“Real-time control of physically based simulations using gentle forces” – ACM SIGGRAPH HISTORY ARCHIVES

“Real-time control of physically based simulations using gentle forces”

  • ©

Conference:


Type(s):


Title:

    Real-time control of physically based simulations using gentle forces

Session/Category Title:   Physically-based animation


Presenter(s)/Author(s):



Abstract:


    Recent advances have brought real-time physically based simulation within reach, but simulations are still difficult to control in real time. We present interactive simulations of passive systems such as deformable solids or fluids that are not only fast, but also directable: they follow given input trajectories while simultaneously reacting to user input and other unexpected disturbances. We achieve such directability using a real-time controller that runs in tandem with a real-time physically based simulation. To avoid stiff and over-controlled systems where the natural dynamics are overpowered, the injection of control forces has to be minimized. This search for gentle forces can be made tractable in real-time by linearizing the system dynamics around the input trajectory, and then using a time-varying linear quadratic regulator to build the controller. We show examples of controlled complex deformable solids and fluids, demonstrating that our approach generates a requested fixed outcome for reasonable user inputs, while simultaneously providing runtime motion variety.

References:


    1. Barbič, J., and James, D. L. 2005. Real-Time Subspace Integration for St. Venant-Kirchhoff Deformable Models. ACM Trans. on Graphics (SIGGRAPH 2005) 24, 3, 982–990. Google Scholar
    2. Barzel, R., and Barr, A. H. 1988. A modeling system based on dynamic constraints. In Computer Graphics (Proc. of ACM SIGGRAPH 88), 179–188. Google Scholar
    3. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. Tracks: Toward directable thin shells. ACM Trans. on Graphics (SIGGRAPH 2007) 26, 3, 50:1–50:10. Google Scholar
    4. Brotman, L. S., and Netravali, A. N. 1988. Motion interpolation by optimal control. In Computer Graphics (Proc. of ACM SIGGRAPH 88), 309–315. Google Scholar
    5. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A Multiresolution Framework for Dynamic Deformations. In Proc. of the Symp. on Computer Animation (SCA), 41–48. Google Scholar
    6. Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popović, Z. 2005. Physically based rigging for deformable characters. In Symp. on Computer Animation (SCA), 301–310. Google Scholar
    7. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Trans. on Graphics (SIGGRAPH 2008) 27, 3, 82:1–82:10. Google Scholar
    8. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic Real-Time Deformations Using Space & Time Adaptive Sampling. In Proc. of ACM SIGGRAPH 2001, 31–36. Google Scholar
    9. Elcott, S., Tong, Y., Kanso, E., Schrder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. on Graphics 26, 1 (Jan.). Google ScholarDigital Library
    10. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic Free-Form Deformations for Animation Synthesis. IEEE Trans. on Vis. and Comp. Graphics 3, 3, 201–214. Google ScholarDigital Library
    11. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. of ACM SIGGRAPH 2001, 251–260. Google Scholar
    12. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. on Graphics (SIGGRAPH 2003) 22, 3, 417–426. Google Scholar
    13. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Trans. on Graphics (SIGGRAPH 2004) 23, 3, 441–448. Google Scholar
    14. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual Simulation of Smoke. In Proc. of ACM SIGGRAPH 2001, 15–22. Google Scholar
    15. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A Simple Framework for Adaptive Simulation. ACM Trans. on Graphics (SIGGRAPH 2002) 21, 3, 281–290. Google ScholarDigital Library
    16. Hodgins, J. K., and Pollard, N. S. 1997. Adapting Simulated Behaviors For New Characters. In Proc. of ACM SIGGRAPH 97, 153–162. Google Scholar
    17. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien, J. F. 1995. Animating human athletics. In Proc. of ACM SIGGRAPH 95, 71–78. Google Scholar
    18. Isaacs, P. M., and Cohen, M. F. 1987. Controlling dynamic simulation with kinematic constraints, behavior functions and inverse dynamics. In Computer Graphics (Proc. of ACM SIGGRAPH 87), 215–224. Google Scholar
    19. James, D. L., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. ACM Trans. on Graphics (SIGGRAPH 2003) 22, 3, 879–887. Google Scholar
