“Selectively metropolised Monte Carlo light transport simulation” by Bitterli and Jarosz
Conference:
Type(s):
Title:
- Selectively metropolised Monte Carlo light transport simulation
Session/Category Title: Light Transport
Presenter(s)/Author(s):
Moderator(s):
Abstract:
Light transport is a complex problem with many solutions. Practitioners are now faced with the difficult task of choosing which rendering algorithm to use for any given scene. Simple Monte Carlo methods, such as path tracing, work well for the majority of lighting scenarios, but introduce excessive variance when they encounter transport they cannot sample (such as caustics). More sophisticated rendering algorithms, such as bidirectional path tracing, handle a larger class of light transport robustly, but have a high computational overhead that makes them inefficient for scenes that are not dominated by difficult transport. The underlying problem is that rendering algorithms can only be executed indiscriminately on all transport, even though they may only offer improvement for a subset of paths. In this paper, we introduce a new scheme for selectively combining different Monte Carlo rendering algorithms. We use a simple transport method (e.g. path tracing) as the base, and treat high variance “fireflies” as seeds for a Markov chain that locally uses a Metropolised version of a more sophisticated transport method for exploration, removing the firefly in an unbiased manner. We use a weighting scheme inspired by multiple importance sampling to partition the integrand into regions the base method can sample well and those it cannot, and only use Metropolis for the latter. This constrains the Markov chain to paths where it offers improvement, and keeps it away from regions already handled well by the base estimator. Combined with stratified initialization, short chain lengths and careful allocation of samples, this vastly reduces non-uniform noise and temporal flickering artifacts normally encountered with a global application of Metropolis methods. Through careful design choices, we ensure our algorithm never performs much worse than the base estimator alone, and usually performs significantly better, thereby reducing the need to experiment with different algorithms for each scene.
References:
1. Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 1–14. https://doi.org/10/gbxfbtGoogle ScholarDigital Library
2. Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. 2018. Reversible Jump Metropolis Light Transport Using Inverse Mappings. ACM Transactions on Graphics 37, 1 (Jan. 2018), 1:1–1:12. https://doi.org/10/gd52phGoogle ScholarDigital Library
3. Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted First-Order Regression for Denoising Monte Carlo Renderings. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 35, 4 (June 2016), 107–117. https://doi.org/10/f842kcGoogle Scholar
4. Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 98:1–98:12. https://doi.org/10/gbxhcvGoogle Scholar
5. Per H. Christensen and Wojciech Jarosz. 2016. The Path to Path-Traced Movies. Foundations and Trends® in Computer Graphics and Vision 10, 2 (Oct. 2016), 103–175. https://doi.org/10/gfjwjcGoogle Scholar
6. David Cline, Justin Talbot, and Parris Egbert. 2005. Energy Redistribution Path Tracing. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 24, 3 (July 2005), 1186–1195. https://doi.org/10/b3xtrnGoogle ScholarDigital Library
7. Ken Dahm and Alexander Keller. 2017. Learning Light Transport the Reinforced Way. In ACM SIGGRAPH Talks. ACM Press, Article 73, 2 pages. https://doi.org/10/gfzsm4Google Scholar
8. Christopher DeCoro, Tim Weyrich, and Szymon Rusinkiewicz. 2010. Density-Based Outlier Rejection in Monte Carlo Rendering. Computer Graphics Forum (Proceedings of Pacific Graphics) 29, 7 (Sept. 2010), 2119–2125. https://doi.org/10/dsjs9sGoogle Scholar
9. Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley, Brian Green, Rob Pieké, Christopher Kulla, Christophe Hery, Ryusuke Villemin, Daniel Heckenberg, and André Mazzone. 2017. Path Tracing in Production (Parts 1 and 2). In ACM SIGGRAPH Course Notes. https://doi.org/10/gfz2ckGoogle Scholar
10. Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012. Light Transport Simulation with Vertex Connection and Merging. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 6 (Nov. 2012), 192:1–192:10. https://doi.org/10/gbb6q7Google ScholarDigital Library
