“X-CAD: optimizing CAD models with extended finite elements” by Hafner, Schumacher, Knoop, Auzinger, Bickel, et al. …
Conference:
Type(s):
Title:
- X-CAD: optimizing CAD models with extended finite elements
Session/Category Title: Geometry Brekkie
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We propose a novel generic shape optimization method for CAD models based on the eXtended Finite Element Method (XFEM). Our method works directly on the intersection between the model and a regular simulation grid, without the need to mesh or remesh, thus removing a bottleneck of classical shape optimization strategies. This is made possible by a novel hierarchical integration scheme that accurately integrates finite element quantities with sub-element precision. For optimization, we efficiently compute analytical shape derivatives of the entire framework, from model intersection to integration rule generation and XFEM simulation. Moreover, we describe a differentiable projection of shape parameters onto a constraint manifold spanned by user-specified shape preservation, consistency, and manufacturability constraints. We demonstrate the utility of our approach by optimizing mass distribution, strength-to-weight ratio, and inverse elastic shape design objectives directly on parameterized 3D CAD models.
References:
1. K Atkinson and Ezio Venturino. 1993. Numerical evaluation of line integrals. SIAM journal on numerical analysis 30, 3 (1993), 882–888.Google Scholar
2. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it. ACM Trans. Graph. 33, 4 (2014).Google ScholarDigital Library
3. Chandrajit L Bajaj, Christoph M Hoffmann, Robert E Lynch, and JEH Hopcroft. 1988. Tracing surface intersections. Computer aided geometric design 5, 4 (1988), 285–307.Google Scholar
4. T. Belytschko and T. Black. 1999. Elastic crack growth in finite elements with minimal remeshing. Internat. J. Numer. Methods Engrg. 45, 5 (jun 1999), 601–620.Google ScholarCross Ref
5. M. P. Bendsøe and O. Sigmund. 1999. Material interpolation schemes in topology optimization. Archive of Applied Mechanics (Ingenieur Archiv) 69, 9–10 (nov 1999), 635–654.Google Scholar
6. Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational design of metallophone contact sounds. ACM Trans. Graph. 34, 6 (2015).Google ScholarDigital Library
7. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numerical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 33, 4, Article 95 (July 2014), 11 pages.Google ScholarDigital Library
8. J. Austin Cottrell, Thomas J. R Hughes, and Yuri Bazilevs. 2009. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley.Google ScholarCross Ref
9. Sachin D. Daxini and Jagdish M. Prajapati. 2017. Parametric shape optimization techniques based on meshless methods: a review. Structural and Multidisciplinary Optimization 56, 5 (may 2017), 1197–1214.Google ScholarDigital Library
10. Pierre Duysinx, Laurent Van Miegroet, Thibault Jacobs, and Claude Fleury. 2006. Generalized Shape Optimization Using X-FEM and Level Set Methods. In Solid Mech. and Its App. Springer Netherlands, 23–32.Google Scholar
11. François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. 2011. Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30, 4 (2011), 1.Google ScholarDigital Library
12. Thomas-Peter Fries and Ted Belytschko. 2010. The extended/generalized finite element method: An overview of the method and its applications. Internat. J. Numer. Methods Engrg. (aug 2010).Google Scholar
13. G. Haasemann, M. Kästner, S. Prüger, and V. Ulbricht. 2011. Development of a quadratic finite element formulation based on the XFEM and NURBS. Internat. J. Numer. Methods Engrg. 86, 4–5 (jan 2011), 598–617.Google ScholarCross Ref
14. Ming-Chen Hsu, Chenglong Wang, Austin J. Herrema, Dominik Schillinger, Anindya Ghoshal, and Yuri Bazilevs. 2015. An interactive geometry modeling and parametric design platform for isogeometric analysis. Computers & Mathematics with Applications 70, 7 (oct 2015), 1481–1500.Google ScholarDigital Library
15. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages.Google ScholarDigital Library
16. Lenka Jeřábková and Torsten Kuhlen. 2009. Stable Cutting of Deformable Objects in Virtual Environments Using XFEM. IEEE Computer Graphics and Applications 29, 2 (mar 2009), 61–71.Google ScholarCross Ref
17. Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 3 (2009).Google ScholarDigital Library
18. Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google Scholar
19. Dan Koschier, Jan Bender, and Nils Thuerey. 2017. Robust eXtended Finite Elements for Complex Cutting of Deformables. ACM Trans. Graph. 36, 4, Article 55 (July 2017), 13 pages.Google ScholarDigital Library
20. László Kudela, Nils Zander, Tino Bog, Stefan Kollmannsberger, and Ernst Rank. 2015. Efficient and accurate numerical quadrature for immersed boundary methods. Advanced Modeling and Simulation in Engineering Sciences 2, 1 (2015), 10.Google ScholarCross Ref
21. Grégory Legrain. 2013. A NURBS enhanced extended finite element approach for unfitted CAD analysis. Computational Mechanics 52, 4 (apr 2013), 913–929.Google ScholarDigital Library
