvari Ardakani, Evan Mitsoulis, and Savvas G Hatzikiriakos. 2014. Capillary flow of milk chocolate. Journal of Non-Newtonian Fluid Mechanics 210 (2014), 56–65.Google ScholarCross Ref
6. Larry Armijo. 1966. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific J. Math. 16, 1 (1966), 1–3.Google ScholarCross Ref
7. Teodor M Atanackovic and Ardéshir Guran. 2012. Theory of elasticity for scientists and engineers. Springer Science & Business Media.Google ScholarCross Ref
8. DD Atapattu, RP Chhabra, and PHT Uhlherr. 1995. Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag. Journal of Non-Newtonian Fluid Mechanics 59, 2–3 (1995), 245–265.Google ScholarCross Ref
9. Omri Azencot, Orestis Vantzos, Max Wardetzky, Martin Rumpf, and Mirela Ben-Chen. 2015. Functional thin films on surfaces. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’15). ACM, 137–146.Google ScholarDigital Library
10. Samila Bandara and Kenichi Soga. 2015. Coupling of soil deformation and pore fluid flow using material point method. Computers and Geotechnics 63 (2015), 199–214.Google ScholarCross Ref
11. M Beaulne and E Mitsoulis. 1997. Creeping motion of a sphere in tubes filled with Herschel-Bulkley fluids. Journal of Non-Newtonian Fluid Mechanics 72, 1 (1997), 55–71.Google ScholarCross Ref
12. A Bedford and D S Drumheller. 1983. Theories of immiscible and structured mixtures. International Journal of Engineering Science 21, 8 (1983), 863–960.Google ScholarCross Ref
13. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete viscous threads. ACM Transactions on Graphics (TOG) 29, 4 (2010), 116.Google ScholarDigital Library
14. Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. ACM Transactions on Graphics (TOG) 27, 3 (aug 2008), 63:1–63:12.Google ScholarDigital Library
15. AN Beris, JA Tsamopoulos, RC Armstrong, and RA Brown. 1985. Creeping motion of a sphere through a Bingham plastic. Journal of Fluid Mechanics 158 (1985), 219–244.Google ScholarCross Ref
16. Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean-Luc Lévêque. 2006. Super-helices for predicting the dynamics of natural hair. ACM Transactions on Graphics (TOG) 25, 3 (2006), 1180–1187.Google ScholarDigital Library
17. Florence Bertails, Sunil Hadap, Marie-Paule Cani, Ming Lin, Tae-Yong Kim, Steve Marschner, Kelly Ward, and Zoran Kačić-Alesić. 2008. Realistic hair simulation: animation and rendering. In ACM SIGGRAPH 2008 Courses. ACM, 89.Google ScholarDigital Library
18. Florence Bertails-Descoubes, Florent Cadoux, Gilles Daviet, and Vincent Acary. 2011. A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies. ACM Transactions on Graphics (TOG) 30, 1 (2011), 6.Google ScholarDigital Library
19. Bharat Bhushan, Guohua Wei, and Paul Haddad. 2005. Friction and wear studies of human hair and skin. Wear 259, 7–12 (2005), 1012–1021.Google ScholarCross Ref
20. AA Bochkarev, PI Geshev, VI Polyakova, and NI Yavorskii. 2009. Formal rheological model of acrylic waterborne paints. Theoretical Foundations of Chemical Engineering 43, 1 (2009), 100–107.Google ScholarCross Ref
21. Javier Bonet and Richard D Wood. 1997. Nonlinear continuum mechanics for finite element analysis. Cambridge university press.Google Scholar
22. Ronaldo I Borja. 2006. On the mechanical energy and effective stress in saturated and unsaturated porous continua. International Journal of Solids and Structures 43, 6 (2006), 1764–1786.Google ScholarCross Ref
23. Percy Williams Bridgman. 1949a. Linear Compressions to 30,000 kg/cm2, including Relatively Incompressible Substances. Proceedings of the American Academy of Arts and Sciences 77, 6 (1949), 189–234.Google ScholarCross Ref
24. Percy Williams Bridgman. 1949b. The physics of high pressure. London: Bells and Sons.Google Scholar
