“User-assisted intrinsic images”
Conference:
Type(s):
Title:
- User-assisted intrinsic images
Session/Category Title: Lighting & materials
Presenter(s)/Author(s):
Moderator(s):
Abstract:
For many computational photography applications, the lighting and materials in the scene are critical pieces of information. We seek to obtain intrinsic images, which decompose a photo into the product of an illumination component that represents lighting effects and a reflectance component that is the color of the observed material. This is an under-constrained problem and automatic methods are challenged by complex natural images. We describe a new approach that enables users to guide an optimization with simple indications such as regions of constant reflectance or illumination. Based on a simple assumption on local reflectance distributions, we derive a new propagation energy that enables a closed form solution using linear least-squares. We achieve fast performance by introducing a novel downsampling that preserves local color distributions. We demonstrate intrinsic image decomposition on a variety of images and show applications.
References:
1. Agrawal, A., Raskar, R., and Chellappa, R. 2006. Edge suppression by gradient field transformation using cross-projection tensors. In CVPR, 2301–2308. Google ScholarDigital Library
2. Barrow, H., and Tenenbaum, J. 1978. Recovering intrinsic scene characteristics from images. Computer Vision Systems.Google Scholar
3. Briggs, W. L., Henson, V. E., and McCormick, S. F. 2000. A multigrid tutorial (2nd ed.). Society for Industrial and Applied Mathematics. Google ScholarDigital Library
4. Buatois, L., Caumon, G., and Lévy, B. 2007. Concurrent number cruncher: An efficient sparse linear solver on the gpu. In High Performance Computation Conference. Google ScholarDigital Library
5. Chuang, Y.-Y., Curless, B., Salesin, D. H., and Szeliski, R. 2001. A bayesian approach to digital matting. In CVPR.Google Scholar
6. Fang, H., and Hart, J. C. 2004. Textureshop: Texture synthesis as a photograph editing tool. ACM TOG (proc. of SIGGRAPH 2004) 23, 3, 354–359. Google ScholarDigital Library
7. Fattal, R. 2008. Single image dehazing. ACM TOG (proc. of SIGGRAPH 2008) 27, 3, 72. Google ScholarDigital Library
8. Finlayson, G. D., Hordley, S. D., and Drew, M. S. 2002. Removing shadows from images. In ECCV. Google ScholarDigital Library
9. Finlayson, G. D., Drew, M. S., and Lu, C. 2004. Intrinsic images by entropy minimization. In ECCV, 582–595.Google Scholar
10. Horn, B. K. 1986. Robot Vision. MIT Press. Google ScholarDigital Library
11. Hsu, E., Mertens, T., Paris, S., Avidan, S., and Durand, F. 2008. Light mixture estimation for spatially varying white balance. ACM TOG (proc. of SIGGRAPH 2008) 27, 3, 70. Google ScholarDigital Library
12. Khan, E., Reinhard, E., Fleming, R., and Bülthoff, H. 2005. Image-based material editing. ACM TOG (proc. of SIGGRAPH 2005) 24, 3, 654–663. Google ScholarDigital Library
13. Land, E. H., and McCann, J. J. 1971. Lightness and retinex theory. Journal of the optical society of America 61, 1.Google ScholarCross Ref
14. Levin, A., and Weiss, Y. 2007. User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans. PAMI 29, 9, 1647–1654. Google ScholarDigital Library
15. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM TOG (proc. of SIGGRAPH 2004) 23, 689–694. Google ScholarDigital Library
16. Levin, A., Lischinski, D., and Weiss, Y. 2008. A closed-form solution to natural image matting. IEEE Trans. PAMI. Google ScholarDigital Library
17. Liu, X., Wan, L., Qu, Y., Wong, T.-T., Lin, S., Leung, C.-S., and Heng, P.-A. 2008. Intrinsic colorization. ACM TOG (proc. of SIGGRAPH Asia 2008) 27, 5, 152. Google ScholarDigital Library
18. McCann, J., and Pollard, N. S. 2008. Real-time gradient-domain painting. ACM TOG (Proc. of SIGGRAPH) 27, 3, 93. Google ScholarDigital Library
19. Mohan, A., Tumblin, J., and Choudhury, P. 2007. Editing soft shadows in a digital photograph. IEEE Computer Graphics and Applications 27, 2, 23–31. Google ScholarDigital Library
20. Omer, I., and Werman, M. 2004. Color lines: Image specific color representation. In CVPR, 946–953. Google ScholarDigital Library
21. Shen, L., Tan, P., and Lin, S. 2008. Intrinsic image decomposition with non-local texture cues. In CVPR.Google Scholar
22. Shor, Y., and Lischinski, D. 2008. The shadow meets the mask: Pyramid-based shadow removal. Computer Graphics Forum (Proc. of Eurographics) 27, 3.Google ScholarCross Ref
23. Sinha, P., and Adelson, E. 1993. Recovering reflectance and illumination in a world of painted polyhedra. In ICCV, 156–163.Google Scholar
24. Tappen, M. F., Freeman, W. T., and Adelson, E. H. 2005. Recovering intrinsic images from a single image. IEEE Trans. PAMI 27, 9. Google ScholarDigital Library
25. Weiss, Y. 2001. Deriving intrinsic images from image sequences. In ICCV, 68–75.Google Scholar
26. Wu, T.-P., Tang, C.-K., Brown, M. S., and Shum, H.-Y. 2007. Natural shadow matting. ACM TOG 26, 2, 8. Google ScholarDigital Library
27. Yu, Y., and Malik, J. 1998. Recovering photometric properties of architectural scenes from photographs. In ACM SIGGRAPH 98, 207–217. Google ScholarDigital Library


