“Pattern-aware shape deformation using sliding dockers” – ACM SIGGRAPH HISTORY ARCHIVES

“Pattern-aware shape deformation using sliding dockers”

  • 2011-SA-Technical-Paper_Bokeloh_Pattern-Aware-Shape-Deformation-Using-Sliding-Dockers

Conference:


Type(s):


Title:

    Pattern-aware shape deformation using sliding dockers

Session/Category Title:   Shape Analysis and Deformation


Presenter(s)/Author(s):



Abstract:


    This paper introduces a new structure-aware shape deformation technique. The key idea is to detect continuous and discrete regular patterns and ensure that these patterns are preserved during free-form deformation. We propose a variational deformation model that preserves these structures, and a discrete algorithm that adaptively inserts or removes repeated elements in regular patterns to minimize distortion. As a tool for such structural adaptation, we introduce sliding dockers, which represent repeatable elements that fit together seamlessly for arbitrary repetition counts. We demonstrate the presented approach on a number of complex 3D models from commercial shape libraries.

References:


    1. Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., and Guibas, L. J. 2008. Meshless modeling of deformable shapes and their motion. In Symposium on Computer Animation. Google ScholarDigital Library
    2. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, ACM, New York, NY, USA, 587–594. Google ScholarDigital Library
    3. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. ACM Transactions on Graphics 28, 3. Google ScholarDigital Library
    4. Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., and Schilling, A. 2009. Symmetry detection using line features. Computer Graphics Forum 28, 2.Google ScholarCross Ref
    5. Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between partial symmetry and inverse procedural modeling. ACM Trans. Graph. 29 (July), 104:1–104:10. Google ScholarDigital Library
    6. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14, 1, 213–230. Google ScholarDigital Library
    7. Coquillart, S. 1990. Extended free-form deformation: a sculpturing tool for 3d geometric modeling. In Proc. Siggraph. Google ScholarDigital Library
    8. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. Graph. 23, 3. Google ScholarDigital Library
    9. Gal, R., Sorkine, O., Mitra, N., and Cohen-Or, D. 2009. iwires: An analyze-and-edit approach to shape manipulation. ACM Trans. Graph. 28, 3. Google ScholarDigital Library
    10. Gelfand, N., and Guibas, L. 2004. Shape segmentation using local slippage analysis. In Proc. Symp. Geometry Processing. Google ScholarDigital Library
    11. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
    12. Huang, Q., Mech, R., and Carr, N. 2009. Optimizing structure preserving embedded deformation for resizing images and vector art. In Pacific Graphics.Google Scholar
    13. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26 (July). Google ScholarDigital Library
    14. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24 (July), 561–566. Google ScholarDigital Library
    15. Kraevoy, V., Julius, D., and Sheffer, A. 2007. Shuffler: Modeling with interchangeable parts. In Pacific Graphics 2007.Google Scholar
    16. Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. 2008. Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5, 1–9. Google ScholarDigital Library
    17. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27 (August). Google ScholarDigital Library
    18. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. 2008. A local/global approach to mesh parameterization. Computer Graphics Forum 27, 5, 1495–1504. Google ScholarDigital Library
    19. Mitra, N. J., and Pauly, M. 2008. Symmetry for architectural design. In Advances in Architectural Geometry, 13–16.Google Scholar
    20. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25, 3, 560–568. Google ScholarDigital Library
    21. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and B., C. 2002. Stable real-time deformations. In Proc. Symp. Computer Animation (SCA), 49–54. Google ScholarDigital Library
    22. Pauly, M., Mitra, N., Giesen, J., Gross, M., and Guibas, L. J. 2005. Example-based 3d scan completion. In Proc. Symp. Geometry Processing. Google ScholarDigital Library
    23. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. 2008. Discovering structural regularity in 3D geometry. ACM Trans. Graph. 27, 3. Google ScholarDigital Library
    24. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
    25. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. Siggraph, 151–160. Google ScholarDigital Library
    26. Simari, P., Kalogerakis, E., and Singh, K. 2006. Folding meshes: hierarchical mesh segmentation based on planar symmetry. In Proc. Symp. Geometry Processing, 111–119. Google ScholarDigital Library
    27. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 109–116. Google ScholarDigital Library
    28. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symposium on Geometry processing. Google ScholarDigital Library
    29. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
    30. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. SIGGRAPH ’87, ACM, New York, NY, USA, 205–214. Google ScholarDigital Library
    31. Toledo, S., 2003. Taucs: A library of sparse linear solvers. Tel-Aviv University, http://www.tau.ac.il/stoledo/taucs/.Google Scholar
    32. von Funck, W., Theisel, H., and Seidel, H.-P. 2006. Vector field based shape deformations. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
    33. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. In Proc. Eurographics.Google Scholar
    34. Wu, H., Wang, Y.-S., Feng, K.-C., Wong, T.-T., Lee, T.-Y., and Heng, P.-A. 2010. Resizing by symmetry-summarization. ACM Transactions on Graphics 29, 6. Google ScholarDigital Library
    35. Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM Trans. Graph. 28, 3, 1–9. Google ScholarDigital Library
    36. Zheng, Y., Fu, H., Cohen-Or, D., Au, O. K.-C., and Tai, C.-L. 2011. Component-wise controllers for structure-preserving shape manipulation. In Proc. Eurographics.Google Scholar
    37. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24, 3, 496–503. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org