“Model-reduced variational fluid simulation” – ACM SIGGRAPH HISTORY ARCHIVES

“Model-reduced variational fluid simulation”

  • 2015 SA Technical Papers_Liu_Model-Reduced Variational Fluid Simulation

Conference:


Type(s):


Title:

    Model-reduced variational fluid simulation

Session/Category Title:   Simulation in Subspaces


Presenter(s)/Author(s):



Abstract:


    We present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness of coarse spatial and temporal resolutions of geometric integrators, and the simplicity of sub-grid accurate boundary conditions on regular grids to deal with arbitrarily-shaped domains. At the core of our contributions is a functional map approach to fluid simulation for which scalar- and vector-valued eigenfunctions of the Laplacian operator can be easily used as reduced bases. Using a variational integrator in time to preserve liveliness and a simple, yet accurate embedding of the fluid domain onto a Cartesian grid, our model-reduced fluid simulator can achieve realistic animations in significantly less computational time than full-scale non-dissipative methods but without the numerical viscosity from which current reduced methods suffer. We also demonstrate the versatility of our approach by showing how it easily extends to magnetohydrodynamics and turbulence modeling in 2D, 3D and curved domains.

References:


    1. An, S., Kim, T., and James, D. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27, 5, Art. 165.
    2. Arnold, D. N., Falk, R. S., and Winther, R. 2006. Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1–155.
    3. Azencot, O., Weissmann, S., Ovsjanikov, M., Wardetzky, M., and Ben-Chen, M. 2014. Functional fluids on surfaces. Comput. Graph. Forum 33, 5, 237–246.
    4. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, Art. 100.
    5. Bell, N., and Hirani, A. N., 2008. PyDEC: A Python library for Discrete Exterior Calculus. Google Code project at: http://code.google.com/p/pydec/.
    6. Chorin, A., and Marsden, J. 1979. A Mathematical Introduction to Fluid Mechanics, 3rd edition ed. Springer-Verlag.
    7. Cohen, J. M., Tariq, S., and Green, S. 2010. Interactive fluid-particle simulation using translating Eulerian grids. In ACM Symp. on Interactive 3D Graphics and Games, 15–22.
    8. De Witt, T., Lessig, C., and Fiume, E. 2012. Fluid simulation using Laplacian eigenfunctions. ACM Trans. Graph. 31, 1, Art. 10.
    9. Desbrun, M., Kanso, E., and Tong, Y. 2008. Discrete differential forms for computational modeling. In Discrete Differential Geometry, A. I. Bobenko et al., Ed., vol. 38 of Oberwolfach Seminars. Birkhäuser Basel, 287–324.
    10. Desbrun, M., Gawlik, E. S., Gay-Balmaz, F., and Zeitlin, V. 2013. Variational discretization for rotating stratified fluids. Disc. Cont. Dyn. S. 34, 2, 477–509.
    11. Elcott, S., and Schröder, P. 2006. Building your own DEC at home. In Discrete Differential Geometry, ACM SIGGRAPH Courses, 55–59.
    12. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1, Art. 4.
    13. Feldman, B. E., O’Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. ACM Trans. Graph. 24, 3, 904–909.
    14. Foias, C., Holm, D. D., and Titi, E. S. 2002. The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory. J. Dyn. Differ. Equ. 14, 1, 1–35.
    15. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. ACM SIGGRAPH, 181–188.
    16. Gao, Y., Li, C.-F., Ren, B., and Hu, S.-M. 2013. View-dependent multiscale fluid simulation. IEEE Trans. Vis. Comput. Graph. 19, 2, 178–188.
    17. Gawlik, E., Mullen, P., Pavlov, D., Marsden, J., and Desbrun, M. 2011. Geometric, variational discretization of continuum theories. Physica D: Nonlinear Phenomena 240, 21, 1724–1760.
    18. Golas, A., Narain, R., Sewall, J., Krajcevski, P., Dubey, P., and Lin, M. 2012. Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. 31, 6, Art. 148.
    19. Gupta, M., and Narasimhan, S. G. 2007. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In Symp. on Computer Animation, 17–25.
