“Checkerboard patterns with black rectangles” by Peng, Jiang, Wonka and Pottmann
Conference:
Type(s):
Title:
- Checkerboard patterns with black rectangles
Session/Category Title: Network
Presenter(s)/Author(s):
Moderator(s):
Abstract:
Checkerboard patterns with black rectangles can be derived from quad meshes with orthogonal diagonals. First, we present an initial theoretical analysis of these quad meshes. The analysis reveals many possible applications in geometry processing and also motivates the numerical optimization for aesthetic and functional checkerboard pattern design. Second, we describe an optimization algorithm that transforms initial 2D and 3D quad meshes into quad meshes with orthogonal diagonals. Third, we present a 2D checkerboard pattern design framework based on integer programming inspired by the logo design of the 2020 Olympic games. Our results show a variety of 2D and 3D checkerboard patterns that can be derived from 2D or 3D quad meshes with orthogonal diagonals.
References:
1. 1731. Varignon’s theorem. https://en.wikipedia.org/wiki/Varignon%27s_theoremGoogle Scholar
2. J. E. Adkins. 1956. Finite Plane Deformation of Thin Elastic Sheets Reinforced with Inextensible Cords. Philosophical Transactions of The Royal Society B: Biological Sciences 249 (05 1956), 125–150. Google ScholarCross Ref
3. M. Aono, P. Denti, D. E. Breen, and M. J. Wozny. 1996. Fitting a woven cloth model to a curved surface: dart insertion. IEEE Computer Graphics and Applications 16, 5 (Sep. 1996), 60–70. Google ScholarDigital Library
4. Ted D. Blacker and Michael B. Stephenson. 1991. Paving: A new approach to automated quadrilateral mesh generation. Internat. J. Numer. Methods Engrg. 32, 4 (1991), 811–847. Google ScholarCross Ref
5. Alexander Bobenko, Stefan Sechelmann, and Boris Springborn. 2016. Discrete Conformal Maps: Boundary Value Problems, Circle Domains, Fuchsian and Schottky Uniformization. 1–56. Google ScholarCross Ref
6. Alexander Bobenko and Mikhail Skopenkov. 2012. Discrete Riemann surfaces: Linear discretization and its convergence. Journal für die reine und angewandte Mathematik (Crelles Journal) 0 (10 2012). Google ScholarCross Ref
7. Alexander Bobenko and Yuri Suris. 2008. Discrete differential geometry: Integrable Structure. American Math. Soc.Google Scholar
8. Alexander I. Bobenko and Felix Günther. 2017. Discrete Riemann surfaces based on quadrilateral cellular decompositions. Advances in Mathematics 311 (2017), 885 — 932. Google ScholarCross Ref
9. Pafnuty Lvovich Chebyshev. 1878. Sur la coupe des vetements, “On the cutting of garments”. Association francaise pour l’avancement des sciences (1878), 154–155.Google Scholar
10. Xuelin Chen, Honghua Li, Chi-Wing Fu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2018. 3D Fabrication with Universal Building Blocks and Pyramidal Shells. ACM Trans. Graph. 37, 6, Article 189 (Dec. 2018), 15 pages. Google ScholarDigital Library
11. Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing Huang, Bedrich Benes, Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: Decompose-and-pack for 3D Printing. ACM Trans. Graph. 34, 6, Article 213 (Oct. 2015), 12 pages. Google ScholarDigital Library
12. Tokyo 2020 Organizing Committee. 2016. Tokyo 2020 Emblems. https://tokyo2020.org/en/games/emblem/Google Scholar
13. Keenan Crane. 2013. Conformal Geometry Processing. PhD thesis, Caltech (June 2013).Google Scholar
14. Keenan Crane. 2019. Conformal Geometry of Simplicial Surfaces. AMS Proceedings of Symposia in Applied Mathematics (2019).Google Scholar
15. Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun, Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. Graph. 33, 4, Article 66 (July 2014), 12 pages. Google ScholarDigital Library
16. Branko Grünbaum and Geoffrey Colin Shephard. 2016. Tilings and Patterns: Second Edition. Dover Publications.Google Scholar
17. Xianfeng Gu, Ren Guo, Feng Luo, Jian Sun, and Tianqi Wu. 2018a. A discrete uniformization theorem for polyhedral surfaces II. Journal of Differential Geometry 109, 3 (07 2018), 431–466. Google ScholarCross Ref
18. Xianfeng Gu, Feng Luo, Jian Sun, and Tianqi Wu. 2018b. A discrete uniformization theorem for polyhedral surfaces. Journal of Differential Geometry (2018).Google Scholar
19. Xianfeng Gu and Shing-Tung Yau. 2008. Computational Conformal Geometry. International Press.Google Scholar
20. Caigui Jiang, Chengcheng Tang, Amir Vaxman, Peter Wonka, and Helmut Pottmann. 2015. Polyhedral Patterns. ACM Trans. Graphics 34, 6 (2015). Proc. SIGGRAPH Asia.Google ScholarDigital Library
