“Canonical Möbius subdivision” – ACM SIGGRAPH HISTORY ARCHIVES

“Canonical Möbius subdivision”

  • 2018 SA Technical Papers_Vaxman_Canonical Möbius subdivision

Conference:


Type(s):


Title:

    Canonical Möbius subdivision

Session/Category Title:   Nets, cages and meshes


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We present a novel framework for creating Möbius-invariant subdivision operators with a simple conversion of existing linear subdivision operators. By doing so, we create a wide variety of subdivision surfaces that have properties derived from Möbius geometry; namely, reproducing spheres, circular arcs, and Möbius regularity. Our method is based on establishing a canonical form for each 1-ring in the mesh, representing the class of all 1-rings that are Möbius equivalent to that 1-ring. We perform a chosen linear subdivision operation on these canonical forms, and blend the positions contributed from adjacent 1-rings, using two novel Möbius-invariant operators, into new face and edge points. The generality of the method allows for easy coarse-to-fine mesh editing with diverse polygonal patterns, and with exact reproduction of circular and spherical features. Our operators are in closed-form and their computation is as local as the computation of the linear operators they correspond to, allowing for efficient subdivision mesh editing and optimization.

References:


    1. Aigerman Noam, Kovalsky Shahar Z., and Lipman Yaron. 2017. Spherical Orbifold Tutte Embeddings. ACM Trans. Graph. 36, 4 (2017), 90:1–90:13. Google ScholarDigital Library
    2. Akleman Ergun, Srinivasan Vinod, and Mandal Esan. 2005. Remeshing Schemes for Semi-Regular Tilings. In Proc. SMI. IEEE Computer Society, 44–50. Google ScholarDigital Library
    3. Bo Pengbo, Pottmann Helmut, Kilian Martin, Wang Wenping, and Wallner Johannes. 2011. Circular Arc Structures. ACM Trans. Graph. 30, 4 (2011), 101:1–101:12. Google ScholarDigital Library
    4. Bobenko Alexander and Pinkall Ulrich. 1996. Discrete isothermal surfaces. Journal for Pure and Applied Mathematics 475 (1996), 187–208.Google Scholar
    5. Bobenko Alexander I. and Schröder Peter. 2005. Discrete Willmore Flow. In Proceedings of the Third Eurographics Symposium on Geometry Processing (SGP ’05). Eurographics Association, 101–110. Google ScholarDigital Library
    6. Bobenko Alexander I. and Springborn Boris A. 2004. Variational principles for circle patterns and Koebe’s theorem. Trans. Amer. Math. Soc. 356, 2 (2004), 659–689.Google ScholarCross Ref
    7. Bouaziz Sofien, Deuss Mario, Schwartzburg Yuliy, Weise Thibaut, and Pauly Mark. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31, 5 (2012), 1657–1667. Google ScholarDigital Library
    8. Cashman Thomas J. 2012. Beyond Catmull-Clark? A Survey of Advances in Subdivision Surface Methods. Comput. Graph. Forum 31, 1 (2012), 42–61. Google ScholarDigital Library
    9. Catmull Edwin and Clark Jim. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350–355.Google ScholarCross Ref
    10. Cavaretta Alfred S., Micchelli Charles A., and Dahmen Wolfgang. 1991. Stationary Subdivision. American Mathematical Society, Boston, MA, USA. Google ScholarDigital Library
    11. Coxeter H. S. M. 1993. The real projective plane (third ed.). Springer-Verlag, New York. xiv+222 pages. Google ScholarDigital Library
    12. Crane Keenan, Pinkall Ulrich, and Schröder Peter. 2013. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph. 32, 4 (2013), 61:1–61:10. Google ScholarDigital Library
    13. Dyn Nira, Levine David, and Gregory John A. 1990. A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control. ACM Trans. Graph. 9, 2 (1990), 160–169. Google ScholarDigital Library
    14. Floater Michael and Micchelli Charles A. 1998. Nonlinear stationary subdivision. Approximation Theory: In Memory of A.K. Varma 86, 1 (1998), 209–224.Google Scholar
    15. Jiang Caigui, Tang Chengcheng, Seidel Hans-Peter, and Wonka Peter. 2017. Design and Volume Optimization of Space Structures. ACM Trans. Graph. 36, 4 (2017), 159:1–159:14. Google ScholarDigital Library
