“Chebyshev nets from commuting PolyVector fields” by Sageman-Furnas, Chern, Ben-Chen and Vaxman
Conference:
Type(s):
Title:
- Chebyshev nets from commuting PolyVector fields
Session/Category Title: Network
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We propose a method for computing global Chebyshev nets on triangular meshes. We formulate the corresponding global parameterization problem in terms of commuting PolyVector fields, and design an efficient optimization method to solve it. We compute, for the first time, Chebyshev nets with automatically-placed singularities, and demonstrate the realizability of our approach using real material.
References:
1. John Edward Adkins. 1956. Finite Plane Deformation of Thin Elastic Sheets Reinforced with Inextensible Cords. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 249, 961 (1956), 125–150.Google ScholarCross Ref
2. Masaki Aono. 1994. Computer-Aided Geometric Design for Forming Woven Cloth Composites. Ph.D. Dissertation. Rensselaer Polytechnic Institute.Google ScholarDigital Library
3. Masaki Aono, David E. Breen, and Michael J. Wozny. 2001. Modeling methods for the design of 3D broadcloth composite parts. Computer-Aided Design 33, 13 (2001), 989–1007.Google ScholarCross Ref
4. Masaki Aono, Paolo Denti, David E. Breen, and Michael J. Wozny. 1996. Fitting a woven cloth model to a curved surface: dart insertion. IEEE Computer Graphics and Applications 16, 5 (1996), 60–70.Google ScholarDigital Library
5. Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Maks Ovsjanikov. 2013. An operator approach to tangent vector field processing. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing. Eurographics Association, 73–82.Google ScholarDigital Library
6. Omri Azencot, Maks Ovsjanikov, Frédéric Chazal, and Mirela Ben-Chen. 2015. Discrete derivatives of vector fields on surfaces-An operator approach. ACM Transactions on Graphics (TOG) 34, 3 (2015), 29.Google ScholarDigital Library
7. Changyeob Baek, Andrew O Sageman-Furnas, Mohammad K Jawed, and Pedro M Reis. 2018. Form finding in elastic gridshells. Proceedings of the National Academy of Sciences of the United States of America 115, 1 (Jan. 2018), 75–80.Google ScholarCross Ref
8. IIlya Y. Bakelman. 1965. Chebyshev networks in manifolds of bounded curvature. Trudy Matematicheskogo Instituta im VA Steklova 76 (1965), 124–129.Google Scholar
9. Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas Guibas. 2010. On Discrete Killing Vector Fields and Patterns on Surfaces. Computer Graphics Forum 29, 5 (2010), 1701–1711.Google ScholarCross Ref
10. Fabrice Bethuel, Haïm Brezis, Frédéric Hélein, et al. 1994. Ginzburg-Landau Vortices. Vol. 13. Springer.Google Scholar
11. Ludwig Bieberbach. 1926. Über Tchebychefsche Netze auf Flächen negativer Krümmung, sowie auf einigen weiteren Flächenarten. Preuss Akad Wiss, Phys Math Kl 23 (1926), 294–321.Google Scholar
12. Bruce Blausen. 2014. Stent in Coronary Artery from Medical gallery of Blausen Medical 2014. WikiJournal of Medicine 1, 2 (2014). Google ScholarCross Ref
13. Lina Bouhaya, Olivier Baverel, and Jean-François CARON. 2009. Mapping two-way continuous elastic grid on an imposed surface: Application to grid shells. In IASS 2009: Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures. Valencia, Spain, 989–998.Google Scholar
14. Lina Bouhaya, Olivier Baverel, and Jean-François CARON. 2014. Optimization of gridshell bar orientation using a simplified genetic approach. Structural and Multidisciplinary Optimization 50, 5 (Nov. 2014), 839–848.Google ScholarDigital Library
