“Style-content separation by anisotropic part scales” – ACM SIGGRAPH HISTORY ARCHIVES

“Style-content separation by anisotropic part scales”

  • 2010 SA Technical Paper: Xu_Style-content separation by anisotropic part scales

Conference:


Type(s):


Title:

    Style-content separation by anisotropic part scales

Session/Category Title:   3D modeling


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We perform co-analysis of a set of man-made 3D objects to allow the creation of novel instances derived from the set. We analyze the objects at the part level and treat the anisotropic part scales as a shape style. The co-analysis then allows style transfer to synthesize new objects. The key to co-analysis is part correspondence, where a major challenge is the handling of large style variations and diverse geometric content in the shape set. We propose style-content separation as a means to address this challenge. Specifically, we define a correspondence-free style signature for style clustering. We show that confining analysis to within a style cluster facilitates tasks such as co-segmentation, content classification, and deformation-driven part correspondence. With part correspondence between each pair of shapes in the set, style transfer can be easily performed. We demonstrate our analysis and synthesis results on several sets of man-made objects with style and content variations.

References:


    1. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. on Graphics 22, 3, 587–594. Google ScholarDigital Library
    2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. ACM Trans. on Graphics 24, 3, 408–416. Google ScholarDigital Library
    3. Au, O. K.-C., Cohen-Or, D., Tai, C.-L., Fu, H., and Zheng, Y. 2010. Electors voting for fast automatic shape correspondence. Computer Graphics Forum (Proc. EUROGRAPHICS) 29, 2, 645–654.Google ScholarCross Ref
    4. Besl, P. J., and Mckay, N. D. 1992. A method for registration of 3-d shapes. IEEE PAMI 14, 2, 239–256. Google ScholarDigital Library
    5. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH, 187–194. Google ScholarDigital Library
    6. Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between partial symmetry and inverse procedural modeling. ACM Trans. on Graphics 29, 4, 104:1–10. Google ScholarDigital Library
    7. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Vis. & Comp. Graphics 14, 1, 213–230. Google ScholarDigital Library
    8. Brand, M., and Hertzmann, A. 2000. Style machines. In Proc. SIGGRAPH, 183–192. Google ScholarDigital Library
    9. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3D model retrieval. Computer Graphics Forum (Proc. EUROGRAPHICS) 22, 3, 223–232.Google ScholarCross Ref
    10. Chung, F. R. K., and Langlands, R. P. 1996. A combinatorial laplacian with vertex weights. J. Comb. Theory Ser. A 75, 2, 316–327. Google ScholarDigital Library
    11. Chung, F. R. K. 1997. Spectral Graph Theory. AMS.Google Scholar
    12. Cohen-Or, D. 2009. Space deformations, surface deformations and the opportunities in-between. Journal of Computer Science and Technology 24, 1, 2–5. Google ScholarDigital Library
    13. Drori, I., Cohen-Or, D., and Yeshurun, H. 2003. Example-based style synthesis. In Proc. IEEE Conf. on CVPR, 143–150.Google Scholar
    14. Everitt, B. S., Landau, S., and Leese, M. 2009. Cluster analysis. Wiely. Google ScholarDigital Library
    15. Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright orientation of man-made objects. ACM Trans. on Graphics 27, 3, 42:1–7. Google ScholarDigital Library
    16. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. on Graphics 23, 3, 652–663. Google ScholarDigital Library
    17. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: an analyze-and-edit approach to shape manipulation. ACM Trans. on Graphics 28, 3, 33:1–10. Google ScholarDigital Library
    18. Golovinskiy, A., and Funkhouser, T. 2008. Randomized cuts for 3D mesh analysis. ACM Trans. on Graphics 27, 5, 145:1–12. Google ScholarDigital Library
    19. Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Computers & Graphics (Proc. of SMI) 33, 3, 262–269. Google ScholarDigital Library
    20. Hofstadter, D. 1985. Metamagical themas. Basic Books.Google Scholar
    21. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. ACM Trans. on Graphics 29, 3, 102:1–12. Google ScholarDigital Library
    22. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graphics 22, 3, 954–961. Google ScholarDigital Library
    23. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Shape matching and anisotropy. ACM Trans. on Graphics 23, 3, 623–629. Google ScholarDigital Library
    24. Kazhdan, M. 2007. An approximate and efficient method for optimal rotation alignment of 3D models. IEEE PAMI 29, 7, 1221–1229. Google ScholarDigital Library
    25. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM Trans. on Graphics 26, 3, 64:1–8. Google ScholarDigital Library
    26. Kraevoy, V., Julius, D., and Sheffer, A. 2007. Model composition from interchangeable components. In Proc. of Pacific Conference on Computer Graphics and Applications, 129–138. Google ScholarDigital Library
    27. Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. 2008. Non-homogeneous resizing of complex models. ACM Trans. on Graphics 27, 5, 111:1–9. Google ScholarDigital Library
    28. Lau, M., Bar-Joseph, Z., and Kuffner, J. 2009. Modeling spatial and temporal variation in motion data. ACM Trans. on Graphics 28, 5, 171:1–10. Google ScholarDigital Library
    29. Lipman, Y., and Funkhouser, T. 2009. Möbius voting for surface correspondence. ACM Trans. on Graphics 28, 3, 72:1–12. Google ScholarDigital Library
    30. Ng, A. Y., Jordan, M. I., and Weiss, Y. 2001. On spectral clustering: analysis and an algorithm. In NIPS 14, 849–856.Google Scholar
    31. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. 2008. Discovering structural regularity in 3D geometry. ACM Trans. on Graphics 27, 3, 43:1–11. Google ScholarDigital Library
    32. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. ACM Trans. on Graphics 25, 3, 549–559. Google ScholarDigital Library
    33. Praun, E., Sweldens, W., and Schröder, P. 2001. Consistent mesh parameterizations. In Proc. SIGGRAPH, 179–184. Google ScholarDigital Library
    34. Shamir, A. 2008. A survey on mesh segmentation techniques. Computer Graphics Forum 27, 6, 1539–1556.Google ScholarCross Ref
    35. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonization using the shape diameter function. The Visual Computer 24, 4, 249–259. Google ScholarDigital Library
    36. Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The princeton shape benchmark. In Proc. IEEE Conf. on Shape Modeling and Applications, 167–178. Google ScholarDigital Library
    37. Tanenbaum, J. B., and Freeman, W. T. 2000. Separating style and content with bilinear models. Neural Computation 12, 6, 1247–1283. Google ScholarDigital Library
    38. Tangelder, J. W. H., and Veltkamp, R. C. 2008. A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications 39, 3, 441–471. Google ScholarDigital Library
    39. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2010. A survey on shape correspondence. In Proc. of Eurographics State-of-the-art Report.Google Scholar
    40. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2007. Multifactor gaussian process models for style-content separation. In Proc. of Int. Conf. on Machine learning (ICML), 975–982. Google ScholarDigital Library
    41. Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM Trans. on Graphics 28, 3, 35:1–9. Google ScholarDigital Library
    42. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., and Tagliasacchi, A. 2008. Deformation-driven shape correspondence. Computer Graphics Forum (Proc. SGP) 27, 5, 1431–1439. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org