    16. Jiang Caigui, Tang Chengcheng, Vaxman Amir, Wonka Peter, and Pottmann Helmut. 2015. Polyhedral Patterns. ACM Trans. Graph. 34, 6 (2015), 172:1–172:12. Google ScholarDigital Library
    17. Kharevych Liliya, Springborn Boris, and Schröder Peter. 2006. Discrete Conformal Mappings via Circle Patterns. ACM Trans. Graph. 25, 2 (2006), 412–438. Google ScholarDigital Library
    18. Kobbelt Leif. 1996. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology. Comput. Graph. Forum 15, 3 (1996), 409–420.Google ScholarCross Ref
    19. Ling Ruotian, Luo Xiaonan, Chen Ren, and Zheng Guifeng. 2006. An Interpolatory Subdivision Scheme for Triangular Meshes and Progressive Transmission. In Interactive Technologies and Sociotechnical Systems, Hongbin Zha et al. (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 242–252. Google ScholarDigital Library
    20. Loop Charles Teorell. 1987. Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics.Google Scholar
    21. Micchelli Charles A. 1996. Interpolatory Subdivision Schemes and Wavelets. Journal of Approximation Theory 86, 1 (1996), 41–71. Google ScholarDigital Library
    22. Peng Chi-Han, Pottmann Helmut, and Wonka Peter. 2018. Designing Patterns Using Triangle-quad Hybrid Meshes. ACM Trans. Graph. 37, 4, Article 107 (July 2018), 14 pages. Google ScholarDigital Library
    23. Peters Jörg and Reif Ulrich. 1997. The Simplest Subdivision Scheme for Smoothing Polyhedra. ACM Trans. Graph. 16, 4 (1997), 420–431. Google ScholarDigital Library
    24. Pottmann Helmut, Eigensatz Michael, Vaxman Amir, and Wallner Johannes. 2015. Architectural Geometry. Computers and Graphics 47 (2015), 145–164. Google ScholarDigital Library
    25. Pottmann Helmut, Liu Yang, Wallner Johannes, Bobenko Alexander, and Wang Wenping. 2007. Geometry of Multi-layer Freeform Structures for Architecture. ACM Trans. Graph. 26, 3 (2007), 65:1–65:11. Google ScholarDigital Library
    26. Rahman Inam Ur, Drori Iddo, Stobben Victoria, Donoho David.L., and Schröder Peter. 2005. Multiscale Representations for Manifold-Valued Data. Multiscale Modeling & Simulation 4, 4 (2005), 1201–1232.Google ScholarCross Ref
    27. Sabin Malcolm A. and Dodgson, Neil A. 2005. A circle-preserving variant of the four-point subdivision scheme. In Mathematical Methods for Curves and Surfaces: Tromsø 2004, Modern Methods in Mathematics. Nashboro Press, 275–286.Google Scholar
    28. Schaefer Scott, Vouga Etienne, and Goldman Ron. 2008. Nonlinear subdivision through nonlinear averaging. Computer Aided Geometric Design 25, 3 (2008), 162–180. Google ScholarDigital Library
    29. Springborn Boris, Schröder Peter, and Pinkall Ulrich. 2008. Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 27, 3 (2008), 77:1–77:11. Google ScholarDigital Library
    30. Tang Chengcheng, Sun Xiang, Gomes Alexandra, Wallner Johannes, and Pottmann Helmut. 2014. Form-finding with Polyhedral Meshes Made Simple. ACM Trans. Graph. 33, 4 (2014), 70:1–70:9. Google ScholarDigital Library
    31. Vaxman Amir. 2016. libhedra: geometric processing and optimization of polygonal meshes. https://github.com/avaxman/libhedra.Google Scholar
    32. Vaxman Amir, Müller Christian, and Weber Ofir. 2015. Conformal mesh deformations with Möbius transformations. ACM Trans. Graph. 34, 4 (2015), 55:1–55:11. Google ScholarDigital Library
    33. Vaxman Amir, Müller Christian, and Weber Ofir. 2017. Regular Meshes from Polygonal Patterns. ACM Trans. Graphics 36, 4 (2017), 113:1–113:15. Google ScholarDigital Library
    34. Wallner Johannes and Dyn Nira. 2005. Convergence and C1 Analysis of Subdivision Schemes on Manifolds by Proximity. Comput. Aided Geom. Des. 22, 7 (2005), 593–622. Google ScholarDigital Library
    35. Zorin Denis, Schröder Peter, and Sweldens Wim. 1996. Interpolating Subdivision for Meshes with Arbitrary Topology. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’96). ACM, 189–192. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org