“Variance-aware multiple importance sampling” by Grittmann, Georgiev, Slusallek and Křivánek – ACM SIGGRAPH HISTORY ARCHIVES

“Variance-aware multiple importance sampling” by Grittmann, Georgiev, Slusallek and Křivánek

  • 2019 SA Technical Papers_Grittmann_Variance-aware multiple importance sampling

Conference:


Type(s):


Title:

    Variance-aware multiple importance sampling

Session/Category Title:   Light Transport


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.

References:


    1. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.Google Scholar
    2. David Cline, Justin Talbot, and Parris Egbert. 2005. Energy redistribution path tracing. In ACM Trans. Graph. (SIGGRAPH ’05), Vol. 24. ACM, 1186–1195.Google ScholarDigital Library
    3. Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. 2012a. Light Transport Simulation with Vertex Connection and Merging. ACM Trans. Graph. (SIGGRAPH Asia ’12) 31, 6, Article 192 (Nov. 2012), 10 pages.Google Scholar
    4. Iliyan Georgiev, Jaroslav Křivánek, Stefan Popov, and Philipp Slusallek. 2012b. Importance Caching for Complex Illumination. Comput. Graph. Forum (EG ’12) 31 (2012), 701–710.Google Scholar
    5. Pascal Grittmann, Arsène Pérard-Gayot, Philipp Slusallek, and Jaroslav Křivánek. 2018. Efficient Caustic Rendering with Lightweight Photon Mapping. In Comput. Graph. Forum (EGSR ’18), Vol. 37. 133–142.Google Scholar
    6. Toshiya Hachisuka, Anton S Kaplanyan, and Carsten Dachsbacher. 2014. Multiplexed metropolis light transport. ACM Trans. Graph. 33, 4 (2014), 100.Google ScholarDigital Library
    7. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A Path Space Extension for Robust Light Transport Simulation. ACM Trans. Graph. (SIGGRAPH Asia ’12) 31, 6, Article 191 (Nov. 2012), 10 pages.Google ScholarDigital Library
    8. J.M. Hammersley and D.C. Handscomb. 1968. Monte Carlo Methods(Methuen, London).Google Scholar
    9. Hera Y He and Art B Owen. 2014. Optimal mixture weights in multiple importance sampling. arXiv preprint arXiv:1411.3954 (2014).Google Scholar
    10. Sebastian Herholz, Oskar Elek, Jiří Vorba, Hendrik Lensch, and Jaroslav Křivánek. 2016. Product Importance Sampling for Light Transport Path Guiding. Comput. Graph. Forum (EGSR ’16) 35, 4 (2016), 67–77.Google Scholar
    11. Tim Hesterberg. 1995. Weighted average importance sampling and defensive mixture distributions. Technometrics 37, 2 (1995), 185–194.Google ScholarCross Ref
    12. Johannes Jendersie. 2019. Variance Reduction via Footprint Estimation in the Presence of Path Reuse. In Ray Tracing Gems (1 ed.), Eric Haines and Tomas Akenine-Möller (Eds.). Vol. 1. Apress, 557–569.Google Scholar
    13. Johannes Jendersie and Thorsten Grosch. 2018. An Improved Multiple Importance Sampling Heuristic for Density Estimates in Light Transport Simulations. In Proc. of Eurographics Symposium on Rendering EI&I Track (EGSR). Eurographics Association, 65–72.Google Scholar
    14. James T. Kajiya. 1986. The Rendering Equation. In Proceedings of SIGGRAPH ’86. ACM, New York, NY, USA, 143–150.Google ScholarDigital Library
    15. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the metropolis light transport algorithm. In Comput. Graph. Forum (EG ’02), Vol. 21. Wiley Online Library, 531–540.Google Scholar
    16. A. Keller, L. Fascione, M. Fajardo, I. Georgiev, P. Christensen, J. Hanika, C. Eisenacher, and G. Nichols. 2015. The Path Tracing Revolution in the Movie Industry. In ACM SIGGRAPH 2015 Courses (SIGGRAPH ’15). ACM, New York, NY, USA, Article 24, 24:1–24:7 pages.Google Scholar
    17. David Kirk and James Arvo. 1991. Unbiased sampling techniques for image synthesis. In ACM Trans. Graph. (SIGGRAPH ’91), Vol. 25. ACM, 153–156.Google ScholarDigital Library
    18. Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomaš Skřivan, Philipp Slusallek, and Jaroslav Křivánek. 2019. Optimal Multiple Importance Sampling. ACM Trans. Graph. (SIGGRAPH ’19) 38, 4 (July 2019), 37:1–37:14.Google Scholar
    19. Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph. (SIGGRAPH ’14) 33, 4 (Aug. 2014), 1–13.Google Scholar
    20. Eric P Lafortune and Yves D Willems. 1993. Bi-directional Path Tracing. (1993).Google Scholar
    21. Art Owen and Yi Zhou. 2000. Safe and Effective Importance Sampling. J. Amer. Statist. Assoc. 95, 449 (2000), 135–143.Google ScholarCross Ref
    22. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.). Morgan Kaufmann.Google ScholarDigital Library
    23. Stefan Popov, Ravi Ramamoorthi, Fredo Durand, and George Drettakis. 2015. Probabilistic Connections for Bidirectional Path Tracing. Comput. Graph. Forum (EGSR ’15) 34, 4 (2015), 075–086.Google Scholar
    24. Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. 2016. Image-space Control Variates for Rendering. ACM Trans. Graph. (SIGGRAPH Asia ’16) 35, 6, Article 169 (Nov. 2016), 12 pages.Google Scholar
    25. Mateu Sbert and Vlastimil Havran. 2017. Adaptive multiple importance sampling for general functions. The Visual Computer 33, 6–8 (2017), 845–855.Google ScholarDigital Library
    26. Mateu Sbert, Vlastimil Havran, and László Szirmay-Kalos. 2016. Variance Analysis of Multi-sample and One-sample Multiple Importance Sampling. In Comput. Graph. Forum (Pacific Graphics ’16), Vol. 35. Wiley Online Library, 451–460.Google Scholar
    27. Mateu Sbert, Vlastimil Havran, László Szirmay-Kalos, and Víctor Elvira. 2018. Multiple importance sampling characterization by weighted mean invariance. The Visual Computer 34, 6–8 (2018), 843–852.Google ScholarDigital Library
    28. Martin Šik and Jaroslav Křivánek. 2018. Survey of Markov Chain Monte Carlo Methods in Light Transport Simulation. IEEE transactions on visualization and computer graphics (2018).Google Scholar
    29. Martin Šik, Hisanari Otsu, Toshiya Hachisuka, and Jaroslav Křivánek. 2016. Robust light transport simulation via metropolised bidirectional estimators. ACM Trans. Graph. 35, 6 (2016).Google ScholarDigital Library
    30. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford University.Google ScholarDigital Library
    31. Eric Veach and Leonidas Guibas. 1995a. Bidirectional Estimators for Light Transport. In Photorealistic Rendering Techniques. Springer, 145–167.Google Scholar
    32. Eric Veach and Leonidas J Guibas. 1995b. Optimally Combining Sampling Techniques for Monte Carlo Rendering. In Proceedings of SIGGRAPH ’95. ACM, 419–428.Google ScholarDigital Library
    33. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graph. (SIGGRAPH ’14) 33, 4 (2014), 101.Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org