    20. Harlow, F. H., and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 8, 12, 2182–2189.
    21. Howes, R., Schroeder, C., and Teran, J. M. 2013. A virtual node algorithm for Hodge decompositions of inviscid flow problems with irregular domains. Methods Appl. Anal. 20, 4, 439–455.
    22. Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J. E., Schröder, P., and Desbrun, M. 2006. Geometric, variational integrators for computer animation. In Symp. on Computer Animation, 43–51.
    23. Kim, T., and Delaney, J. 2013. Subspace fluid re-simulation. ACM Trans. Graph. 32, 4, 62.
    24. Kim, T., Thürey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. In ACM Trans. Graph., vol. 27, ACM, 50.
    25. Li, S., Huang, J., de Goes, F., Jin, X., Bao, H., and Desbrun, M. 2014. Space-time editing of elastic motion through material optimization and reduction. ACM Trans. Graph. 33, 4, Art. 108.
    26. Long, B., and Reinhard, E. 2009. Real-time fluid simulation using discrete sine/cosine transforms. In Symp. on Interactive 3D Graphics and Games, 99–106.
    27. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled SPH and Particle Level Set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14, 4, 797–804.
    28. Marsden, J. E., and West, M. 2001. Discrete mechanics and variational integrators. Acta Numerica 2001 10, 357–514.
    29. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 3, Art. 38.
    30. Narain, R., Sewall, J., Carlson, M., and Lin, M. C. 2008. Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans. Graph. 27, 5, 166.
    31. Ng, Y. T., Min, C., and Gibou, F. 2009. An efficient fluid-solid coupling algorithm for single-phase flows. J. Comput. Phys. 228, 23, 8807–8829.
    32. Orszag, S. A. 1969. Numerical methods for the simulation of turbulence. Physics of Fluids 12, II 250–257.
    33. Pavlov, D., Mullen, P., Tong, Y., Kanso, E., Marsden, J., and Desbrun, M. 2011. Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6, 443–458.
    34. Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Symp. on Computer Animation, 1–7.
    35. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24, 3, 910–914.
    36. Silberman, I. 1954. Planetary waves in the atmosphere. J. Meteor. 11, 27–34.
    37. Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In Proc. ACM SIGGRAPH, 369–376.
    38. Stam, J. 1999. Stable fluids. In Proc. ACM SIGGRAPH, 121–128.
    39. Stam, J. 2002. A simple fluid solver based on the FFT. J. Graph. Tools 6, 2, 43–52.
    40. Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. 22, 3, 724–731.
    41. Stanton, M., Sheng, Y., Wicke, M., Perazzi, F., Yuen, A., Narasimhan, S., and Treuille, A. 2013. Non-polynomial Galerkin projection on deforming meshes. ACM Trans. Graph. 32, 4, Art. 86.
    42. Steinhoff, J., and Underhill, D. 1994. Modification of the Euler equations for Vorticity Confinement. Physics of Fluids 6, 8, 2738–2744.
    43. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Symp. on Geometry Processing, 201–210.
    44. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. Graph. 25, 3, 826–834.
    45. Urban, K. 2002. Wavelet bases for H(div) and H(curl). In Wavelets in Numerical Simulation, vol. 22 of Lecture Notes in Computational Science and Engineering. 83–107.
    46. von Tycowicz, C., Schulz, C., Seidel, H.-P., and Hildebrandt, K. 2013. An efficient construction of reduced deformable objects. ACM Trans. Graph. 32, 6, Art. 213.
    47. Yuan, Z., Chen, F., and Zhao, Y. 2011. Pattern-guided smoke animation with Lagrangian Coherent Structure. ACM Trans. Graph. 30, 6, Art. 136.
    48. Yudovich, V. 1963. Non-stationary flow of an ideal incompressible liquid. USSR Computational Mathematics and Mathematical Physics 3, 6, 1407–1456.
    49. Zhang, X., Bridson, R., and Greif, C. 2015. Restoring the missing vorticity in advection-projection fluid solvers. ACM Trans. Graph. 34, 4, Art. 52.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org