11. Adrien Gruson, Binh-Son Hua, Nicolas Vibert, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2018. Gradient-Domain Volumetric Photon Density Estimation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 37, 4 (July 2018), 82:1–82:13. https://doi.org/10/gd52p6Google Scholar
12. Toshiya Hachisuka and Henrik Wann Jensen. 2011. Robust Adaptive Photon Tracing Using Photon Path Visibility. ACM Transactions on Graphics 30, 5 (Oct. 2011), 114:1–114:11. https://doi.org/10/fpwzq9Google ScholarDigital Library
13. Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed Metropolis Light Transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 33, 4 (July 2014), 100:1–100:10. https://doi.org/10/f6cswvGoogle ScholarDigital Library
14. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A Path Space Extension for Robust Light Transport Simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 6 (Jan. 2012), 191:1–191:10. https://doi.org/10/gbb6n3Google ScholarDigital Library
15. Johannes Hanika, Anton Kaplanyan, and Carsten Dachsbacher. 2015. Improved Half Vector Space Light Transport. Computer Graphics Forum 34, 4 (July 2015), 65–74. https://doi.org/10/gfzv83Google ScholarCross Ref
16. Heinrich Hey and Werner Purgathofer. 2002. Importance Sampling with Hemispherical Particle Footprints. In Proceedings of the Spring Conference on Computer Graphics (SCCG). ACM, New York, NY, USA, 107–114. https://doi.org/10/fmx2jpGoogle ScholarDigital Library
17. Jared Hoberock and John C. Hart. 2010. Arbitrary Importance Functions for Metropolis Light Transport. Computer Graphics Forum 29, 6 (Sept. 2010), 1993–2003. https://doi.org/10/dttgfvGoogle ScholarCross Ref
18. David S. Immel, Michael F. Cohen, and Donald P. Greenberg. 1986. A Radiosity Method for Non-Diffuse Environments. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 133–142. https://doi.org/10/dmjm9tGoogle ScholarDigital Library
19. Wenzel Jakob and Steve Marschner. 2012. Manifold Exploration: A Markov Chain Monte Carlo Technique for Rendering Scenes with Difficult Specular Transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (July 2012), 58:1–58:13. https://doi.org/10/gfzq4pGoogle ScholarDigital Library
20. Henrik Wann Jensen. 1995. Importance Driven Path Tracing Using the Photon Map. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), Patrick M. Hanrahan and Werner Purgathofer (Eds.). Springer-Verlag, 326–335. https://doi.org/10/gf2hcrGoogle Scholar
21. Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters, Ltd., Natick, MA, USA.Google ScholarDigital Library
22. James T. Kajiya. 1986. The Rendering Equation. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 143–150. https://doi.org/10/cvf53jGoogle ScholarDigital Library
23. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. Computer Graphics Forum 21, 3 (Sept. 2002), 531–540. https://doi.org/10/bfrsqnGoogle ScholarCross Ref
24. Alexander Keller. 1997. Instant Radiosity. In Annual Conference Series (Proceedings of SIGGRAPH). ACM Press, 49–56. https://doi.org/10/fqch2zGoogle Scholar
25. Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-Domain Path Tracing. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 34, 4 (July 2015), 123. https://doi.org/10/gfzrhnGoogle ScholarDigital Library
26. Eric P. Lafortune and Yves D. Willems. 1993. Bi-Directional Path Tracing. In Proceedings of the International Conference on Computational Graphics and Visualization Techniques (Compugraphics), H. P. Santo (Ed.), Vol. 93. Alvor, Portugal, 145–153.Google Scholar
27. Eric P. Lafortune and Yves D. Willems. 1995. A 5D Tree to Reduce the Variance of Monte Carlo Ray Tracing. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), Patrick M. Hanrahan and Werner Purgathofer (Eds.). Springer-Verlag, NY, 11–20. https://doi.org/10/gfz5nsGoogle Scholar
28. Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-Domain Metropolis Light Transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 32, 4 (July 2013), 95:1–95:12. https://doi.org/10/gbdghdGoogle ScholarDigital Library
29. Marco Manzi, Markus Kettunen, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-Domain Bidirectional Path Tracing. In Proceedings of EGSR (Experimental Ideas & Implementations). https://doi.org/10/gf2hcwGoogle Scholar
30. Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering Based on Weighted Local Regression. ACM Transactions on Graphics 33, 5 (Sept. 2014), 170:1–170:14. https://doi.org/10/f6km7mGoogle ScholarDigital Library
31. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 36, 4 (June 2017), 91–100. https://doi.org/10/gbnvrsGoogle Scholar
32. Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2018. Neural Importance Sampling. arXiv:1808.03856 [cs, stat] (Aug. 2018). arXiv:cs,stat/1808.03856Google Scholar
33. Hisanari Otsu, Johannes Hanika, Toshiya Hachisuka, and Carsten Dachsbacher. 2018. Geometry-Aware Metropolis Light Transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (2018), 278:1–278:11. https://doi.org/10/gf2r3tGoogle Scholar
34. Hisanari Otsu, Anton S. Kaplanyan, Johannes Hanika, Carsten Dachsbacher, and Toshiya Hachisuka. 2017. Fusing State Spaces for Markov Chain Monte Carlo Rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 74:1–74:10. https://doi.org/10/gbxjs9Google ScholarDigital Library
35. Jacopo Pantaleoni. 2017. Charted Metropolis Light Transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 75:1–75:14. https://doi.org/10/gfzq78Google Scholar
36. Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson Image Editing. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 22, 3 (July 2003), 313–318. https://doi.org/10/bdk2h9Google ScholarDigital Library
37. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3 ed.). Morgan Kaufmann, San Francisco, CA, USA.Google Scholar
38. Florian Reibold, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. 2018. Selective Guided Sampling with Complete Light Transport Paths. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (Dec. 2018), 223:1–223:14. https://doi.org/10/gf2g93Google ScholarDigital Library
39. Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. 2016. Image-Space Control Variates for Rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 35, 6 (Nov. 2016), 169:1–169:12. https://doi.org/10/f9cphwGoogle ScholarDigital Library
40. Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive Rendering with Non-Local Means Filtering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 6 (Nov. 2012), 195:1–195:11. https://doi.org/10/f96zx3Google ScholarDigital Library
41. Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust Denoising Using Feature and Color Information. Computer Graphics Forum (Proceedings of Pacific Graphics) 32, 7 (Oct. 2013), 121–130. https://doi.org/10/gfzwbnGoogle Scholar
42. Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. 2016. Robust Light Transport Simulation via Metropolised Bidirectional Estimators. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 35, 6 (Nov. 2016), 245:1–245:12. https://doi.org/10/gfz4kjGoogle Scholar
43. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Thesis. Stanford University, United States – California.Google ScholarDigital Library
44. Eric Veach and Leonidas J. Guibas. 1994. Bidirectional Estimators for Light Transport. In Photorealistic Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering), Georgios Sakas, Peter Shirley, and Stefan Müller (Eds.). Springer-Verlag, 145–167. https://doi.org/10/gfznbhGoogle Scholar
45. Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In Annual Conference Series (Proceedings of SIGGRAPH), Vol. 29. ACM Press, 419–428. https://doi.org/10/d7b6n4Google Scholar
46. Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Annual Conference Series (Proceedings of SIGGRAPH), Vol. 31. ACM Press, 65–76. https://doi.org/10/bkjqj4Google Scholar
47. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. OnLine Learning of Parametric Mixture Models for Light Transport Simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 33, 4 (Aug. 2014), 101:1–101:11. https://doi.org/10/f6c2cpGoogle ScholarDigital Library
48. Ruifeng Xu and Sumanta N. Pattanaik. 2005. A Novel Monte Carlo Noise Reduction Operator. IEEE Computer Graphics & Applications 25, 2 (March 2005), 31–35. https://doi.org/10/cgs6vxGoogle Scholar
49. Tobias Zirr, Johannes Hanika, and Carsten Dachsbacher. 2018. Re-Weighting Firefly Samples for Improved Finite-Sample Monte Carlo Estimates. Computer Graphics Forum 37, 6 (Sept. 2018), 410–421. https://doi.org/10/gdv89kGoogle ScholarCross Ref
50. Károly Zsolnai and László Szirmay-Kalos. 2013. Automatic Parameter Control for Metropolis Light Transport. In Proceedings of Eurographics Short Papers, M.-A. Otaduy and O. Sorkine (Eds.). The Eurographics Association. https://doi.org/10/gf2r3sGoogle Scholar
51. Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. Computer Graphics Forum (Proceedings of Eurographics State of the Art Reports) 34, 2 (May 2015), 667–681. https://doi.org/10/f7k6kjGoogle ScholarCross Ref


