“Blue noise through optimal transport”
Conference:
Type(s):
Title:
- Blue noise through optimal transport
Session/Category Title: Points and Vectors
Presenter(s)/Author(s):
Abstract:
We present a fast, scalable algorithm to generate high-quality blue noise point distributions of arbitrary density functions. At its core is a novel formulation of the recently-introduced concept of capacity-constrained Voronoi tessellation as an optimal transport problem. This insight leads to a continuous formulation able to enforce the capacity constraints exactly, unlike previous work. We exploit the variational nature of this formulation to design an efficient optimization technique of point distributions via constrained minimization in the space of power diagrams. Our mathematical, algorithmic, and practical contributions lead to high-quality blue noise point sets with improved spectral and spatial properties.
References:
1. Aurenhammer, F., Hoffmann, F., and Aronov, B. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1, 61–76.
2. Balzer, M., and Heck, D. 2008. Capacity-constrained Voronoi diagrams in finite spaces. In Int. Symp. on Voronoi Diag., 44–56.
3. Balzer, M., Deussen, O., and Lewerentz, C. 2005. Voronoi treemaps for the visualization of software metrics. In Symp. on Software Visualization, ACM, 165–172.
4. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Trans. Graph. (SIGGRAPH) 28, 3, 86:1–8.
5. Balzer, M. 2009. Capacity-constrained Voronoi diagrams in continuous spaces. In Int. Symp. on Voronoi Diagrams, 79–88.
6. Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using Lagrangian mass transport. ACM Trans. Graph. (SIGGRAPH ASIA) 30, 6.
7. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29 (Dec.), 166:1–166:10.
8. Bridson, R. 2007. Fast Poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH sketches.
9. CGAL, 2010. Computational Geometry Algorithms Library (release 3.8). http://www.cgal.org.
10. Chen, Z., Yuan, Z., Choi, Y.-K., Liu, L., and Wang, W. 2012. Variational blue noise sampling. IEEE Trans. Vis. Comput. Graphics 18, 10, 1784–1796.
11. Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. In ACM SIGGRAPH, 287–294.
12. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51–72.
13. Crow, F. C. 1977. The aliasing problem in computer-generated shaded images. Commun. ACM 20, 11, 799–805.
14. Davis, T. A. 2011. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization. ACM Trans. Math. Softw. 38 (Dec.), 8:1–8:22.
15. de Goes, F., Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2011. An optimal transport approach to robust reconstruction and simplification of 2d shapes. Computer Graphics Forum 30, 5, 1593–1602.
16. Deussen, O., Hiller, S., Overveld, C., and Strothotte, T. 2000. Floating points: A method for computing stipple drawings. Computer Graphics Forum (EG’00) 19, 3, 40–51.
17. Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In ACM SIGGRAPH, 69–78.
18. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi Tessellations: Applications and algorithms. SIAM Rev. 41 (Dec.), 637–676.
19. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 25, 3 (July), 503–508.
20. Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient maximal Poisson-disk sampling. ACM Trans. Graph. 30 (Aug.), 49:1–49:12.
21. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. (SIGGRAPH) 30, 3, 48:1–48:12.
22. Floyd, R. W., and Steinberg, L. 1976. An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Display 17, 75–77.
23. Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional Poisson-disk sampling. ACM Trans. Graph. 29, 8:1–8:19.
24. Jones, T. R. 2006. Efficient generation of Poisson-disk sampling patterns. Journal of Graphics, GPU, & Game Tools 11, 2, 27–36.
25. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3, 509–518.
26. Lagae, A., and Dutré, P. 2006. An Alternative for Wang Tiles: Colored Edges versus Colored Corners. ACM Trans. Graph., 25, 4, 1442–1459.
27. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1, 114–129.
28. Lecot, G., and Lévy, B. 2006. ARDECO: Automatic Region DEtection and COnversion. In EG Symp. on Rendering, 349–360.
29. Lemieux, C. 2009. Monte Carlo and Quasi Monte Carlo Sampling. Springer.
30. Li, H., Nehab, D., Wei, L.-Y., Sander, P., and Fu, C.-W. 2010. Fast capacity constrained Voronoi tessellation. In Symp. on Interactive 3D Graphics & Games, 13:1–13:4.
31. Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. ACM Trans. Graph. (SIGGRAPH Asia) 29 (Dec.), 167:1–167:12.
32. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., and Yang, C. 2009. On Centroidal Voronoi Tessellation – energy smoothness and fast computation. ACM Trans. Graph. 28, 4.
33. Lloyd, S. 1982. Least squares quantization in PCM. Information Theory, IEEE Transactions on 28, 2 (Mar.), 129–137.
34. Lucarini, V. 2009. Symmetry-break in Voronoi tessellations. Symmetry 1, 1, 21–54.
35. McCool, M., and Fiume, E. 1992. Hierarchical Poisson disk sampling distributions. In Proc. Graphics Interface ’92, 94–105.
36. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In ACM SIGGRAPH, 65–72.
37. Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge Optimized Triangulations. ACM Trans. Graph. (SIGGRAPH) 30, 3.
38. Niederreiter, H. 1992. Random Number Generation and Quasi-Monte-Carlo Methods. SIAM.
39. Nocedal, J., and Wright, S. J. 1999. Numerical optimization. Springer Verlag.
40. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488–495.
41. Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Trans. Graph. 26, 3, 78:1–78:6.
42. Schlömer, T., and Deussen, O. 2011. Accurate spectral analysis of two-dimensional point sets. Journal of Graphics, GPU, and Game Tools 15, 3, 152–160.
43. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Symp. on High Performance Graphics, 135–142.
44. Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J. 2010. Electrostatic halftoning. Comput. Graph. Forum 29, 8, 2313–2327.
45. Secord, A. 2002. Weighted Voronoi stippling. In Symp. on Non-Photorealistic Animation and Rendering, 37–43.
46. Ulichney, R. 1987. Digital Halftoning. MIT Press.
47. Villani, C. 2009. Optimal Transport: Old and New. Fundamental Principles of Mathematical Sciences, 338. Springer-Verlag.
48. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30 (Aug.), 50:1–50:10.
49. Wei, L.-Y. 2008. Parallel Poisson disk sampling. ACM Trans. Graph. (SIGGRAPH) 27 (August), 20:1–20:9.
50. Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. (SIGGRAPH) 29 (July), 79:1–79:8.
51. Xiang, Y., Xin, S.-Q., Sun, Q., and He, Y. 2011. Parallel and accurate Poisson disk sampling on arbitrary surfaces. In SIGGRAPH Asia Sketches, 18:1–18:2.
52. Xu, Y., Liu, L., Gotsman, C., and Gortler, S. J. 2011. Capacity-constrained Delaunay triangulation for point distributions. Comput. Graph. 35, 510–516.
53. Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Comput. Graph. 36, 232–240.
54. Yellott, J. I. J. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382–385.
55. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. (SIGGRAPH) 31, 4, 76:1–76:11.


