“A no-reference metric for evaluating the quality of motion deblurring” by Liu, Wang, Cho, Finkelstein and Rusinkiewicz
Conference:
Type(s):
Title:
- A no-reference metric for evaluating the quality of motion deblurring
Session/Category Title: Image Ops
Presenter(s)/Author(s):
Abstract:
Methods to undo the effects of motion blur are the subject of intense research, but evaluating and tuning these algorithms has traditionally required either user input or the availability of ground-truth images. We instead develop a metric for automatically predicting the perceptual quality of images produced by state-of-the-art deblurring algorithms. The metric is learned based on a massive user study, incorporates features that capture common deblurring artifacts, and does not require access to the original images (i.e., is “noreference”). We show that it better matches user-supplied rankings than previous approaches to measuring quality, and that in most cases it outperforms conventional full-reference image-similarity measures. We demonstrate applications of this metric to automatic selection of optimal algorithms and parameters, and to generation of fused images that combine multiple deblurring results.
References:
1. Bradley, R. A., and Terry, M. E. 1952. Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika 39, 3/4.
2. Cadik, M., Herzog, R., Mantiuk, R., Myszkowski, K., and Seidel, H.-P. 2012. New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts. ACM Trans. Graphics 31, 6 (Nov.).
3. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graphics 28, 3.
4. Cho, S., and Lee, S. 2009. Fast motion deblurring. ACM Trans. Graphics 28, 5.
5. Cho, T. S., Paris, S., Horn, B., and Freeman, W. 2011. Blur kernel estimation using the Radon transform. In Proc. CVPR 2011.
6. Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., and Singh, M. 2009. How well do line drawings depict shape? ACM Trans. Graphics 28, 3.
7. Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Processing 16, 8.
8. Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., and Freeman, W. T. 2006. Removing camera shake from a single photograph. ACM Trans. Graphics 25, 3.
9. Field, D. J., and Brady, N. 1997. Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vision Research 37, 23.
10. Goldstein, A., and Fattal, R. 2012. Blur-kernel estimation from spectral irregularities. In Proc. ECCV 2012.
11. Gupta, A., Joshi, N., Zitnick, L., Cohen, M., and Curless, B. 2010. Single image deblurring using motion density functions. In Proc. ECCV 2010.
12. Hassen, R., Wang, Z., and Salama, M. 2010. No-reference image sharpness assessment based on local phase coherence measurement. In Proc. ICASSP 2010.
13. Hilbe, J. M. 2009. Logistic Regression Models. Chapman & Hall/CRC Press.
14. Ji, H., and Wang, K. 2012. A two-stage approach to blind spatially-varying motion deblurring. In Proc. CVPR 2012.
15. Joshi, N., Szeliski, R., and Kriegman, D. 2008. PSF estimation using sharp edge prediction. In Proc. CVPR 2008.
16. Joshi, N., Zitnick, C., Szeliski, R., and Kriegman, D. 2009. Image deblurring and denoising using color priors. In Proc. CVPR 2009.
17. Kendall, M. G. 1938. A new measure of rank correlation. Biometrika 30, 1/2.
18. Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., and Harmeling, S. 2012. Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. In Proc. ECCV 2012.
19. Krishnan, D., and Fergus, R. 2009. Fast image deconvolution using hyper-Laplacian priors. In Proc. NIPS 2009.
20. Krishnan, D., Tay, T., and Fergus, R. 2011. Blind deconvolution using a normalized sparsity measure. In Proc. CVPR 2011.
21. Levin, A., Fergus, R., Durand, F., and Freeman, W. T. 2007. Image and depth from a conventional camera with a coded aperture. ACM Trans. Graphics 26, 3.
22. Levin, A., Weiss, Y., Durand, F., and Freeman, W. 2011. Efficient marginal likelihood optimization in blind deconvolution. In Proc. CVPR 2011.
