“Consolidation of unorganized point clouds for surface reconstruction”
Conference:
Type(s):
Title:
- Consolidation of unorganized point clouds for surface reconstruction
Session/Category Title: Reconstruction & modeling
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We consolidate an unorganized point cloud with noise, outliers, non-uniformities, and in particular interference between close-by surface sheets as a preprocess to surface generation, focusing on reliable normal estimation. Our algorithm includes two new developments. First, a weighted locally optimal projection operator produces a set of denoised, outlier-free and evenly distributed particles over the original dense point cloud, so as to improve the reliability of local PCA for initial estimate of normals. Next, an iterative framework for robust normal estimation is introduced, where a priority-driven normal propagation scheme based on a new priority measure and an orientation-aware PCA work complementarily and iteratively to consolidate particle normals. The priority setting is reinforced with front stopping at thin surface features and normal flipping to enable robust handling of the close-by surface sheet problem. We demonstrate how a point cloud that is well-consolidated by our method steers conventional surface generation schemes towards a proper interpretation of the input data.
References:
1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2003. Computing and rendering point set surfaces. IEEE Trans. Vis.&Comp. Graphics 9, 1, 3–15. Google ScholarDigital Library
2. Amenta, N., and Bern, M. W. 1998. Surface reconstruction by Voronoi filtering. In Symp. on Comp. Geom., 39–48. Google ScholarDigital Library
3. Amenta, N., and Kil, Y. J. 2004. Defining point-set surfaces. ACM Trans. on Graphics 23, 3, 264–270. Google ScholarDigital Library
4. Amenta, N., Choi, S., and Kolluri, R. K. 2001. The power crust. In ACM Symp. on Solid Modeling and Appl., 249–266. Google ScholarDigital Library
5. Ascher, U., and Petzold, L. 1998. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia, PA. Google ScholarDigital Library
6. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3D objects with radial basis functions. In Proc. of ACM SIGGRAPH, 67–76. Google ScholarDigital Library
7. Cazals, F., and Giesen, J. 2006. Delaunay triangulation based surface reconstruction. In Effective Computational Geometry for Curves and Surfaces. Springer, 231–276.Google Scholar
8. Dey, T. K., and Giesen, J. 2001. Detecting undersampling in surface reconstruction. In Symp. on Comp. Geom., 257–263. Google ScholarDigital Library
9. Dey, T. K., and Goswami, S. 2006. Provable surface reconstruction from noisy samples. Comp. Geom.: Theory&Appl. 35, 1, 124–141. Google ScholarDigital Library
10. Dey, T. K., and Sun, J. 2005. An adaptive MLS surface for reconstruction with guarantees. In Symp. on Geom. Proc. (SGP), 43–52. Google ScholarDigital Library
11. Dey, T. K., and Sun, J. 2006. Normal and feature estimations from noisy point clouds. In Proc. of Foundations of Software Technology and Theoretical Computer Science, 21–32. Google ScholarDigital Library
12. Fleishman, S., Cohen-Or, D., and Silva, C. T. 2005. Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24, 3, 544–552. Google ScholarDigital Library
13. Guennebaud, G., Barthe, L., and Paulin, M. 2004. Real-time point cloud refinement. In Eurographics Symp. on Point-Based Graphics, 41–49. Google ScholarCross Ref
14. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Proc. of ACM SIGGRAPH, 71–78. Google ScholarDigital Library
15. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In Symp. on Geom. Proc. (SGP), 61–70. Google ScholarDigital Library
16. Lange, C., and Polthier, K. 2005. Anisotropic smoothing of point sets. Comput. Aided Geom. Des. 22, 7, 680–692. Google ScholarDigital Library
17. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. on Graphics 27, 3 (Aug.), 37. Google ScholarDigital Library
18. Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. on Graphics 26, 3 (Aug.), 22. Google ScholarDigital Library
19. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Eurographics Symp. on Rendering, 183–194. Google ScholarCross Ref
20. Mello, V., Velho, L., and Taubin, G. 2003. Estimating the in/out function of a surface represented by points. In ACM Symp. on Solid Modeling and Appl., 108–114. Google ScholarDigital Library
21. Mitra, N. J., Nguyen, A., and Guibas, L. 2004. Estimating surface normals in noisy point cloud data. Int. J. Comput. Geom. and Appl. 14, 261–276.Google ScholarCross Ref
22. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. 2005. Efficiently combining positions and normals for precise 3D geometry. ACM Trans. on Graphics 24, 3, 536–543. Google ScholarDigital Library
23. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P. 2003. Multi-level partition of unity implicits. ACM Trans. on Graphics 22, 3, 463–470. Google ScholarDigital Library
24. Page, D. L., Sun, Y., Koschan, A., Paik, J., and Abidi, M. A. 2002. Normal vector voting: Crease detection and curvature estimation on large noisy meshes. Graphical Models 64, 199–229. Google ScholarDigital Library
25. Pauly, M., Gross, M., and Kobbelt, L. P. 2002. Efficient simplification of point-sampled surfaces. In Proc. of IEEE Visualization, 163–170. Google ScholarDigital Library
26. Sun, J., Smith, M., Smith, L., and Farooq, A. 2007. Examining the uncertainty of the recovered surface normal in three light photometric stereo. Image Vis. Comput. 25, 7, 1073–1079. Google ScholarDigital Library
27. Turk, G., and Levoy, M. 1994. Zippered polygon meshes from range images. In Proc. of ACM SIGGRAPH, 311–318. Google ScholarDigital Library
28. Woodham, R. J. 1980. Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 1, 139–144.Google ScholarCross Ref


