“Partial intrinsic reflectional symmetry of 3D shapes”
Conference:
Type(s):
Title:
- Partial intrinsic reflectional symmetry of 3D shapes
Session/Category Title: Shape analysis
Presenter(s)/Author(s):
Moderator(s):
Abstract:
While many 3D objects exhibit various forms of global symmetries, prominent intrinsic symmetries which exist only on parts of an object are also well recognized. Such partial symmetries are often seen as more natural than a global one, even when the symmetric parts are under complex pose. We introduce an algorithm to extract partial intrinsic reflectional symmetries (PIRS) of a 3D shape. Given a closed 2-manifold mesh, we develop a voting scheme to obtain an intrinsic reflectional symmetry axis (IRSA) transform, which is a scalar field over the mesh that accentuates prominent IRSAs of the shape. We then extract a set of explicit IRSA curves on the shape based on a refined measure of local reflectional symmetry support along a curve. The iterative refinement procedure combines IRSA-induced region growing and region-constrained symmetry support refinement to improve accuracy and address potential issues arising from rotational symmetries in the shape. We show how the extracted IRSA curves can be incorporated into a conventional mesh segmentation scheme so that the implied symmetry cues can be utilized to obtain more meaningful results. We also demonstrate the use of IRSA curves for symmetry-driven part repair.
References:
1. Atallah, M. J. 1985. On symmetry detection. IEEE Trans. Comput. 34, 7, 663–666. Google ScholarDigital Library
2. Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., and Schilling, A. 2009. Symmetry detection using line features. Computer Graphics Forum (Special Issue of Eurographics) 28, 2, 697–706.Google ScholarCross Ref
3. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. Proc. National Academy of Sciences (PNAS) 103, 5, 1168–1172.Google ScholarCross Ref
4. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2007. Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Trans. Vis.&Comp. Graphics 13, 5, 902–913. Google ScholarCross Ref
5. Bronstein, A. M., Bronstein, M. M., Bruckstein, A. M., and Kimmel, R. 2009. Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comp. Vis. 84, 2, 163–183. Google ScholarDigital Library
6. Chaouch, M., and Verroust-Blondet, A. 2008. A novel method for alignment of 3D models. Proc. IEEE Int. Conf. on Shape Modeling and Applications, 187–195.Google Scholar
7. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. on Graph 28, 3, 73:1–12. Google ScholarDigital Library
8. Elad, A., and Kimmel, R. 2001. Bending invariant representations for surfaces. Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 168–174.Google Scholar
9. Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. of Int. Conf. on Knowledge Discovery and Data Mining, 226–231.Google Scholar
10. Gal, R., and Cohen-Or, D. 2006. Salient geometric features for partial shape matching and similarity. ACM Trans. on Graph 25, 1, 130–150. Google ScholarDigital Library
11. Gatzke, T., Grimm, C., Garland, M., and Zelinka, S. 2005. Curvature maps for local shape comparison. Proc. IEEE Int. Conf. on Shape Modeling and Applications, 246–255. Google ScholarDigital Library
12. Golovinskiy, A., Podolak, J., and Funkhouser, T. 2007. Symmetry-aware mesh processing. Princeton University TR-782-07.Google Scholar
13. Hoffman, D. D., and Richards, W. A. 1984. Parts of recognition. Cognition 18, 65–96.Google ScholarCross Ref
14. Hoffman, D. D., and Singh, M. 1997. Salience of visual parts. Cognition 63, 1, 29–78.Google ScholarCross Ref
15. Kazhdan, M., Chazelle, B., Dobkin, D., Finkelstein, A., and Funkhouser, T. 2002. A reflective symmetry descriptor. Proc. Euro. Conf. on Comp. Vis. 2, 642–656. Google ScholarDigital Library
16. Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., and Rusinkiewicz, S. 2003. A reflective symmetry descriptor for 3D models. Algorithmica 38, 1, 201–225. Google ScholarDigital Library
17. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Symmetry descriptors and 3D shape matching. Symp. on Geom. Proc., 115–123. Google ScholarDigital Library
18. Köhler, W. 1929. Gestalt Psychology. Liveright, New York.Google Scholar
19. Leyton, M. 1992. Symmetry, Causality, Mind. MIT Press.Google Scholar
20. Leyton, M. 2001. A Generative Theory of Shape. Lecture Notes in Computer Science, Vol. 2145. Springer. Google ScholarDigital Library
21. Liu, R., and Zhang, H. 2007. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Special Issue of Eurographics) 26, 3, 385–394.Google ScholarCross Ref
22. Loy, G., and Eklundh, J.-O. 2006. Detecting symmetry and symmetric constellations of features. In Proc. Euro. Conf. on Comp. Vis., 508–521. Google ScholarDigital Library
23. Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. X. 2006. Accurate detection of symmetries in 3D shapes. ACM Trans. on Graph 25, 2, 439–464. Google ScholarDigital Library
24. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. on Graph 25, 3, 560–568. Google ScholarDigital Library
25. Mitra, N. J., Guibas, L. J., and Pauly, M. 2007. Symmetrization. ACM Trans. on Graph 26, 3, 63:1–8. Google ScholarDigital Library
26. Ovsjanikov, M., Sun, J., and Guibas, L. 2008. Global intrinsic symmetries of shapes. Computer Graphics Forum (Proc. of Symposium on Geometry Processing) 27, 5, 1341–1348. Google ScholarDigital Library
27. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. 2008. Discovering structural regularity in 3D geometry. ACM Trans. on Graph 27, 3, 43:1–11. Google ScholarDigital Library
28. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. ACM Trans. on Graph 25, 3, 549–559. Google ScholarDigital Library
29. Podolak, J., Golovinskiy, A., and Rusinkiewicz, S. 2007. Symmetry-enhanced remeshing of surfaces. Symp. on Geom. Proc., 235–242. Google ScholarDigital Library
30. Raviv, D., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2007. Symmetries of non-rigid shapes. Proc. Int. Conf. on Comp. Vis.Google Scholar
31. Riklin-Raviv, T., Kiryati, N., and Sochen, N. 2006. Segmentation by level sets and symmetry. Proc. IEEE Conf. on Comp. Vis. and Pat. Rec. 1, 1015–1022. Google ScholarDigital Library
32. Rustamov, R. M. 2007. Laplace-beltrami eigenfuctions for deformation invariant shape representation. Symp. on Geom. Proc., 225–233. Google ScholarDigital Library
33. Rustamov, R. M. 2008. Augmented planar reflective symmetry transform. The Visual Computer 24, 6, 423–433. Google ScholarDigital Library
34. Shamir, A. 2006. Segmentation and shape extraction of 3D boundary meshes. Eurographics STAR Report, 137–149.Google Scholar
35. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonization using the shape diameter function. The Visual Computer 24, 4, 249–259. Google ScholarDigital Library
36. Simari, P., Kalogerakis, E., and Singh, K. 2006. Folding meshes: hierarchical mesh segmentation based on planar symmetry. Symp. on Geom. Proc., 111–119. Google ScholarDigital Library
37. Stewart, I., and Golubitsky, M. 1992. Fearful Symmetry: Is God a Geometer? Blackwell Cambridge, MA.Google Scholar
38. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. on Graph 24, 3, 553–560. Google ScholarDigital Library
39. Thrun, S., and Wegbreit, B. 2005. Shape from symmetry. Proc. Int. Conf. on Comp. Vis., 1824–1831. Google ScholarDigital Library
40. Weyl, H. 1983. Symmetry. Princeton University Press.Google Scholar
41. Wolter, J. D., Woo, T. C., and Volz, R. A. 1985. Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer 1, 1, 37–48.Google ScholarCross Ref
42. Yeh, Y.-T., and Mech, R. 2009. Detecting symmetries and curvilinear arrangements in vector art. Computer Graphics Forum (Special Issue of Eurographics) 28, 2, 707–716.Google ScholarCross Ref
43. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with poisson-based gradient field manipulation. ACM Trans. on Graph 23, 3, 644–651. Google ScholarDigital Library
44. Zabrodsky, H., and Weinshall, D. 1997. Using bilateral symmetry to improve 3D reconstruction from image sequences. Computer Vision and Image Understanding 67, 48–57. Google ScholarDigital Library


