“User-assisted intrinsic images” – ACM SIGGRAPH HISTORY ARCHIVES

“User-assisted intrinsic images”

  • ©

Conference:


Type(s):


Title:

    User-assisted intrinsic images

Session/Category Title:   Lighting & materials


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    For many computational photography applications, the lighting and materials in the scene are critical pieces of information. We seek to obtain intrinsic images, which decompose a photo into the product of an illumination component that represents lighting effects and a reflectance component that is the color of the observed material. This is an under-constrained problem and automatic methods are challenged by complex natural images. We describe a new approach that enables users to guide an optimization with simple indications such as regions of constant reflectance or illumination. Based on a simple assumption on local reflectance distributions, we derive a new propagation energy that enables a closed form solution using linear least-squares. We achieve fast performance by introducing a novel downsampling that preserves local color distributions. We demonstrate intrinsic image decomposition on a variety of images and show applications.

References:


    1. Agrawal, A., Raskar, R., and Chellappa, R. 2006. Edge suppression by gradient field transformation using cross-projection tensors. In CVPR, 2301–2308. Google ScholarDigital Library
    2. Barrow, H., and Tenenbaum, J. 1978. Recovering intrinsic scene characteristics from images. Computer Vision Systems.Google Scholar
    3. Briggs, W. L., Henson, V. E., and McCormick, S. F. 2000. A multigrid tutorial (2nd ed.). Society for Industrial and Applied Mathematics. Google ScholarDigital Library
    4. Buatois, L., Caumon, G., and Lévy, B. 2007. Concurrent number cruncher: An efficient sparse linear solver on the gpu. In High Performance Computation Conference. Google ScholarDigital Library
    5. Chuang, Y.-Y., Curless, B., Salesin, D. H., and Szeliski, R. 2001. A bayesian approach to digital matting. In CVPR.Google Scholar
    6. Fang, H., and Hart, J. C. 2004. Textureshop: Texture synthesis as a photograph editing tool. ACM TOG (proc. of SIGGRAPH 2004) 23, 3, 354–359. Google ScholarDigital Library
    7. Fattal, R. 2008. Single image dehazing. ACM TOG (proc. of SIGGRAPH 2008) 27, 3, 72. Google ScholarDigital Library
    8. Finlayson, G. D., Hordley, S. D., and Drew, M. S. 2002. Removing shadows from images. In ECCV. Google ScholarDigital Library
    9. Finlayson, G. D., Drew, M. S., and Lu, C. 2004. Intrinsic images by entropy minimization. In ECCV, 582–595.Google Scholar
    10. Horn, B. K. 1986. Robot Vision. MIT Press. Google ScholarDigital Library
    11. Hsu, E., Mertens, T., Paris, S., Avidan, S., and Durand, F. 2008. Light mixture estimation for spatially varying white balance. ACM TOG (proc. of SIGGRAPH 2008) 27, 3, 70. Google ScholarDigital Library
    12. Khan, E., Reinhard, E., Fleming, R., and Bülthoff, H. 2005. Image-based material editing. ACM TOG (proc. of SIGGRAPH 2005) 24, 3, 654–663. Google ScholarDigital Library
    13. Land, E. H., and McCann, J. J. 1971. Lightness and retinex theory. Journal of the optical society of America 61, 1.Google ScholarCross Ref
    14. Levin, A., and Weiss, Y. 2007. User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans. PAMI 29, 9, 1647–1654. Google ScholarDigital Library
    15. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM TOG (proc. of SIGGRAPH 2004) 23, 689–694. Google ScholarDigital Library
    16. Levin, A., Lischinski, D., and Weiss, Y. 2008. A closed-form solution to natural image matting. IEEE Trans. PAMI. Google ScholarDigital Library
    17. Liu, X., Wan, L., Qu, Y., Wong, T.-T., Lin, S., Leung, C.-S., and Heng, P.-A. 2008. Intrinsic colorization. ACM TOG (proc. of SIGGRAPH Asia 2008) 27, 5, 152. Google ScholarDigital Library
    18. McCann, J., and Pollard, N. S. 2008. Real-time gradient-domain painting. ACM TOG (Proc. of SIGGRAPH) 27, 3, 93. Google ScholarDigital Library
    19. Mohan, A., Tumblin, J., and Choudhury, P. 2007. Editing soft shadows in a digital photograph. IEEE Computer Graphics and Applications 27, 2, 23–31. Google ScholarDigital Library
    20. Omer, I., and Werman, M. 2004. Color lines: Image specific color representation. In CVPR, 946–953. Google ScholarDigital Library
    21. Shen, L., Tan, P., and Lin, S. 2008. Intrinsic image decomposition with non-local texture cues. In CVPR.Google Scholar
    22. Shor, Y., and Lischinski, D. 2008. The shadow meets the mask: Pyramid-based shadow removal. Computer Graphics Forum (Proc. of Eurographics) 27, 3.Google ScholarCross Ref
    23. Sinha, P., and Adelson, E. 1993. Recovering reflectance and illumination in a world of painted polyhedra. In ICCV, 156–163.Google Scholar
    24. Tappen, M. F., Freeman, W. T., and Adelson, E. H. 2005. Recovering intrinsic images from a single image. IEEE Trans. PAMI 27, 9. Google ScholarDigital Library
    25. Weiss, Y. 2001. Deriving intrinsic images from image sequences. In ICCV, 68–75.Google Scholar
    26. Wu, T.-P., Tang, C.-K., Brown, M. S., and Shum, H.-Y. 2007. Natural shadow matting. ACM TOG 26, 2, 8. Google ScholarDigital Library
    27. Yu, Y., and Malik, J. 1998. Recovering photometric properties of architectural scenes from photographs. In ACM SIGGRAPH 98, 207–217. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org