21. Serdar Karademir, Oleg A. Prokopyev, and Robert J. Mailloux. 2016. Irregular polyomino tiling via integer programming with application in phased array antenna design. Journal of Global Optimization 65, 2 (01 Jun 2016), 137–173. Google ScholarDigital Library
22. Richard Kenyon. 1993. Tiling a polygon with parallelograms. Algorithmica 9, 4 (01 Apr 1993), 382–397. Google ScholarCross Ref
23. Richard Kenyon. 2002. The Laplacian and Dirac operators on critical planar graphs. Inventiones mathematicae 150, 2 (01 Nov 2002), 409–439. Google ScholarCross Ref
24. Liliya Kharevych, Boris Springborn, and Peter Schröder. 2006. Discrete Conformal Mappings via Circle Patterns. ACM Trans. Graph. 25, 2 (apr 2006), 412–438. Google ScholarDigital Library
25. Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4, Article 89 (July 2016), 11 pages. Google ScholarDigital Library
26. Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25, 3 (2006), 681–689. Proc. SIGGRAPH.Google ScholarDigital Library
27. Sheng-Jie Luo, Yonghao Yue, Chun-Kai Huang, Yu-Huan Chung, Sei Imai, Tomoyuki Nishita, and Bing-Yu Chen. 2015. Legolization: Optimizing LEGO Designs. ACM Trans. Graph. 34, 6, Article 222 (Oct. 2015), 12 pages. Google ScholarDigital Library
28. Tobias Martin, Pushkar Joshi, Miklós Bergou, and Nathan Carr. 2013. Efficient Nonlinear Optimization via Multi-scale Gradient Filtering. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 89–100.Google Scholar
29. Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick Baudisch. 2014. faBrickation: Fast 3D printing of Functional Objects by Integrating Construction Kit Building Blocks. Conference on Human Factors in Computing Systems (CHI) (2014). Google ScholarDigital Library
30. Changhyup Park, Jae-Seung Noh, Il-Sik Jang, and Joe M. Kang. 2007. A new automated scheme of quadrilateral mesh generation for randomly distributed line constraints. Computer-Aided Design 39 (2007), 258–267.Google ScholarDigital Library
31. Chi-Han Peng, Helmut Pottmann, and Peter Wonka. 2018. Designing Patterns Using Triangle-quad Hybrid Meshes. ACM Trans. Graph. 37, 4, Article 107 (July 2018), 14 pages. Google ScholarDigital Library
32. A. C. Pipkin. 1986. Continuously distributed wrinkles in fabrics. Archive for Rational Mechanics and Analysis 95, 2 (1986), 93–115.Google ScholarCross Ref
33. Helmut Pottmann, Michael Eigensatz, Amir Vaxman, and Johannes Wallner. 2015. Architectural Geometry. Computers and Graphics 47 (2015), 145–164. Google ScholarDigital Library
34. Helmut Pottmann, Yang Liu, Johannes Wallner, Alexander Bobenko, and Wenping Wang. 2007. Geometry of Multi-layer Freeform Structures for Architecture. ACM Trans. Graph. 26 (2007), #65,1–11. Proc. SIGGRAPH.Google Scholar
35. Helmut Pottmann and Johannes Wallner. 2008. The focal geometry of circular and conical meshes. Adv. Comp. Math 29 (2008), 249–268.Google ScholarCross Ref
36. Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018a. Discrete Geodesic Nets for Modeling Developable Surfaces. ACM Transactions on Graphics 37, 2, Article 16 (2018), 17 pages. Google ScholarDigital Library
37. Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018b. The Shape Space of Discrete Orthogonal Geodesic Nets. ACM Transactions on Graphics 37, 6, Article 228 (2018), 17 pages.Google ScholarDigital Library
38. R. S. Rivlin. 1964. Networks of Inextensible Cords. Nonlinear Problems of Engineering (1964), 51–64.Google Scholar
39. R. S. Rivlin. 1997. Plane Strain of a Net Formed by Inextensible Cords. Collected Papers of R.S. Rivlin (1997), 511–534.Google Scholar
40. Henrik Schumacher. 2017. On H2-gradient Flows for the Willmore Energy. arXiv preprint arXiv:1703.06469 (2017).Google Scholar
41. Mikhail Skopenkov. 2013. The boundary value problem for discrete analytic functions. Advances in Mathematics 240 (2013), 61 — 87. Google ScholarCross Ref
42. Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 27, 3, Article 77 (aug 2008), 11 pages. Google ScholarDigital Library
43. Kenneth Stephenson. 2005. Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press.Google Scholar
44. Chengcheng Tang, Xiang Sun, Alexandra Gomes, Johannes Wallner, and Helmut Pottmann. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans. Graphics 33, 4 (2014). Proc. SIGGRAPPH.Google ScholarDigital Library
45. B. P. van West, R. B. Pipes, and M. Keefe. 1990. A Simulation of the Draping of Bidirectional Fabrics over Arbitrary Surfaces. The Journal of The Textile Institute 81, 4 (1990), 448–460.Google ScholarCross Ref
46. David R. White and Paul Kinney. 2007. Redesign of the Paving Algorithm : Robustness Enhancements through Element by Element Meshing. 6th International Meshing Roundtable (2007), 323–335.Google Scholar