22. G. R. Liu. 2016. On Partitions of Unity Property of Nodal Shape Functions: Rigid-Body-Movement Reproduction and Mass Conservation. International Journal of Computational Methods 13, 02 (2016), 1640003.Google ScholarCross Ref
23. Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018. Narrow-band Topology Optimization on a Sparsely Populated Grid. ACM Trans. Graph. 37, 6, Article 251 (Dec. 2018), 14 pages.Google ScholarDigital Library
24. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29, 4 (2010), 1.Google ScholarDigital Library
25. B. Müller, S. Krämer-Eis, F. Kummer, and M. Oberlack. 2017. A high-order discontinuous Galerkin method for compressible flows with immersed boundaries. Internat. J. Numer. Methods Engrg. 110, 1 (2017), 3–30.Google ScholarCross Ref
26. B Müller, F Kummer, and M Oberlack. 2013. Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Internat. J. Numer. Methods Engrg. 96, 8 (2013), 512–528.Google ScholarCross Ref
27. M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation – SCA ’04. ACM Press.Google Scholar
28. Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wimmer, and Leif Kobbelt. 2016. Non-linear shape optimization using local subspace projections. ACM Trans. Graph. 35, 4 (2016).Google ScholarDigital Library
29. Orest Mykhaskiv, Mladen Banovic, Salvatore Auriemma, Pavanakumar Mohanamuraly, Andrea Walther, Herve Legrand, and Jens-Dominik Müller. 2018. NURBS-based and parametric-based shape optimization with differentiated CAD kernel. Computer-Aided Design and Applications 15, 6 (2018), 916–926.Google ScholarCross Ref
30. Ahmad R. Najafi, Masoud Safdari, Daniel A. Tortorelli, and Philippe H. Geubelle. 2017. Shape optimization using a NURBS-based interface-enriched generalized FEM. Internat. J. Numer. Methods Engrg. 111, 10 (jan 2017), 927–954.Google ScholarCross Ref
31. B. Nayroles, G. Touzot, and P. Villon. 1992. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mechanics 10, 5 (1992), 307–318.Google ScholarCross Ref
32. J. Nitsche. 1971. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 1 (01 Jul 1971), 9–15.Google Scholar
33. Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013. Make it stand. ACM Trans. Graph. 32, 4 (2013).Google ScholarDigital Library
34. Masoud Safdari, Ahmad R. Najafi, Nancy R. Sottos, and Philippe H. Geubelle. 2015. A NURBS-based interface-enriched generalized finite element method for problems with complex discontinuous gradient fields. Internat. J. Numer. Methods Engrg. 101, 12 (jan 2015), 950–964.Google ScholarCross Ref
35. Masoud Safdari, Ahmad R Najafi, Nancy R Sottos, and Philippe H Geubelle. 2016. A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials. J. Comput. Phys. 318 (2016), 373–390.Google ScholarDigital Library
36. Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. ACM Trans. Graph. 37, 6 (Dec. 2018).Google ScholarDigital Library
37. Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik. 2017. Interactive Design Space Exploration and Optimization for CAD Models. ACM Trans. Graph. 36, 4, Article 157 (July 2017), 14 pages.Google ScholarDigital Library
38. Christian Schumacher, Jonas Zehnder, and Moritz Bächer. 2018. Set-in-stone: Worst-case Optimization of Structures Weak in Tension. ACM Trans. Graph. 37, 6, Article 252 (Dec. 2018), 13 pages.Google ScholarDigital Library
39. Eftychios Sifakis and Jernej Barbič. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012 Courses (SIGGRAPH ’12). ACM, New York, NY, USA, Article 20, 50 pages.Google ScholarDigital Library
40. F. S. Sin, D. Schroeder, and J. Barbič. 2013. Vega: Non-Linear FEM Deformable Object Simulator. Computer Graphics Forum 32, 1 (2013), 36–48.Google ScholarCross Ref
41. Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational Design of Rubber Balloons. Comput. Graph. Forum 31, 2pt4 (May 2012), 835–844.Google ScholarDigital Library
42. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress Relief: Improving Structural Strength of 3D Printable Objects. ACM Trans. Graph. 31, 4, Article 48 (July 2012), 11 pages.Google ScholarDigital Library
43. Ivan E. Sutherland. 1963. Sketchpad: A Man-machine Graphical Communication System. In Proceedings of the May 21–23, 1963, Spring Joint Computer Conference (AFIPS ’63 (Spring)). ACM, New York, NY, USA, 329–346.Google ScholarDigital Library
44. Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. Open-Fab: A Programmable Pipeline for Multi-Material Fabrication. ACM Transactions on Graphics 32 (July 2013), 11. Issue 4.Google Scholar
45. L. Wang and E. Whiting. 2016. Buoyancy Optimization for Computational Fabrication. Computer Graphics Forum 35, 2 (may 2016), 49–58.Google ScholarCross Ref
46. Jonas Zehnder, Espen Knoop, Moritz Bächer, and Bernhard Thomaszewski. 2017. Metasilicone. ACM Trans. Graph. 36, 6 (2017).Google ScholarDigital Library
47. Yahan Zhou, Evangelos Kalogerakis, Rui Wang, and Ian R. Grosse. 2016. Direct shape optimization for strengthening 3D printable objects. Computer Graphics Forum 35, 7 (oct 2016), 333–342.Google ScholarCross Ref