25. Robert Bridson. 2015. Fluid simulation for computer graphics. CRC Press.Google ScholarDigital Library
26. F Brochard and PG De Gennes. 1992. Shear-dependent slippage at a polymer/solid interface. Langmuir 8, 12 (1992), 3033–3037.Google ScholarCross Ref
27. Philip Crosbie Carman. 1937. Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers 15 (1937), 150–166.Google Scholar
28. Zhili Chen, Byungmoon Kim, Daichi Ito, and Huamin Wang. 2015. Wetbrush: GPU-based 3D painting simulation at the bristle level. ACM Transactions on Graphics (TOG) 34, 6 (2015), 200.Google ScholarDigital Library
29. Raj P Chhabra. 2006. Bubbles, drops, and particles in non-Newtonian fluids. CRC press.Google Scholar
30. RV Craster and OK Matar. 2009. Dynamics and stability of thin liquid films. Reviews of Modern Physics 81, 3 (2009), 1131.Google ScholarCross Ref
31. Henry Philibert Gaspard Darcy. 1856. Dètermination des lois d’ècoulement de l’eau à travers le sable.Google Scholar
32. Gilles Daviet and Florence Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Transactions on Graphics (TOG) 35, 4 (2016), 102.Google ScholarDigital Library
33. Gilles Daviet and Florence Bertails-Descoubes. 2017. Simulation of Drucker-Prager granular flows inside Newtonian fluids. (Feb. 2017). working paper or preprint.Google Scholar
34. Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Transactions on Graphics (TOG) 30, 6 (2011), 139.Google ScholarDigital Library
35. Reint De Boer. 2012. Theory of porous media: highlights in historical development and current state. Springer Science & Business Media.Google ScholarCross Ref
36. Crispin Deul, Tassilo Kugelstadt, Marcel Weiler, and Jan Bender. 2018. Direct Position-Based Solver for Stiff Rods. Computer Graphics Forum 37, 6 (2018), 313–324.Google ScholarCross Ref
37. R Di Felice. 1994. The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow 20, 1 (1994), 153–159.Google ScholarCross Ref
38. Andrew K Dickerson, Zachary G Mills, and David L Hu. 2012. Wet mammals shake at tuned frequencies to dry. Journal of the Royal Society Interface 9, 77 (2012), 3208–3218.Google ScholarCross Ref
39. Sabri Ergun. 1952. Fluid flow through packed columns. Chemical Engineering Progress 48 (1952), 89–94.Google Scholar
40. Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly Rubber: An Implicit Material Point Method for Simulating Non-equilibrated Viscoelastic and Elastoplastic Solids. ACM Transactions on Graphics (TOG) 38, 4 (2019).Google ScholarDigital Library
41. Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Transactions on Graphics (TOG) 37, 4 (2018), 51.Google ScholarDigital Library
42. Yun (Raymond) Fei, Henrique Teles Maia, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2017. A Multi-scale Model for Simulating Liquid-hair Interactions. ACM Transactions on Graphics (TOG) 36, 4, Article 56 (July 2017), 17 pages.Google ScholarDigital Library
43. PH Forchheimer. 1901. Wasserbewegung durch boden. Zeitz. Ver. Duetch Ing. 45 (1901), 1782–1788.Google Scholar
44. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A Polynomial Particle-In-Cell Method. ACM Transactions on Graphics (TOG) 36, 6 (2017), 222.Google ScholarDigital Library
45. Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis, and Chenfanfu Jiang. 2018a. Animating fluid sediment mixture in particle-laden flows. ACM Transactions on Graphics (TOG) 37, 4 (2018), 149.Google ScholarDigital Library
46. Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Transactions on Graphics (TOG) 36, 6 (2017), 223.Google ScholarDigital Library
47. Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana Tampubolon, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018b. GPU Optimization of Material Point Methods. ACM Transactions on Graphics (TOG) 37, 6 (2018).Google ScholarDigital Library
