“A hyperbolic geometric flow for evolving films and foams” by Ishida, Yamamoto, Ando and Hachisuka
Conference:
Type(s):
Title:
- A hyperbolic geometric flow for evolving films and foams
Session/Category Title: Fire, Flow and Flight
Presenter(s)/Author(s):
Abstract:
Simulating the behavior of soap films and foams is a challenging task. A direct numerical simulation of films and foams via the Navier-Stokes equations is still computationally too expensive. We propose an alternative formulation inspired by geometric flow. Our model exploits the fact, according to Plateau’s laws, that the steady state of a film is a union of constant mean curvature surfaces and minimal surfaces. Such surfaces are also well known as the steady state solutions of certain curvature flows. We show a link between the Navier-Stokes equations and a recent variant of mean curvature flow, called hyperbolic mean curvature flow, under the assumption of constant air pressure per enclosed region. Instead of using hyperbolic mean curvature flow as is, we propose to replace curvature by the gradient of the surface area functional. This formulation enables us to robustly handle non-manifold configurations; such junctions connecting multiple films are intractable with the traditional formulation using curvature. We also add explicit volume preservation to hyperbolic mean curvature flow, which in fact corresponds to the pressure term of the Navier-Stokes equations. Our method is simple, fast, robust, and consistent with Plateau’s laws, which are all due to our reformulation of film dynamics as a geometric flow.
References:
1. Frederick J Almgren and Jean E Taylor. 1976. The geometry of soap films and soap bubbles. Scientific American 235 (1976), 82–93. Cross Ref
2. Luigi Ambrosio. 2015. Regularity theory for mass-minimizing currents (after Almgren-De Lellis-Spadaro). Calculus of Variations and Geometric Measure Theory (2015), 1–23.
3. John H Argyris, T Angelopoulos, and Bruno Bichat. 1974. A general method for the shape finding of lightweight tension structures. Computer Methods in Applied Mechanics and Engineering 3, 1 (1974), 135–149. Cross Ref
4. Philip Ball. 2009. Shapes: Nature’s Patterns: A Tapestry in Three Parts (Natures Patterns). In Shapes: Nature’s Patterns: A Tapestry in Three Parts (Natures Patterns). Oxford University Press, Oxford, UK, 97–98.
5. Marcel Berger and Bernard Gostiaux. 2012. Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces. Vol. 115. Springer Science & Business Media, New York, NY, USA.
6. CVBoys. 1958. Soap-Bubbles, their colors and forces which mold them (1890). (1958).
7. Kenneth A. Brakke. 1992. The Surface Evolver. Experimental Mathematics 1, 2 (1992), 141–165. Cross Ref
8. JS Brew and WJ Lewis. 2003. Computational form-finding of tension membrane structures-Non-finite element approaches: Part 1. Use of cubic splines in finding minimal surface membranes. International journal for numerical methods in engineering 56, 5 (2003), 651–668.
9. Oleksiy Busaryev, Tamal K. Dey, Huamin Wang, and Zhong Ren. 2012. Animating bubble interactions in a liquid foam. ACM Trans. Graph. 31, 4 (2012), 63.
10. Fang Da, Christopher Batty, and Eitan Grinspun. 2014. Multimaterial Mesh-Based Surface Tracking. ACM Trans. on Graphics (SIGGRAPH 2014) 33 (2014), 1–11.
11. Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double Bubbles Sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. ACM Trans. on Graphics (SIGGRAPH 2015) 34, 4 (2015), 149:1–149:9.
12. Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2017. Project page of “Double Bubbles Sans Toil and Trouble: Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams”. (2017). http://www.cs.columbia.edu/cg/doublebubbles/
13. Fang Da, Christopher Batty, Chris Wotjan, and Eitan Grinspun. 2015. Use of Fast Multipole to Accelerate Discrete Circulation-Preserving Vortex Sheets for Soap Films and Foams. (2015), 2.
14. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 317–324.
15. Kong Dexing, Liu Kefeng, and Wang Zenggui. 2009. Hyperbolic mean curvature flow: evolution of plane curves. Acta Mathematica Scientia 29, 3 (2009), 493–514. Cross Ref
16. Jesse Douglas. 1931. Solution of the problem of Plateau. Trans. Amer. Math. Soc. 33, 1 (1931), 263–321. Cross Ref
17. Roman Durikovic. 2001. Animation of Soap Bubble Dynamics, Cluster Formation and Collision. Comput. Graph. Forum 20, 3 (2001), 67–76. Cross Ref
18. Raymond Yun Fei. 2017. Personal communication. (Aug. 2017).
19. Luca Giomi and Lakshminarayanan Mahadevan. 2012. Minimal surfaces bounded by elastic lines. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, 2143 (mar 2012), 1851–1864. Cross Ref
20. Giulio G Giusteri, Luca Lussardi, and Eliot Fried. 2017. Solution of the Kirchhoff-Plateau problem. Journal of Nonlinear Science 27, 3 (2017), 1043–1063. Cross Ref
21. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org. (2010).
22. Jenny Harrison. 2014. Soap film solutions to Plateau’s problem. Journal of Geometric Analysis 24, 1 (2014), 271–297. Cross Ref
23. Jenny. Harrison and Harrison Pugh. 2015. Plateau’s Problem: What’s Next. ArXiv e-prints (Sept. 2015), 27. arXiv:1509.03797
24. Chun-Lei He, De-Xing Kong, and Kefeng Liu. 2009. Hyperbolic mean curvature flow. Journal of Differential Equations 246, 1 (2009), 373–390. Jeong-Mo Hong, Ho-Young Lee, Jong-Chul Yoon, and Chang-Hun Kim. 2008. Bubbles alive. ACM Trans. Graph. 27, 3 (2008), 48:1–48:4.
25. Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros. 2002. Proof of the double bubble conjecture. Annals of Mathematics 155, 2 (2002), 459–489. Cross Ref
26. Cyril Isenberg. 1978. The science of soap films and soap bubbles. Courier Corporation, North Chelmsford, Massachusetts, USA.
27. Alec Jacobson, Daniele Panozzo, et al. 2013. libigl: A simple C++ geometry processing library. (2013). http://igl.ethz.ch/projects/libigl/.
28. Wenzel Jakob. 2010. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.
29. Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007. Simulation of Bubbles in Foam With The Volume Control Method. ACM Trans. on Graphics (SIGGRAPH 2007) 26, 3 (2007), 10.
30. Erwin Kreyszig. 1991. Differential geometry. Dover Publications, New York.
31. Philippe G LeFloch and Knut Smoczyk. 2008. The hyperbolic mean curvature flow. Journal de mathématiques pures et appliquées 90, 6 (2008), 591–614. Cross Ref
32. Rafael López. 2013. Constant mean curvature surfaces with boundary. Springer Science & Business Media, New York, NY, USA.
33. Carlo Mantegazza. 2011. Lecture notes on mean curvature flow. Vol. 290. Springer Science & Business Media, New York, NY, USA.
34. Barry Merriman, James K. Bence, and Stanley J. Osher. 1994. Motion of Multiple Junctions: A Level Set Approach. J. Comput. Phys. 112 (1994), 334–363.
35. Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. 2002. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. (2002).
36. Marek Krzysztof Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund, Brian Bunch Christensen, Jakob Andreas Bærentzen, and Robert Bridson. 2014. Multiphase flow of immiscible fluids on unstructured moving meshes. IEEE transactions on visualization and computer graphics 20, 1 (2014), 4–16.
37. Rhudaina Z. Mohammad and Karel Švadlenka. 2002. Proof of the double bubble conjecture. Ann. Math (2002), 0406017.
38. Matthias Müller. 2009. Fast and robust tracking of fluid surfaces. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’09). ACM, New York, NY, USA, 237–245.
39. Hao Pan, Yi-King Choi, Yang Liu, Wenchao Hu, Qiang Du, Konrad Polthier, Caiming Zhang, and Wenping Wang. 2012. Robust Modeling of Constant Mean Curvature Surfaces. ACM Trans. Graph. 31, 4, Article 85 (July 2012), 11 pages.
40. Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics. In The ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA ’13, Anaheim, CA, USA, July 19-21, 2013. ACMPress, New York, NY, USA, 105–114.
41. Jesus Perez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational Design and Automated Fabrication of Kirchhoff-Plateau Surfaces. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) 36, 4 (2017), 62.1–62.12.
42. Ulrich Pinkall and Konrad Polthier. 1993. Computing Discrete Minimal Surfaces and Their Conjugates. Experimental Mathematics 2 (1993), 15–36. Cross Ref
43. Konrad Polthier and Wayne Rossman. 2002. Discrete Constant Mean Curvature Surfaces And Their Index. In Visualization and Mathematics. Springer Verlag, 47–77.
44. Thomas R Powers, Greg Huber, and Raymond E Goldstein. 2002. Fluid-membrane tethers: minimal surfaces and elastic boundary layers. Physical Review E 65, 4 (2002), 041901. Cross Ref
45. Giuseppe Pucci, Daniel M Harris, and John WM Bush. 2015. Partial coalescence of soap bubbles. Physics of Fluids 27, 6 (2015), 061704. Cross Ref
46. Tibor Rado. 1930. On Plateau’s Problem. The Annals of Mathematics 31, 3 (jul 1930), 457. Cross Ref
47. Robert I. Saye and James A. Sethian. 2013. Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams. Science 340, 6133 (2013), 720–724.
48. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121–128.
49. Michael Struwe. 2014. Plateau’s Problem and the Calculus of Variations.(MN-35). Princeton University Press, Princeton, New Jersey, USA.
50. John M Sullivan and Frank Morgan. 1996. Open problems in soap bubble geometry. International Journal of Mathematics 7, 06 (1996), 833–842. Cross Ref
51. Jean E Taylor. 1976. The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Annals of Mathematics 103, 3 (1976), 489–539. Cross Ref
52. Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics 29, 4 (2010), 10.
53. Karel Švadlenka, Elliott Ginder, and Seiro Omata. 2014. A variational method for multiphase volume-preserving interface motions. J. Comput. Appl. Math. 257 (2014), 157–179.
54. Shing-Tung Yau. 2000. Review of geometry and analysis. Mathematics: frontiers and perspectives (2000), 353–401.
55. Yizhong Zhang, Huamin Wang, Shuai Wang, Yiying Tong, and Kun Zhou. 2012. A deformable surface model for real-time water drop animation. IEEE Transactions on Visualization and Computer Graphics 18, 8 (2012), 1281–1289.
56. Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2006. Simulation of Bubbles. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’06). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 325–333.
57. Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codimensional surface tension flow on simplicial complexes. ACM Transactions on Graphics (TOG) 33, 4 (2014), 111.