23. Mantiuk, R., Kim, K. J., Rempel, A. G., and Heidrich, W. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graphics 30, 4.
24. Marziliano, P., Dufaux, F., Winkler, S., and Ebrahimi, T. 2004. Perceptual blur and ringing metrics: Application to JPEG2000. Signal Processing: Image Communication 19, 2.
25. Masia, B., Presa, L., Corrales, A., and Gutierrez, D. 2012. Perceptually optimized coded apertures for defocus deblurring. Computer Graphics Forum 31, 6.
26. Mittal, A., Moorthy, A. K., and Bovik, A. C. 2012. Automatic parameter prediction for image denoising algorithms using perceptual quality features. In Proc. SPIE, vol. 8291.
27. Mittal, A., Moorthy, A., and Bovik, A. 2012. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Processing 21, 12.
28. Mittal, A., Soundararajan, R., and Bovik, A. 2012. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters PP, 99.
29. Moorthy, A., and Bovik, A. 2010. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters 17, 5.
30. Narvekar, N., and Karam, L. 2011. A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Processing 20, 9.
31. Pérez, P., Gangnet, M., and Blake, A. Poisson image editing. ACM Trans. Graphics 22, 3.
32. Saad, M., Bovik, A., and Charrier, C. 2010. A DCT statistics-based blind image quality index. IEEE Signal Processing Letters 17, 6.
33. Samadani, R., Mauer, T. A., Berfanger, D. M., and Clark, J. H. 2010. Image thumbnails that represent blur and noise. IEEE Trans. Image Processing 19, 2 (Feb.).
34. Schuler, C. J., Hirsch, M., Harmeling, S., and Schölkopf, B. 2012. Blind correction of optical aberrations. In Proceedings of the 12th European conference on Computer Vision – Volume Part III, Springer-Verlag, Berlin, Heidelberg, Proc. ECCV 2012, 187–200.
35. Secord, A., Lu, J., Finkelstein, A., Singh, M., and Nealen, A. 2011. Perceptual models of viewpoint preference. ACM Trans. Graphics 30, 5.
36. Shan, Q., Jia, J., and Agarwala, A. 2008. High-quality motion deblurring from a single image. ACM Trans. Graphics 27, 3.
37. Sheikh, H., and Bovik, A. 2006. Image information and visual quality. IEEE Trans. Image Processing 15, 2. Spearman, C. 1904. The proof and measurement of association between two things. The American journal of psychology 15, 1.
38. Tang, H., Joshi, N., and Kapoor, A. 2011. Learning a blind measure of perceptual image quality. In Proc. CVPR 2011.
39. Teo, P., and Heeger, D. 1994. Perceptual image distortion. In Proc. ICIP 1994, vol. 2.
40. Trentacoste, M., Mantiuk, R., and Heidrich, W. 2011. Blur-Aware Image Downsizing. In Proc. Eurographics.
41. Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing 13, 4.
42. Whyte, O., Sivic, J., Zisserman, A., and Ponce, J. 2010. Non-uniform deblurring for shaken images. In Proc. CVPR 2010.
43. Xu, L., and Jia, J. 2010. Two-phase kernel estimation for robust motion deblurring. In Proc. ECCV 2010.
44. Ye, P., Kumar, J., Kang, L., and Doermann, D. 2012. Unsupervised feature learning framework for no-reference image quality assessment. In Proc. CVPR 2012.
45. Yuan, L., Sun, J., Quan, L., and Shum, H.-Y. 2007. Image deblurring with blurred/noisy image pairs. ACM Trans. Graphics 26, 3.
46. Zhu, X., and Milanfar, P. 2009. A no-reference sharpness metric sensitive to blur and noise. In Quality of Multimedia Experience 2009.
47. Zhu, X., and Milanfar, P. 2010. Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Processing 19, 12.
48. Zoran, D., and Weiss, Y. 2011. From learning models of natural image patches to whole image restoration. In Proc. ICCV 2011.