48. J Gaume, T Gast, J Teran, A van Herwijnen, and C Jiang. 2018. Dynamic anticrack propagation in snow. Nature Communications 9, 1 (2018), 3047.Google ScholarCross Ref
49. Jean-Frédéric Gerbeau and Benoît Perthame. 2001. Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems-Series B 1, 1 (2001), 89–102.Google ScholarCross Ref
50. Galen Gornowicz and Silviu Borac. 2015. Efficient and stable approach to elasticity and collisions for hair animation. In Proceedings of the 2015 Symposium on Digital Production. ACM, 41–49.Google ScholarDigital Library
51. Mireille Grégoire and Elmar Schömer. 2007. Interactive simulation of one-dimensional flexible parts. Computer-Aided Design 39, 8 (2007), 694–707.Google ScholarDigital Library
52. Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, and Joseph Teran. 2018. A material point method for thin shells with frictional contact. ACM Transactions on Graphics (TOG) 37, 4 (2018), 147.Google ScholarDigital Library
53. Sunil Hadap, Marie-Paule Cani, Florence Bertails, Ming Lin, Kelly Ward, Stephen Marschner, Tae-Yong Kim, and Zoran Kacic-Alesic. 2007. Strands and hair – Modeling, simulation and rendering. In SIGGRAPH Courses. 1–150.Google Scholar
54. Sunil Hadap and Nadia Magnenat-Thalmann. 2001. Modeling dynamic hair as a continuum. Computer Graphics Forum 20, 3 (2001), 329–338.Google ScholarCross Ref
55. Dongsoo Han and Takahiro Harada. 2013. Tridiagonal matrix formulation for inextensible hair strand simulation. In Proceedings of the Workshop on Virtual Reality Interaction and Physical Simulation. The Eurographics Association.Google Scholar
56. Fathi Hassine. 2013. A review of depth-averaged models for dry granular flows: Savage-Hutter and μ(I)-rheology. arXiv preprint arXiv:1303.2838 (2013).Google Scholar
57. Winslow H Herschel and Ronald Bulkley. 1926. Konsistenzmessungen von gummibenzollösungen. Colloid & Polymer Science 39, 4 (1926), 291–300.Google Scholar
58. JE Hilton, LR Mason, and PW Cleary. 2010. Dynamics of gas-solid fluidised beds with non-spherical particle geometry. Chemical Engineering Science 65, 5 (2010), 1584–1596.Google ScholarCross Ref
59. Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. 2002. Interactive animation of ocean waves. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer animation (SCA ’02). ACM, 161–166.Google ScholarDigital Library
60. Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Transactions on Graphics (TOG) 37, 4 (2018), 150.Google ScholarDigital Library
61. D Iesan. 1994. On the theory of mixtures of elastic solids. Journal of Elasticity 35, 1–3 (1994), 251–268.Google ScholarCross Ref
62. D Ieşan and L Nappa. 2008. On the theory of viscoelastic mixtures and stability. Mathematics and Mechanics of Solids 13, 1 (2008), 55–80.Google ScholarCross Ref
63. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2014), 426–435.Google ScholarDigital Library
64. Ioan R Ionescu. 2010. Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope. Journal of Non-Newtonian Fluid Mechanics 165, 19–20 (2010), 1328–1341.Google ScholarCross Ref
65. Ioan R Ionescu. 2013a. Augmented Lagrangian for shallow viscoplastic flow with topography. J. Comput. Phys. 242 (2013), 544–560.Google ScholarDigital Library
66. Ioan R Ionescu. 2013b. Viscoplastic shallow flow equations with topography. Journal of Non-Newtonian Fluid Mechanics 193 (2013), 116–128.Google ScholarCross Ref
67. Ioan R Ionescu and Oana Lupaşcu. 2016. Modeling shallow avalanche onset over complex basal topography. Advances in Computational Mathematics 42, 1 (2016), 5–26.Google ScholarDigital Library