    20. Kačić-Alesić, Z., Nordenstam, M., and Bullock, D. 2003. A practical dynamics system. In Symp. on Computer Animation (SCA), 7–16. Google ScholarDigital Library
    21. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion Graphs. ACM Trans. on Graphics (SIGGRAPH 2002) 21, 3, 473–482. Google Scholar
    22. Li, R.-C., and Bai, Z. 2005. Structure preserving model reduction using a Krylov subspace projection formulation. Comm. Math. Sci. 3, 2, 179–199.Google ScholarCross Ref
    23. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. on Graphics (SIGGRAPH 2005) 24, 3, 1071–1081. Google Scholar
    24. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. on Graphics (SIGGRAPH 2004) 23, 3, 449–456. Google Scholar
    25. Metaxas, D., and Terzopoulos, D. 1992. Dynamic deformation of solid primitives with constraints. In Computer Graphics (Proc. of ACM SIGGRAPH 92), 309–312. Google Scholar
    26. Müller, M., and Gross, M. 2004. Interactive Virtual Materials. In Proc. of Graphics Interface 2004, 239–246. Google ScholarDigital Library
    27. Popović, Z., and Witkin, A. P. 1999. Physically based motion transformation. In Proc. of ACM SIGGRAPH 99, 11–20. Google Scholar
    28. Popović, J., Seitz, S. M., and Erdmann, M. 2003. Motion sketching for control of rigid-body simulations. ACM Trans. on Graphics 22, 4 (Oct.), 1034–1054. Google ScholarDigital Library
    29. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Symp. on Computer Animation (SCA), 193–202. Google Scholar
    30. Safonova, A., Hodgins, J., and Pollard, N. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. on Graphics (SIGGRAPH 2004) 23, 3, 514–521. Google Scholar
    31. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. J. of Scientific Computing 35, 2–3, 350–371. Google ScholarDigital Library
    32. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for sylized planar bipedal walking. In International Conference on Robotics and Automation (ICRA), 2387–2392.Google Scholar
    33. Shi, L., and Yu, Y. 2005. Controllable smoke animation with guiding objects. ACM Trans. on Graphics 24, 1 (Jan.), 140–164. Google ScholarDigital Library
    34. Sidje, R. B. 1998. Expokit: A Software Package for Computing Matrix Exponentials. ACM Trans. on Mathematical Software 24, 1, 130–156. www.expokit.org. Google ScholarDigital Library
    35. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. on Graphics (SIGGRAPH 2005) 24, 3 (Aug.), 417–425. Google Scholar
    36. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. on Graphics (SIGGRAPH 2007) 26, 3, 107:1–107:9. Google Scholar
    37. Stam, J. 1999. Stable fluids. In Proc. of ACM SIGGRAPH 99, 121–128. Google Scholar
    38. Stengel, R. F. 1994. Optimal Control and Estimation. Dover Publications, New York.Google Scholar
    39. Sulejmanpasić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Trans. on Graphics 24, 1 (Jan.), 165–179. Google ScholarDigital Library
    40. Tedrake, R. L. 2004. Applied Optimal Control for Dynamically Stable Legged Locomotion. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA. Google Scholar
    41. Thürey, N., Keiser, R., Pauly, M., and Rüde, U. 2006. Detail-preserving fluid control. In Symp. on Computer Animation (SCA), 7–15. Google ScholarDigital Library
    42. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Trans. on Graphics (SIGGRAPH 2006) 25, 3, 826–834. Google Scholar
    43. Witkin, A., and Welch, W. 1990. Fast animation and control of nonrigid structures. In Computer Graphics (Proc. of ACM SIGGRAPH 90), 243–252. Google Scholar
    44. Wooten, W. L., and Hodgins, J. K. 2000. Simulating leaping, tumbling, landing and balancing humans. International Conference on Robotics and Automation (ICRA), 656–662.Google Scholar
    45. Yin, K., Cline, M., and Pai, D. K. 2003. Motion perturbation based on simple neuromotor control models. In Pacific Conference on Computer Graphics and Applications (PG), 445–449. Google ScholarDigital Library
    46. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Trans. on Graphics (SIGGRAPH 2007) 26, 3, 105:1–105:10. Google Scholar
    47. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. on Graphics (SIGGRAPH 2005) 24, 3, 965–972. Google Scholar
    48. Zordan, V. B., and Hodgins, J. K. 2002. Motion capturedriven simulations that hit and react. In Symp. on Computer Animation (SCA), 89–96. Google Scholar
    49. Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M. 2005. Dynamic response for motion capture animation. ACM Trans. on Graphics (SIGGRAPH 2005) 24, 3, 697–701. Google Scholar


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org