15. Alon Bright, Edward Chien, and Ofir Weber. 2017. Harmonic Global Parametrization with Rational Holonomy. ACM Trans. Graph. 36, 4, Article 89 (July 2017), 15 pages.Google ScholarDigital Library
16. Yuri D. Burago, Sergei V. Ivanov, and Sergey G Malev. 2007. Remarks on Chebyshev Coordinates. Journal of Mathematical Sciences 140, 4 (2007), 497–501.Google ScholarCross Ref
17. Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized Global Parametrization. ACM Trans. Graph. 34, 6, Article 192 (Oct. 2015), 12 pages.Google ScholarDigital Library
18. Edward Chien, Zohar Levi, and Ofir Weber. 2016. Bounded Distortion Parametrization in the Space of Metrics. ACM Trans. Graph. 35, 6, Article 215 (Nov. 2016), 16 pages.Google ScholarDigital Library
19. Fernando de Goes, Beibei Liu, Max Budninskiy, Yiying Tong, and Mathieu Desbrun. 2014. Discrete 2-tensor fields on triangulations. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 13–24.Google Scholar
20. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Designing N-PolyVector Fields with Complex Polynomials. Computer Graphics Forum 33, 5 (2014), 1–11.Google ScholarDigital Library
21. Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable PolyVector Fields. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 34, 4 (2015), 38:1–38:12.Google Scholar
22. Manfredo P. do Carmo. 1992. Riemannian Geometry. Birkhäuser.Google Scholar
23. Cyril Douthe, Olivier Baverel, and Jean-François Caron. 2006. Form-finding of a Grid Shell in Composite Materials. J IASS 47 (2006), 53–62. Issue 1.Google Scholar
24. Hans-Christian Ebke, David Bommes, Marcel Campen, and Leif Kobbelt. 2013. QEx: Robust Quad Mesh Extraction. ACM Trans. Graph. 32, 6, Article 168 (Nov. 2013), 10 pages.Google ScholarDigital Library
25. Xianzhong Fang, Hujun Bao, Yiying Tong, Mathieu Desbrun, and Jin Huang. 2018. Quadrangulation Through Morse-parameterization Hybridization. ACM Trans. Graph. 37, 4, Article 92 (July 2018), 15 pages.Google ScholarDigital Library
26. Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-free Mappings by Simplex Assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov. 2016), 12 pages.Google ScholarDigital Library
27. Akash Garg, Andrew O Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire mesh design. ACM Trans. on Graphics 33, 4 (July 2014), 1–12.Google ScholarDigital Library
28. Étienne Ghys. 2011. Sur la coupe des vêtements: variation autour d’un thème de Tchebychev. L’Enseignement Mathématique Revue Internationale 2e Sèrie 57, 1–2 (2011), 165–208.Google Scholar
29. Giel, Immanuel. 2010. Multihalle — Wikipedia, The Free Encyclopedia. https://de.wikipedia.org/wiki/MultihalleGoogle Scholar
30. J N Hazzidakis. 1879. Über einige Eigenschaften der Flächen mit constantem Krümmungsmass. Journal für die reine und angewandte Mathematik 88 (1879), 68–73.Google Scholar
31. J Hennicke, K Matsushita, F Otto, K Sataka, E Schaur, T Shirayanagi, and G Gröbner. 1974. Grid Shells (IL 10). Inst Lightweight Structures, Stuttgart.Google Scholar
32. Elisa Lafuente Hernández, Stefan Sechelmann, Thilo Rörig, and Christoph Gengnagel. 2013. Topology Optimisation of Regular and Irregular Elastic Gridshells by Means of a Non-linear Variational Method. In Advances in Architectural Geometry 2012. Springer Vienna, Vienna, 147–160.Google Scholar
33. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. http://libigl.github.io/libigl/.Google Scholar
34. Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally Optimal Direction Fields. ACM Trans. Graph. 32, 4, Article 59 (July 2013), 10 pages.Google ScholarDigital Library