68. Ioan R Ionescu, Anne Mangeney, François Bouchut, and Olivier Roche. 2015. Viscoplastic modeling of granular column collapse with pressure-dependent rheology. Journal of Non-Newtonian Fluid Mechanics 219 (2015), 1–18.Google ScholarCross Ref
69. Fridtjov Irgens. 2008. Continuum mechanics. Springer Science & Business Media.Google Scholar
70. Fridtjov Irgens. 2014. Generalized Newtonian Fluids. Springer International Publishing, Cham, 113–124. Google ScholarCross Ref
71. M Khalid Jawed, Alyssa Novelia, and Oliver M O’Reilly. 2018. A primer on the kinematics of discrete elastic rods. Springer.Google Scholar
72. Michel Jean. 1999. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering 177, 3–4 (1999), 235–257.Google ScholarCross Ref
73. Michel Jean, Vincent Acary, and Yann Monerie. 2001. Non-smooth contact dynamics approach of cohesive materials. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, 1789 (2001), 2497–2518.Google Scholar
74. Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Transactions on Graphics (TOG) 36, 4 (2017), 152.Google ScholarDigital Library
75. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4 (2015), 51.Google ScholarDigital Library
76. Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The material point method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses. ACM, 24.Google ScholarDigital Library
77. Dirk Kadau, Guido Bartels, Lothar Brendel, and Dietrich E Wolf. 2002. Contact dynamics simulations of compacting cohesive granular systems. Computer Physics Communications 147, 1–2 (2002), 190–193.Google ScholarCross Ref
78. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient Yarn-based Cloth with Adaptive Contact Linearization. ACM Transactions on Graphics (TOG) 29, 4, Article 105 (July 2010), 10 pages.Google ScholarDigital Library
79. Michael Kass and Gavin Miller. 1990. Rapid, stable fluid dynamics for computer graphics. In ACM SIGGRAPH Computer Graphics, Vol. 24. ACM, 49–57.Google ScholarDigital Library
80. Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Transactions on Graphics (TOG) 33, 4, Article 123 (July 2014), 12 pages.Google ScholarDigital Library
81. VC Kelessidis, R Maglione, C Tsamantaki, and Y Aspirtakis. 2006. Optimal determination of rheological parameters for Herschel-Bulkley drilling fluids and impact on pressure drop, velocity profiles and penetration rates during drilling. Journal of Petroleum Science and Engineering 53, 3–4 (2006), 203–224.Google ScholarCross Ref
82. Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu Jiang, and Joseph Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 103.Google ScholarDigital Library
83. Tassilo Kugelstadt and Elmar Schömer. 2016. Position and orientation based Cosserat rods. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 169–178.Google Scholar
84. JAM Kuipers, KJ Van Duin, FPH Van Beckum, and Willibrordus Petrus Maria Van Swaaij. 1992. A numerical model of gas-fluidized beds. Chemical Engineering Science 47, 8 (1992), 1913–1924.Google ScholarCross Ref
85. Hanna G Lagger, Thomas Breinlinger, Jan G Korvink, Michael Moseler, Alberto Di Renzo, Francesco Di Maio, and Claas Bierwisch. 2015. Influence of hydrodynamic drag model on shear stress in the simulation of magnetorheological fluids. Journal of Non-Newtonian Fluid Mechanics 218 (2015), 16–26.Google ScholarCross Ref
86. Horace Lamb. 1993. Hydrodynamics. Cambridge university press.Google Scholar
87. Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational stokes: a unified pressure-viscosity solver for accurate viscous liquids. ACM Transactions on Graphics (TOG) 36, 4 (2017), 101.Google ScholarDigital Library
88. Minjae Lee, David Hyde, Michael Bao, and Ronald Fedkiw. 2019. A skinned tetrahedral mesh for hair animation and hair-water interaction. IEEE Transactions on Visualization and Computer Graphics 25, 3 (2019), 1449–1459.Google ScholarCross Ref
