“Stair blue noise sampling” – ACM SIGGRAPH HISTORY ARCHIVES

“Stair blue noise sampling”

  • 2016 SA Technical Papers_Kailkhura_Stair Blue Noise Sampling

Conference:


Type(s):


Title:

    Stair blue noise sampling

Session/Category Title:   All About Sampling


Presenter(s)/Author(s):



Abstract:


    A common solution to reducing visible aliasing artifacts in image reconstruction is to employ sampling patterns with a blue noise power spectrum. These sampling patterns can prevent discernible artifacts by replacing them with incoherent noise. Here, we propose a new family of blue noise distributions, Stair blue noise, which is mathematically tractable and enables parameter optimization to obtain the optimal sampling distribution. Furthermore, for a given sample budget, the proposed blue noise distribution achieves a significantly larger alias-free low-frequency region compared to existing approaches, without introducing visible artifacts in the mid-frequencies. We also develop a new sample synthesis algorithm that benefits from the use of an unbiased spatial statistics estimator and efficient optimization strategies.

References:


    1. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained Point Distributions: A Variant of Lloyd’s Method. ACM Trans. Graph. 28, 3 (July), 86:1–86:8.
    2. Bridson, R. 2007. Fast Poisson Disk Sampling in Arbitrary Dimensions. In ACM SIGGRAPH 2007 Sketches, ACM, New York, NY, USA, SIGGRAPH ’07.
    3. Cook, R. L. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph. 5, 1 (Jan.), 51–72.
    4. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue Noise Through Optimal Transport. ACM Trans. Graph. 31, 6 (Nov.), 171:1–171:11.
    5. Dunbar, D., and Humphreys, G. 2006. A Spatial Data Structure for Fast Poisson-disk Sample Generation. ACM Trans. Graph. 25, 3 (July), 503–508.
    6. Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient Maximal Poisson-disk Sampling. ACM Trans. Graph. 30, 4 (July), 49:1–49:12.
    7. Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A. A., and Owens, J. D. 2012. A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions. Computer Graphics Forum 31, 2pt4, 785–794.
    8. Ebeida, M. S., Patney, A., Mitchell, S. A., Dalbey, K. R., Davidson, A. A., and Owens, J. D. 2014. K-d Darts: Sampling by K-dimensional Flat Searches. ACM Trans. Graph. 33, 1 (Feb.), 3:1–3:16.
    9. Fattal, R. 2011. Blue-noise Point Sampling Using Kernel Density Model. ACM Trans. Graph. 30, 4 (July), 48:1–48:12.
    10. Gamito, M. N., and Maddock, S. C. 2009. Accurate Multi-dimensional Poisson-disk Sampling. ACM Trans. Graph. 29, 1 (Dec.), 8:1–8:19.
    11. Heck, D., Schlömer, T., and Deussen, O. 2013. Blue Noise Sampling with Controlled Aliasing. ACM Trans. Graph. 32, 3 (July), 25:1–25:12.
    12. Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. 2008. Statistical Analysis and Modelling of Spatial Point Patterns (Statistics in Practice), 1 ed. Wiley-Interscience, Mar.
    13. Ip, C. Y., Yalçin, M. A., Luebke, D., and Varshney, A. 2013. PixelPie: Maximal Poisson-disk Sampling with Rasterization. In Proceedings of the 5th High-Performance Graphics Conference, ACM, New York, NY, USA, HPG ’13, 17–26.
    14. Jiang, M., Zhou, Y., Wang, R., Southern, R., and Zhang, J. J. 2015. Blue Noise Sampling Using an SPH-based Method. ACM Trans. Graph. 34, 6 (Oct.), 211:1–211:11.
    15. Kailkhura, B., Thiagarajan, J. J., Bremer, P. T., and Varshney, P. K. 2016. Theoretical guarantees for poisson disk sampling using pair correlation function. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2589–2593.
    16. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang Tiles for Real-time Blue Noise. ACM Trans. Graph. 25, 3 (July), 509–518.
    17. Lagae, A., and Dutre, P. 2008. A Comparison of Methods for Generating Poisson Disk Distributions. Computer Graphics Forum 27, 1, 114–129. Cross Ref
    18. Lloyd, S. 1982. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 28, 2 (Sept.), 129–137.
    19. Öztireli, A. C., and Gross, M. 2012. Analysis and Synthesis of Point Distributions Based on Pair Correlation. ACM Trans. Graph. 31, 6 (Nov.), 170:1–170:10.
    20. Pilleboue, A., Singh, G., Coeurjolly, D., Kazhdan, M., and Ostromoukhov, V. 2015. Variance Analysis for Monte Carlo Integration. ACM Trans. Graph. 34, 4 (July), 124:1–124:14.
    21. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point Optimized Point Sets with Maximized Minimum Distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, ACM, New York, NY, USA, HPG ’11, 135–142.
    22. Stoyan, D., Bertram, U., and Wendrock, H. 1993. Estimation variances for estimators of product densities and pair correlation functions of planar point processes. Annals of the Institute of Statistical Mathematics 45, 2, 211–221. Cross Ref
    23. Uche, O., Stillinger, F., and Torquato, S. 2006. On the realizability of pair correlation functions. Physica A: Statistical Mechanics and its Applications 360, 1, 21 — 36.
    24. Ulichney, R. A. 1988. Dithering with blue noise. Proceedings of the IEEE 76, 1 (Jan), 56–79. Cross Ref
    25. Wachtel, F., Pilleboue, A., Coeurjolly, D., Breeden, K., Singh, G., Cathelin, G., de Goes, F., Desbrun, M., and Ostromoukhov, V. 2014. Fast Tile-based Adaptive Sampling with User-specified Fourier Spectra. ACM Trans. Graph. 33, 4 (July), 56:1–56:11.
    26. Wei, L.-Y. 2008. Parallel Poisson Disk Sampling. ACM Trans. Graph. 27, 3 (Aug.), 20:1–20:9.
    27. Wei, L.-Y. 2010. Multi-class Blue Noise Sampling. ACM Trans. Graph. 29, 4 (July), 79:1–79:8.
    28. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point Sampling with General Noise Spectrum. ACM Trans. Graph. 31, 4 (July), 76:1–76:11.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org