“Interactive reflection editing”
Conference:
Type(s):
Title:
- Interactive reflection editing
Session/Category Title: Lighting & materials
Presenter(s)/Author(s):
Moderator(s):
Abstract:
Effective digital content creation tools must be both efficient in the interactions they provide but also allow full user control. There may be occasions, when art direction requires changes that contradict physical laws. In particular, it is known that physical correctness of reflections for the human observer is hard to assess. For many centuries, traditional artists have exploited this fact to depict reflections that lie outside the realm of physical possibility. However, a system that gives explicit control of this effect to digital artists has not yet been described. This paper introduces a system that transforms physically correct reflections into art-directed reflections, as specified by reflection constraints. The system introduces a taxonomy of reflection editing operations, using an intuitive user interface, that works directly on the reflecting surfaces with real-time visual feedback using a GPU. A user study shows how such a system can allow users to quickly manipulate reflections according to an art direction task.
References:
1. Anjyo, K.-I., and Hiramitsu, K. 2003. Stylized highlights for cartoon rendering and animation. IEEE Comput. Graph. Appl. 23, 4, 54–61. Google ScholarDigital Library
2. Braham, A. 1976. The Rokeby Venus, Velázquez. Painting in Focus, No. 5. National Gallery, London, UK.Google Scholar
3. Colbert, M., Pattanaik, S., and Krivanek, J. 2006. BRDF-shop: Creating physically correct bidirectional reflectance distribution functions. IEEE Comput. Graph. Appl. 26, 1, 30–36. Google ScholarDigital Library
4. Fleming, R. W., Dror, R. O., and Adelson, E. H. 2003. Real-world illumination and the perception of surface reflectance properties. J. Vis. 3, 5 (7), 347–368.Google ScholarCross Ref
5. Gutierrez, D., Seron, F. J., Lopez-Moreno, J., Sanchez, M. P., Fandos, J., and Reinhard, E. 2008. Depicting procedural caustics in single images. ACM Trans. Graph. 27, 5, 120. Google ScholarDigital Library
6. Heidrich, W., and Seidel, H.-P. 1999. Realistic, hardware-accelerated shading and lighting. In Proc. SIGGRAPH ’99, 171–178. Google ScholarDigital Library
7. Horn, B. K. P. 1987. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 4, 629–642.Google ScholarCross Ref
8. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134–1141. Google ScholarDigital Library
9. Kautz, J., Boulos, S., and Durand, F. 2007. Interactive editing and modeling of bidirectional texture functions. ACM Trans. Graph. 26, 3, 53. Google ScholarDigital Library
10. Khan, E. A., Reinhard, E., Fleming, R. W., and Bülthoff, H. H. 2006. Image-based material editing. ACM Trans. Graph. 25, 3, 654–663. Google ScholarDigital Library
11. Kopra, A. 2007. Writing mental ray shaders: A perceptual introduction. Springer-Verlag New York, Inc., NJ, USA. Google ScholarDigital Library
12. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471–478. Google ScholarDigital Library
13. Obert, J., Krivánek, J., Pellacini, F., Sýkora, D., and Pattanaik, S. N. 2008. iCheat: A representation for artistic control of indirect cinematic lighting. Comput. Graph. Forum 27, 4, 1217–1223.Google ScholarDigital Library
14. Ostrovsky, Y., Cavanagh, P., and Sinha, P. 2005. Perceiving illumination inconsistencies in scenes. Perception 34, 11, 1301–1314.Google ScholarCross Ref
15. Pellacini, F., Battaglia, F., Morley, K., and Finkelstein, A. 2007. Lighting with paint. ACM Trans. Graph. 26, 2, 9. Google ScholarDigital Library
16. Poulin, P., Ratib, K., and Jacques, M. 1997. Sketching shadows and highlights to position lights. In Proc. Computer Graphics International ’97, 56–63. Google ScholarDigital Library
17. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: towards a new standard for image fidelity. ACM Trans. Graph. 26, 3, 76. Google ScholarDigital Library
18. Rusinkiewicz, S., Burns, M., and DeCarlo, D. 2006. Exaggerated shading for depicting shape and detail. ACM Trans. Graph. 25, 3, 1199–1205. Google ScholarDigital Library
19. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. ACM Trans. Graph. 25, 3, 533–540. Google ScholarDigital Library
20. Schoeneman, C., Dorsey, J., Smits, B., Arvo, J., and Greenberg, D. 1993. Painting with light. In Proc. SIGGRAPH ’93, 143–146. Google ScholarDigital Library
21. Shacked, R., and Lischinski, D. 2001. Automatic lighting design using a perceptual quality metric. Comput. Graph. Forum 20, 3.Google ScholarCross Ref
22. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. SGP ’07, 109–116. Google ScholarDigital Library
23. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3, 553–560. Google ScholarDigital Library
24. Todo, H., Anjyo, K.-I., Baxter, W., and Igarashi, T. 2007. Locally controllable stylized shading. ACM Trans. Graph. 26, 3, 17. Google ScholarDigital Library
25. Tosun, E., Gingold, Y. I., Reisman, J., and Zorin, D. 2007. Shape optimization using reflection lines. In Proc. SGP ’07, 193–202. Google ScholarDigital Library
26. Zhou, K., Hou, Q., Wang, R., and Guo, B. 2008. Real-time KD-tree construction on graphics hardware. ACM Trans. Graph. 27, 5, 126. Google ScholarDigital Library