89. Toon Lenaerts, Bart Adams, and Philip Dutré. 2008. Porous flow in particle-based fluid simulations. ACM Transactions on Graphics (TOG) 27, 3 (2008), 49.Google ScholarDigital Library
90. Xingyue Li and Jidong Zhao. 2018. Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder Technology 338 (2018), 493–505.Google ScholarCross Ref
91. Guoping Lian, Colin Thornton, and Michael J Adams. 1993. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid and Interface Science 161, 1 (1993), 138–147.Google ScholarCross Ref
92. Wei-Chin Lin. 2014. Coupling Hair with Smoothed Particle Hydrodynamics Fluids. In Workshop on Virtual Reality Interaction and Physical Simulation, Jan Bender, Christian Duriez, Fabrice Jaillet, and Gabriel Zachmann (Eds.). The Eurographics Association.Google Scholar
93. Wei-Chin Lin. 2015. Boundary handling and porous flow for fluid-hair interactions. Computers & Graphics 52 (2015), 33–42.Google ScholarDigital Library
94. E Mauret and M Renaud. 1997. Transport phenomena in multi-particle systems—II. Proposed new model based on flow around submerged objects for sphere and fiber beds-transition between the capillary and particulate representations. Chemical Engineering Science 52, 11 (1997), 1819–1834.Google ScholarCross Ref
95. Aleka McAdams, Andrew Selle, Kelly Ward, Eftychios Sifakis, and Joseph Teran. 2009. Detail preserving continuum simulation of straight hair. ACM Transactions on Graphics (TOG) 28, 3 (2009), 62.Google ScholarDigital Library
96. R v Mises. 1913. Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913 (1913), 582–592.Google Scholar
97. Joe J Monaghan. 1994. Simulating free surface flows with SPH. J. Comput. Phys. 110, 2 (1994), 399–406.Google ScholarDigital Library
98. Jean J Moreau. 1988. Unilateral contact and dry friction in finite freedom dynamics. In Nonsmooth Mechanics and Applications. Springer, 1–82.Google Scholar
99. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 154–159.Google ScholarDigital Library
100. Matthias Müller, Tae-Yong Kim, and Nuttapong Chentanez. 2012. Fast simulation of inextensible hair and fur. In Proceedings of the Workshop on Virtual Reality Interaction and Physical Simulation, Vol. 12. 39–44.Google Scholar
101. Kentaro Nagasawa, Takayuki Suzuki, Ryohei Seto, Masato Okada, and Yonghao Yue. 2019. Mixing Sauces: A Viscosity Blending Model for Shear Thinning Fluids. ACM Transactions on Graphics (TOG) 38, 4 (2019).Google ScholarDigital Library
102. Michael B Nielsen and Ole Østerby. 2013. A two-continua approach to Eulerian simulation of water spray. ACM Transactions on Graphics (TOG) 32, 4 (2013), 67.Google ScholarDigital Library
103. Hilary Ockendon and John R Ockendon. 1995. Viscous flow. Vol. 13. Cambridge University Press.Google Scholar
104. Alexander Oron, Stephen H Davis, and S George Bankoff. 1997. Long-scale evolution of thin liquid films. Reviews of Modern Physics 69, 3 (1997), 931.Google ScholarCross Ref
105. Saket Patkar and Parag Chaudhuri. 2013. Wetting of porous solids. IEEE Transactions on Visualization and Computer Graphics 19, 9 (2013), 1592–1604.Google ScholarDigital Library
106. JRA Pearson and PMJ Tardy. 2002. Models for flow of non-Newtonian and complex fluids through porous media. Journal of Non-Newtonian Fluid Mechanics 102, 2 (2002), 447–473.Google ScholarCross Ref
107. Charles S Peskin. 2002. The immersed boundary method. Acta numerica 11 (2002), 479–517.Google Scholar
108. Lena Petrovic, Mark Henne, and John Anderson. 2005. Volumetric methods for simulation and rendering of hair. Pixar Animation Studios 2, 4 (2005).Google Scholar
109. Remmelt Pit, Hubert Hervet, and Liliane Léger. 1999. Friction and slip of a simple liquid at a solid surface. Tribology Letters 7, 2–3 (1999), 147–152.Google ScholarCross Ref
