“Capturing braided hairstyles” by Hu, Ma, Luo, Wei and Li – ACM SIGGRAPH HISTORY ARCHIVES

“Capturing braided hairstyles” by Hu, Ma, Luo, Wei and Li

  • 2014 SA Technical Papers Hu_Capturing Braided Hairstyles

Conference:


Type(s):


Title:

    Capturing braided hairstyles

Session/Category Title:   Capturing Everything


Presenter(s)/Author(s):



Abstract:


    From fishtail to princess braids, these intricately woven structures define an important and popular class of hairstyle, frequently used for digital characters in computer graphics. In addition to the challenges created by the infinite range of styles, existing modeling and capture techniques are particularly constrained by the geometric and topological complexities. We propose a data-driven method to automatically reconstruct braided hairstyles from input data obtained from a single consumer RGB-D camera. Our approach covers the large variation of repetitive braid structures using a family of compact procedural braid models. From these models, we produce a database of braid patches and use a robust random sampling approach for data fitting. We then recover the input braid structures using a multi-label optimization algorithm and synthesize the intertwining hair strands of the braids. We demonstrate that a minimal capture equipment is sufficient to effectively capture a wide range of complex braids with distinct shapes and structures.

References:


    1. Artin, E. 1947. Theory of braids. Annals of Mathematics Second Series 48, 1, 101–126.Cross Ref
    2. Besl, P., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. on PAMI 14, 2, 239–256.
    3. Bradley, D., Nowrouzezahrai, D., and Beardsley, P. 2013. Image-based reconstruction and synthesis of dense foliage. ACM Trans. Graph. 32, 4, 74:1–74:10.
    4. Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1–116:8.
    5. Chai, M., Wang, L., Weng, Y., Jin, X., and Zhou, K. 2013. Dynamic hair manipulation in images and videos. ACM Trans. Graph. 32, 4, 75:1–75:8.
    6. Choe, B., and Ko, H.-S. 2005. A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. Vis. Comput. Graph. 11, 2, 160–170.
    7. Coefield, S. 2013. DIY Braids: From Crowns to Fishtails, Easy, Step-by-Step Hair Braiding Instructions. Adams Media.
    8. Delong, A., Osokin, A., Isack, H. N., and Boykov, Y. 2012. Fast approximate energy minimization with label costs. International journal of computer vision 96, 1, 1–27.
    9. Derouet-Jourdan, A., Bertails-Descoubes, F., Daviet, G., and Thollot, J. 2013. Inverse dynamic hair modeling with frictional contact. ACM Trans. Graph. 32, 6, 159:1–159:10.
    10. Echevarria, J. I., Bradley, D., Gutierrez, D., and Beeler, T. 2014. Capturing and stylizing hair for 3d fabrication. ACM Trans. Graph. 33, 4, 125:1–125:11.
    11. Fu, H., Wei, Y., Tai, C.-L., and Quan, L. 2007. Sketching hairstyles. In SBIM ’07, 31–36.
    12. Furukawa, Y., and Ponce, J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE Trans. PAMI 32, 1362–1376.
    13. Ghoniem, A., and Museth, K. 2013. Hair growth by means of sparse volumetric modeling and advection. In SIGGRAPH ’13 Talks, 34:1–34:1.
    14. Herrera, T. L., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1–146:9.
    15. Hu, L., Ma, C., Luo, L., and Li, H. 2014. Robust hair capture using simulated examples. ACM Trans. Graph. 33, 4, 126:1–126:10.
    16. Huang, H., Gong, M., Cohen-Or, D., Ouyang, Y., Tan, F., and Zhang, H. 2012. Field-guided registration for feature-conforming shape composition. ACM Trans. Graph. 31, 6, 179:1–179:11.
    17. Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., and Chen, B. 2013. L1-medial skeleton of point cloud. ACM Trans. Graph. 32, 4, 65:1–65:8.
    18. Huang, Q., Guibas, L. J., and Mitra, N. J. 2014. Near-regular structure discovery using linear programming. ACM Trans. Graph. 33, 3, 23:1–23:17.
    19. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1–164:9.
    20. Kim, Y. M., Mitra, N. J., Yan, D.-M., and Guibas, L. 2012. Acquiring 3d indoor environments with variability and repetition. ACM Trans. Graph. 31, 6, 138:1–138:11.
    21. Kuhn, H. 1955. The hungarian method for the assignment problem. Naval research logistics quarterly 2, 1-2, 83–97.
    22. Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5, 175:1–175:10.
    23. Li, G., Liu, L., Zheng, H., and Mitra, N. J. 2010. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph. 29, 6, 152:1–152:10.
    24. Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. 2011. Globfit: Consistently fitting primitives by discovering global relations. ACM Trans. Graph. 30, 4, 52:1–52:12.
    25. Luo, L., Li, H., Paris, S., Weise, T., Pauly, M., and Rusinkiewicz, S. 2012. Multi-view hair capture using orientation fields. In CVPR, 1490–1497.
    26. Luo, L., Li, H., and Rusinkiewicz, S. 2013. Structure-aware hair capture. ACM Trans. Graph. 32, 4, 76:1–76:12.
    27. Mitra, N. J., Wand, M., Zhang, H., Cohen-Or, D., Kim, V., and Huang, Q.-X. 2014. Structure-aware shape processing. In ACM SIGGRAPH 2014 Courses, 13:1–13:21.
    28. Nan, L., Xie, K., and Sharf, A. 2012. A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. 31, 6, 137:1–137:10.
    29. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. 2011. Kinectfusion: Real-time dense surface mapping and tracking. In IEEE ISMAR, IEEE.
    30. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair photobooth: Geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1–30:9.
    31. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3, 64:1–64:11.
    32. Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., and Guo, B. 2012. An interactive approach to semantic modeling of indoor scenes with an rgbd camera. ACM Trans. Graph. 31, 6, 136:1–136:11.
    33. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. ACM Trans. Graph. 31, 6, 180:1–180:11.
    34. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1–56:9.
    35. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE Trans. Vis. Comput. Graph. 13, 2, 213–234.
    36. Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. ACM Trans. Graph. 24, 3, 816–820.
    37. Wither, J., Bertails, F., and Cani, M.-P. 2007. Realistic hair from a sketch. In SMI ’07, 33–42.
    38. Yu, X., Yu, Z., Chen, X., and Yu, J. 2014. A hybrid image-cad based system for modeling realistic hairstyles. In I3D ’14, 63–70.
    39. Yuksel, C., Schaefer, S., and Keyser, J. 2009. Hair meshes. ACM Trans. Graph. 28, 5, 166:1–166:7.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org