“Reconstructing personalized anatomical models for physics-based body animation” – ACM SIGGRAPH HISTORY ARCHIVES

“Reconstructing personalized anatomical models for physics-based body animation”

  • 2016 SA Technical Papers_Kadleček_Reconstructing Personalized Anatomical Models for Physics-based Body Animation

Conference:


Type(s):


Title:

    Reconstructing personalized anatomical models for physics-based body animation

Session/Category Title:   Fantastic Elastics


Presenter(s)/Author(s):



Abstract:


    We present a method to create personalized anatomical models ready for physics-based animation, using only a set of 3D surface scans. We start by building a template anatomical model of an average male which supports deformations due to both 1) subject-specific variations: shapes and sizes of bones, muscles, and adipose tissues and 2) skeletal poses. Next, we capture a set of 3D scans of an actor in various poses. Our key contribution is formulating and solving a large-scale optimization problem where we compute both subject-specific and pose-dependent parameters such that our resulting anatomical model explains the captured 3D scans as closely as possible. Compared to data-driven body modeling techniques that focus only on the surface, our approach has the advantage of creating physics-based models, which provide realistic 3D geometry of the bones and muscles, and naturally supports effects such as inertia, gravity, and collisions according to Newtonian dynamics.

References:


    1. Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., Delingette, H., and Grisoni, L. 2007. Sofa-an open source framework for medical simulation. In MMVR 15-Medicine Meets Virtual Reality, vol. 125, IOP Press, 13–18.
    2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. In ACM Trans. Graph., vol. 24, 408–416.
    3. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3, 89.
    4. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., the, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. Graph. 31, 4, 118.
    5. Bogo, F., Romero, J., Loper, M., and Black, M. J. 2014. FAUST: Dataset and evaluation for 3D mesh registration. In Computer Vision and Pattern Recognition.
    6. Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4, 154.
    7. Chen, X., Zheng, C., Xu, W., and Zhou, K. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4, 95.
    8. Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., and Thelen, D. G. 2007. Opensim: open-source software to create and analyze dynamic simulations of movement. Biomedical Engineering, IEEE Transactions on 54, 11, 1940–1950. Cross Ref
    9. Dicko, A.-H., Liu, T., Gilles, B., Kavan, L., Faure, F., Palombi, O., and Cani, M.-P. 2013. Anatomy transfer. ACM Trans. Graph. 32, 6, 188.
    10. Fan, Y., Litven, J., and Pai, D. K. 2014. Active volumetric musculoskeletal systems. ACM Trans. Graph. 33, 4, 152.
    11. Fung, Y.-c. 2013. Biomechanics: mechanical properties of living tissues. Springer Science & Business Media.
    12. Guennebaud, G., Jacob, B., et al., 2010. Eigen v3. http://eigen.tuxfamily.org.
    13. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., and Seidel, H.-P. 2009. A statistical model of human pose and body shape. In Comp. Graph. Forum, vol. 28, Wiley Online Library, 337–346.
    14. Hirshberg, D. A., Loper, M., Rachlin, E., and Black, M. J. 2012. Coregistration: Simultaneous alignment and modeling of articulated 3d shape. In Computer Vision-ECCV 2012. Springer, 242–255.
    15. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. of the EG/SIGGRAPH Symposium on Comp. Anim., 131–140.
    16. Jacobson, A., Baran, I., Popovic, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78.
    17. Jacobson, A., Kavan, L., and Sorkine-Hornung, O. 2013. Robust inside-outside segmentation using generalized winding numbers. ACM Trans. Graph. 32, 4, 33.
    18. Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung, O. 2015. Instant field-aligned meshes. ACM Trans. Graph. 34, 6, 189:1–189:15.
    19. Lee, S.-H., and Terzopoulos, D. 2006. Heads up!: biomechanical modeling and neuromuscular control of the neck. In ACM Trans. Graph., vol. 25, 1188–1198.
    20. Lee, S.-H., and Terzopoulos, D. 2008. Spline joints for multibody dynamics. In ACM Trans. Graph., vol. 27, 22.
    21. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4, 99.
    22. Lee, D., Glueck, M., Khan, A., Fiume, E., and Jackson, K. 2010. A survey of modeling and simulation of skeletal muscle. ACM Trans. Graph. 28, 4, 1–13.