110. John W Pritchett. 1978. A numerical model of gas fluidized beds. In AIChE Symposium. 134–148.Google Scholar
111. P Rajitha, RP Chhabra, NE Sabiri, and Jacques Comiti. 2006. Drag on non-spherical particles in power law non-Newtonian media. International Journal of Mineral Processing 78, 2 (2006), 110–121.Google ScholarCross Ref
112. Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin, Joseph Teran, and Pirouz Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 157–163.Google ScholarDigital Library
113. Bo Ren, Chenfeng Li, Xiao Yan, Ming C Lin, Javier Bonet, and Shi-Min Hu. 2014. Multiple-fluid SPH simulation using a mixture model. ACM Transactions on Graphics (TOG) 33, 5 (2014), 171.Google ScholarDigital Library
114. Maurice Renaud, Evelyne Mauret, and Rajendra P Chhabra. 2004. Power-law fluid flow over a sphere: Average shear rate and drag coefficient. The Canadian Journal of Chemical Engineering 82, 5 (2004), 1066–1070.Google ScholarCross Ref
115. W. Rungjiratananon, Y. Kanamori, and T. Nishita. 2012. Wetting effects in hair simulation. Computer Graphics Forum 31, 7 (2012), 1993–2002.Google ScholarDigital Library
116. Witawat Rungjiratananon, Zoltan Szego, Yoshihiro Kanamori, and Tomoyuki Nishita. 2008. Real-time Animation of Sand-Water Interaction. Computer Graphics Forum 27, 7 (2008), 1887–1893.Google ScholarCross Ref
117. AJC de Saint-Venant. 1871. Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l’introduction de marees dans leurs lits. Comptes rendus des seances de l’Academie des Sciences 36 (1871), 174–154.Google Scholar
118. Pierre Saramito and Anthony Wachs. 2017. Progress in numerical simulation of yield stress fluid flows. Rheologica Acta 56, 3 (2017), 211–230.Google ScholarCross Ref
119. WR Schowalter. 1988. The behavior of complex fluids at solid boundaries. Journal of Non-Newtonian Fluid Mechanics 29 (1988), 25–36.Google ScholarCross Ref
120. Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A mass spring model for hair simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 64.Google ScholarDigital Library
121. SideFX. 2019. SideFX Houdini. https://www.sidefx.com.Google Scholar
122. Juan C Simo. 1988. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Computer methods in applied mechanics and engineering 66, 2 (1988), 199–219.Google Scholar
123. Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean flesh simulation. ACM Transactions on Graphics (TOG) 37, 2 (2018), 12.Google ScholarDigital Library
124. Taha Sochi. 2011. Slip at fluid-solid interface. Polymer Reviews 51, 4 (2011), 309–340.Google ScholarCross Ref
125. Carlota Soler, Tobias Martin, and Olga Sorkine-Hornung. 2018. Cosserat Rods with Projective Dynamics. Computer Graphics Forum 37, 8 (2018), 137–147.Google ScholarCross Ref
126. Jonas Spillmann and Matthias Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer animation. Eurographics Association, 63–72.Google Scholar
127. Jos Stam. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (SIGGRAPH). ACM Press/Addison-Wesley Publishing Co., 121–128.Google ScholarDigital Library
128. Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A material point method for snow simulation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 102.Google ScholarDigital Library
129. Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics (TOG) 33, 4 (2014), 138.Google ScholarDigital Library
130. Deborah Sulsky, Zhen Chen, and Howard L Schreyer. 1994. A particle method for history-dependent materials. Computer methods in applied mechanics and engineering 118, 1–2 (1994), 179–196.Google Scholar
