“Freeform vector graphics with controlled thin-plate splines”
Conference:
Type(s):
Title:
- Freeform vector graphics with controlled thin-plate splines
Session/Category Title: Shape & Vector Representations
Presenter(s)/Author(s):
Abstract:
Recent work defines vector graphics using diffusion between colored curves. We explore higher-order fairing to enable more natural interpolation and greater expressive control. Specifically, we build on thin-plate splines which provide smoothness everywhere except at user-specified tears and creases (discontinuities in value and derivative respectively). Our system lets a user sketch discontinuity curves without fixing their colors, and sprinkle color constraints at sparse interior points to obtain smooth interpolation subject to the outlines. We refine the representation with novel contour and slope curves, which anisotropically constrain interpolation derivatives. Compound curves further increase editing power by expanding a single curve into multiple offsets of various basic types (value, tear, crease, slope, and contour). The vector constraints are discretized over an image grid, and satisfied using a hierarchical solver. We demonstrate interactive authoring on a desktop CPU.
References:
1. Agarwala, A. 2007. Efficient gradient-domain compositing using quadtrees. ACM Trans. Graphics, 26(3). Google ScholarDigital Library
2. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. 2000. Image inpainting. ACM SIGGRAPH Proceedings. Google ScholarDigital Library
3. Bezerra, H., Eisemann, E., DeCarlo, D., and Thollot, J. 2010. Diffusion constraints for vector graphics. In Proceedings of NPAR. Google ScholarDigital Library
4. Bookstein, F. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. on Pattern Anal. Mach. Intell., 11(6). Google ScholarDigital Library
5. Botsch, M., Bommes, D., and Kobbelt, L. 2005. Efficient linear system solvers for mesh processing. In Mathematics of Surfaces XI, volume 3604 of LNCS, pages 62–83. Springer Verlag. Google ScholarDigital Library
6. Botsch, M. and Kobbelt, L. 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graphics, 23(3). Google ScholarDigital Library
7. Botsch, M. and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. on Visualization and Computer Graphics, 14(1). Google ScholarDigital Library
8. Courant, R. and Hilbert, D. 1953. Methods of Mathematical Physics, Vol I. London: Interscience.Google Scholar
9. Duchon, J. 1977. Splines minimizing roation-invariant seminorms in Sobolev spaces. In W. Schempp and K. Zeller, editors, Constructive Theory of Functions of Several Variables, pages 85–100. Springer.Google ScholarCross Ref
10. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graphics, 26(3). Google ScholarDigital Library
11. Georgiev, T. 2004. Photoshop Healing Brush: a tool for seamless cloning. In Proc. of ECCV.Google Scholar
12. Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., and Galin, E. 2010. Feature based terrain generation using diffusion equation. Computer Graphics Forum, 29(7).Google Scholar
13. Jacobson, A., Tosun, E., Sorkine, O., and Zorin, D. 2010. Mixed finite elements for variational surface modeling. Computer Graphics Forum, 29(5):1565–1574.Google ScholarCross Ref
14. Jeschke, S., Cline, D., and Wonka, P. 2009. Rendering surface details with diffusion curves. ACM Trans. Graphics, 28 (5). Google ScholarDigital Library
15. Jeschke, S., Cline, D., and Wonka, P. 2011. Estimating color and texture parameters for vector graphics. Computer Graphics Forum, 30(2):523–532.Google ScholarCross Ref
16. Johnston, S. 2002. Lumo: Illumination for cel animation. In Proceedings of NPAR. Google ScholarDigital Library
17. Joshi, P. and Carr, N. 2008. Repoussé: Automatic inflation of 2D art. In Eurographics Workshop on Sketch-based Modeling. Google ScholarDigital Library
18. Moreton, H. and Sequin, C. 1992. Functional optimization for fair surface design. ACM SIGGRAPH Proceedings. Google ScholarDigital Library
19. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., and Salesin, D. 2008. Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graphics, 27(3). Google ScholarDigital Library
20. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Trans. on Graphics, 22(3). Google ScholarDigital Library
21. Sorkine, O. and Cohen-Or, D. 2004. Least-squares meshes. In Proc. of Shape Modeling International. Google ScholarDigital Library
22. Sun, J., Liang, L., Wen, F., and Shum, H.-Y. 2007. Image vectorization using optimized gradient meshes. ACM Trans. Graphics, 26(3). Google ScholarDigital Library
23. Szeliski, R. 2006. Locally adapted hierarchical basis preconditioning. ACM Trans. Graphics, 25(3). Google ScholarDigital Library
24. Takayama, K., Sorkine, O., Nealen, A., and Igarashi, T. 2010. Volumetric modeling with diffusion surfaces. ACM Trans. Graphics, 29(6). Google ScholarDigital Library
25. Tanner, C., Migdal, C., and Jones, M. 1998. The clipmap: a virtual mipmap. ACM SIGGRAPH Proceedings. Google ScholarDigital Library
26. Terzopoulos, D. 1983. Multilevel computational processes for visual surface reconstruction. Computer Vision, Graphics, and Image Processing, 24(1).Google Scholar
27. Terzopoulos, D. 1988. The computation of visible-surface representations. IEEE Trans. Pattern Anal. Mach. Intell., 10(4). Google ScholarDigital Library
28. Wahba, G. 1990. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.Google Scholar
29. Welch, W. and Witkin, A. 1992. Variational surface modeling. ACM SIGGRAPH Proceedings. Google ScholarDigital Library