    23. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. of the 27th annual conf. on Comp. graph. and inter. tech., ACM Press/Addison-Wesley Publishing Co., 165–172.
    24. Lloyd, J. E., Stavness, I., and Fels, S. 2012. Artisynth: A fast interactive biomechanical modeling toolkit combining multibody and finite element simulation. In Soft tissue biomechanical modeling for computer assisted surgery. Springer, 355–394.
    25. Loper, M., Mahmood, N., and Black, M. J. 2014. Mosh: Motion and shape capture from sparse markers. ACM Trans. Graph. 33, 6, 220.
    26. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. In ACM Trans. Graph., vol. 30, 37.
    27. Muja, M., and Lowe, D. G. 2014. Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. on Pattern Analysis and Machine Intelligence 36. Cross Ref
    28. Murray, R. M., Li, Z., Sastry, S. S., and Sastry, S. S. 1994. A mathematical introduction to robotic manipulation. CRC press.
    29. Nocedal, J., and Wright, S. 2006. Numerical optimization. Springer Science & Business Media.
    30. Pons-Moll, G., Romero, J., Mahmood, N., and Black, M. J. 2015. Dyna: A model of dynamic human shape in motion. ACM Trans. Graph. 34, 4, 120.
    31. Rusinkiewicz, S., and Levoy, M. 2001. Efficient variants of the icp algorithm. In 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on, IEEE, 145–152.
    32. Saito, S., Zhou, Z.-Y., and Kavan, L. 2015. Computational bodybuilding: Anatomically-based modeling of human bodies. ACM Trans. Graph. 34, 4.
    33. Si, W., Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2014. Realistic biomechanical simulation and control of human swimming. ACM Trans. Graph. 34, 1, 10.
    34. Si, H. 2015. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS) 41, 2, 11.
    35. Sifakis, E., and Barbic, J. 2012. Fem simulation of 3d deformable solids: a practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses, 20.
    36. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. In ACM Trans. Graph., vol. 24, 417–425.
    37. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4, 82.
    38. Skouras, M., Thomaszewski, B., Kaufmann, P., Garg, A., Bickel, B., Grinspun, E., and Gross, M. 2014. Designing inflatable structures. ACM Trans. Graph. 33, 4, 63.
    39. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Symposium on Geometry processing, vol. 4.
    40. TEN 24, 2016. 3d scan store. http://www.3dscanstore.com.
    41. Teran, J., Blemker, S., Hing, V., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proc. of the EG/SIGGRAPH Symposium on Comp. Anim., Eurographics Association, 68–74.
    42. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. Visualization and Computer Graphics, IEEE Transactions on 11, 3, 317–328.
    43. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proc. of the EG/SIGGRAPH Symposium on Comp. Anim., ACM, 181–190.
    44. The CGAL Project. 2016. CGAL User and Reference Manual, 4.8 ed. CGAL Editorial Board.
    45. Tsoli, A., Mahmood, N., and Black, M. J. 2014. Breathing life into shape: capturing, modeling and animating 3d human breathing. ACM Trans. Graph. 33, 4, 52.
    46. Wang, B., Wu, L., Yin, K., Ascher, U., Liu, L., and Huang, H. 2015. Deformation capture and modeling of soft objects. ACM Trans. Graph. 34, 4, 94.
    47. Weiss, J. A., Maker, B. N., and Govindjee, S. 1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer methods in applied mechanics and engineering 135, 1, 107–128.
    48. WETA digital, 2013. Tissue system. http://www.fxguide.com/fxguidetv/fxguidetv-166-weta-digitals-tissue-system/.
    49. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D DLima, D., Cristofolini, L., Witte, H., et al. 2002. Isb recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motionpart i: ankle, hip, and spine. Journal of biomechanics 35, 4, 543–548. Cross Ref
    50. Zhu, L., Hu, X., and Kavan, L. 2015. Adaptable anatomical models for realistic bone motion reconstruction. Comp. Graph. Forum 34, 2.
    51. Zomorodian, A., and Edelsbrunner, H. 2000. Fast software for box intersections. In Computer Graphics Forum (Proc. of the EG/SIGGRAPH Symposium on Geom. Proc.), ACM, 129–138.
    52. Zuffi, S., and Black, M. J. 2015. The stitched puppet: A graphical model of 3d human shape and pose. In Computer Vision and Pattern Recognition, 3537–3546.
    53. Zygote, 2016. Zygote body. {Online; accessed 9-May-2016}.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org