131. Hervé Tabuteau, Philippe Coussot, and John R de Bruyn. 2007. Drag force on a sphere in steady motion through a yield-stress fluid. Journal of rheology 51, 1 (2007), 125–137.Google ScholarCross Ref
132. Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Transactions on Graphics (TOG) 36, 4 (2017), 105.Google ScholarDigital Library
133. Yutaka Tsuji, Toshihiro Kawaguchi, and Toshitsugu Tanaka. 1993. Discrete particle simulation of two-dimensional fluidized bed. Powder technology 77, 1 (1993), 79–87.Google Scholar
134. Orestis Vantzos, Omri Azencot, Max Wardeztky, Martin Rumpf, and Mirela Ben-Chen. 2017. Functional Thin Films on Surfaces. IEEE Transactions on Visualization and Computer Graphics 23, 3 (2017), 1179–1192.Google ScholarDigital Library
135. Orestis Vantzos, Saar Raz, and Mirela Ben-Chen. 2018. Real-time Viscous Thin Films. ACM Transactions on Graphics (TOG) 37, 6, Article 281 (Nov. 2018), 10 pages.Google ScholarDigital Library
136. Huamin Wang, Gavin Miller, and Greg Turk. 2007. Solving general shallow wave equations on surfaces. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer animation (SCA ’07). Eurographics Association, 229–238.Google ScholarDigital Library
137. Kelly Ward, Florence Bertails, Tae-Yong Kim, Stephen R. Marschner, Marie-Paule Cani, and Ming C. Lin. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE TVCG 13, 2 (2007), 213–234.Google Scholar
138. Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, and Chenfanfu Jiang. 2019. CD-MPM: Continuum Damage Material Point Methods for Dynamic Fracture Animation. ACM Transactions on Graphics (TOG) 38, 4 (2019).Google ScholarDigital Library
139. Xiao Yan, Yun-Tao Jiang, Chen-Feng Li, Ralph R Martin, and Shi-Min Hu. 2016. Multiphase sph simulation for interactive fluids and solids. ACM Transactions on Graphics (TOG) 35, 4 (2016), 79.Google ScholarDigital Library
140. Tao Yang, Jian Chang, Ming C Lin, Ralph R Martin, Jian J Zhang, and Shi-Min Hu. 2017. A unified particle system framework for multi-phase, multi-material visual simulations. ACM Transactions on Graphics (TOG) 36, 6 (2017), 224.Google ScholarDigital Library
141. Tao Yang, Jian Chang, Bo Ren, Ming C Lin, Jian Jun Zhang, and Shi-Min Hu. 2015. Fast multiple-fluid simulation using Helmholtz free energy. ACM Transactions on Graphics (TOG) 34, 6 (2015), 201.Google ScholarDigital Library
142. K Yazdchi and Stefan Luding. 2012. Towards unified drag laws for inertial flow through fibrous materials. Chemical Engineering Journal 207 (2012), 35–48.Google ScholarCross Ref
143. Thomas Young. 1805. III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London 95 (1805), 65–87.Google Scholar
144. Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics (TOG) 34, 5 (2015), 160.Google ScholarDigital Library
145. Yonghao Yue, Breannan Smith, Peter Yichen Chen, Maytee Chantharayukhonthorn, Ken Kamrin, and Eitan Grinspun. 2018. Hybrid Grains: Adaptive Coupling of Discrete and Continuum Simulations of Granular Media. ACM Transactions on Graphics (TOG) 37, 6, Article 283 (Nov. 2018), 19 pages.Google ScholarDigital Library
146. Wenqi Zhong, Aibing Yu, Xuejiao Liu, Zhenbo Tong, and Hao Zhang. 2016. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technology 302 (2016), 108–152.Google ScholarCross Ref
147. ZY Zhou, SB Kuang, KW Chu, and AB Yu. 2010. Discrete particle simulation of particle-fluid flow: model formulations and their applicability. Journal of Fluid Mechanics 661 (2010), 482–510.Google ScholarCross Ref
148. Bo Zhu, Minjae Lee, Ed Quigley, and Ronald Fedkiw. 2015. Codimensional non-Newtonian fluids. ACM Transactions on Graphics (TOG) 34, 4 (2015), 115.Google ScholarDigital Library
149. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions on Graphics (TOG) 24, 3 (2005), 965–972.Google ScholarDigital Library