35. John M Lee. 2013. Smooth manifolds. In Introduction to Smooth Manifolds. Springer, 1–31.Google Scholar
36. Yannick Masson. 2017. Existence and construction of Chebyshev nets with conical singularities and application to gridshells. Ph.D. Dissertation. ENPC, University Paris-Est.Google Scholar
37. Yannick Masson and Laurent Monasse. 2017. Existence of global Chebyshev nets on surfaces of absolute Gaussian curvature less than 2 pi. Journal of Geometry 108, 1 (01 Apr 2017), 25–32.Google ScholarCross Ref
38. Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-aligned Global Parametrization. ACM Trans. Graph. 33, 4, Article 135 (July 2014), 14 pages.Google ScholarDigital Library
39. Ashish Myles and Denis Zorin. 2013. Controlled-distortion Constrained Global Parametrization. ACM Trans. Graph. 32, 4, Article 105 (July 2013), 14 pages.Google ScholarDigital Library
40. Allen C. Pipkin. 1984. Equilibrium of Tchebychev nets. Archive for Rational Mechanics and Analysis 85, 1 (1984), 81–97.Google ScholarCross Ref
41. Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460–1485.Google ScholarDigital Library
42. Ronald S Rivlin. 1955. Plane Strain of a Net Formed by Inextensible Cords. Journal of Rational Mechanics and Analysis 4 (1955), 951–974.Google Scholar
43. Ronald S. Rivlin. 1958. The deformation of a membrane formed by inextensible cords. Archive for Rational Mechanics and Analysis 2, 1 (1958), 447–476.Google ScholarCross Ref
44. Richard E Robertson, E S Hsiue, E N Sickafus, and G S Y Yeh. 1981. Fiber rearrangements during the molding of continuous fiber composites. I. Flat cloth to a hemisphere. Polymer composites 2, 3 (1981), 126–131.Google Scholar
45. Sandra L. Samelson. 1991. Global Tchebychev Nets on Complete Two-Dimensional Riemannian Surfaces. Archive for Rational Mechanics and Analysis 114, 3 (1991), 237–254.Google ScholarCross Ref
46. Sandra L Samelson and W P Dayawansa. 1995. On the Existence of Global Tchebychev Nets. Trans. Amer. Math. Soc. 347, 2 (1995), 651–660.Google ScholarCross Ref
47. Robert Sauer. 1970. Differenzengeometrie. Springer Verlag, Berlin.Google Scholar
48. James J. Stoker. 1969. Differential Geometry. John Wiley & Sons, New York.Google Scholar
49. Pafnuty L. Tschebyscheff. 1878. Sur la coupe des vêtements, “On the cutting of garments”. Association francaise pour l’avancement des sciences (1878), 154–155.Google Scholar
50. Betty P van West, Randolph B Pipes, and Michael Keefe. 1990. A Simulation of the Draping of Bidirectional Fabrics over Arbitrary Surfaces. Journal of the Textile Institute 81, 4 (1990), 448–460.Google ScholarCross Ref
51. Amir Vaxman et al. 2017. Directional: directional field synthesis, design, and processing. https://github.com/avaxman/Directional. Google ScholarCross Ref
52. Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design, and Processing. Computer Graphics Forum 35, 2 (2016), 545–572.Google ScholarCross Ref
53. Ryan Viertel and Braxton Osting. 2019. An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory. SIAM Journal on Scientific Computing 41, 1 (2019), A452–A479.Google ScholarDigital Library
54. Aurel Voss. 1882. Über ein neues Princip der Abbildung krummer Oberflächen. Math. Ann. 19 (1882), 1–26.Google ScholarCross Ref
55. Wen-Biao Wang and Allen. C Pipkin. 1986. Inextensible Networks with Bending Stiffness. The Quarterly Journal of Mechanics and Applied Mathematics 39, 3 (1986), 343.Google ScholarCross Ref
56. Walter Wunderlich. 1951. Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Springer Verlag.Google Scholar


