“fVDB : A Deep-learning Framework for Sparse, Large Scale, and High Performance Spatial Intelligence”
Conference:
Type(s):
Title:
- fVDB : A Deep-learning Framework for Sparse, Large Scale, and High Performance Spatial Intelligence
Presenter(s)/Author(s):
Abstract:
We introduce fVDB, a GPU-optimized framework for deep learning on large-scale 3D data that efficiently accommodates spatial sparsity, based on a novel VDB index grid structure. Our framework is fully integrated with PyTorch and includes a comprehensive collection of operators for tasks such as convolution, pooling, attention, and raytracing.
References:
[1]
2023. 3D Karton City model. https://www.turbosquid.com/3d-models/3d-karton-city-2-model-1196110. Accessed: 2023-08-01.
[2]
Mart?n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Man?, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vi?gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/Software available from tensorflow.org.
[3]
Academy Software Foundation (ASWF). 2012 — 2024. OpenVDB. https://www.openvdb.org
[4]
Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5470–5479.
[5]
J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, J. Gall, and C. Stachniss. 2021. Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset. The International Journal on Robotics Research 40, 8–9 (2021), 959–967.
[6]
James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax
[7]
Yuhua Chen, Yibin Xie, Zhengwei Zhou, Feng Shi, Anthony G. Christodoulou, and Debiao Li. 2018. Brain MRI super resolution using 3D deep densely connected neural networks. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, Washington, DC, 739–742.
[8]
Francois Chollet et al. 2015. Keras. https://github.com/fchollet/keras
[9]
Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3075–3084.
[10]
Spconv Contributors. 2022. Spconv: Spatially Sparse Convolution Library. https://github.com/traveller59/spconv.
[11]
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher R?. 2022. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness. arXiv:2205.14135 [cs.LG]
[12]
Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. 2023. Objaverse: A Universe of Annotated 3D Objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 13142–13153.
[13]
A. Geiger, P. Lenz, and R. Urtasun. 2012. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 3354–3361.
[14]
Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Fr?do Durand. 2020. DiffTaichi: Differentiable Programming for Physical Simulation. ICLR (2020).
[15]
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Fr?do Durand. 2019. Taichi: a language for high-performance computation on spatially sparse data structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 201.
[16]
Jiahui Huang, Hao-Xiang Chen, and Shi-Min Hu. 2022. A Neural Galerkin Solver for Accurate Surface Reconstruction. ACM Trans. Graph. 41, 6, Article 229 (nov 2022), 16 pages.
[17]
Jiahui Huang, Zan Gojcic, Matan Atzmon, Or Litany, Sanja Fidler, and Francis Williams. 2023. Neural Kernel Surface Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4369–4379.
[18]
Krishna Murthy Jatavallabhula, Edward Smith, Jean-Francois Lafleche, Clement Fuji Tsang, Artem Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian, and Sanja Fidler. 2019. Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research. arXiv:1911.05063 [cs.CV]
[19]
Bernhard Kerbl, Georgios Kopanas, Thomas Leimk?hler, and George Drettakis. 2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graphics 42, 4 (July 2023). https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
[20]
Doyub Kim, Minjae Lee, and Ken Museth. 2022. NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks. arXiv:2208.04448 [cs.LG]
[21]
Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo Kanazawa. 2023. Nerfacc: Efficient sampling accelerates nerfs. arXiv preprint arXiv:2305.04966 (2023).
[22]
Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng Chen, Chong Zeng, Jiayuan Gu, and Hao Su. 2023a. One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D Diffusion. arXiv:2311.07885 [cs.CV]
[23]
Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L. Rus, and Song Han. 2023b. BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation. In 2023 IEEE International Conference on Robotics and Automation (ICRA). 2774–2781.
[24]
Vanita Mane, Suchit Jadhav, and Praneya Lal. 2020. Image Super-Resolution for MRI Images using 3D Faster Super-Resolution Convolutional Neural Network architecture. ITM Web of Conferences 32 (2020), 03044.
[25]
Duane Merrill. 2015. Cub. NVIDIA Research (2015).
[26]
Thomas M?ller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant neural graphics primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG) 41, 4 (2022), 1–15.
[27]
Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Trans. Graph. 32, 3, Article 27 (jul 2013), 22 pages.
[28]
Ken Museth. 2014. Hierarchical Digital Differential Analyzer for Efficient Ray-Marching in OpenVDB. In ACM SIGGRAPH 2014 Talks (Vancouver, Canada) (SIGGRAPH ’14). Association for Computing Machinery, New York, NY, USA, Article 40, 1 pages.
[29]
Ken Museth. 2021. NanoVDB: A GPU-Friendly and Portable VDB Data Structure For Real-Time Rendering And Simulation. In ACM SIGGRAPH 2021 Talks (Virtual Event, USA) (SIGGRAPH ’21). Association for Computing Machinery, New York, NY, USA, Article 1, 2 pages.
[30]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas K?pf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv:1912.01703 [cs.LG]
[31]
Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv:1706.02413 [cs.CV]
[32]
Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari. 2020. Accelerating 3D Deep Learning with Py-Torch3D. arXiv:2007.08501 (2020).
[33]
Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams. 2023. XCube: Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies. arXiv preprint (2023).
[34]
Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. 2020. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
[35]
Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. 2020. Scalability in Perception for Autonomous Driving: Waymo Open Dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2443–2451.
[36]
Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and Angjoo Kanazawa. 2023. Nerfstudio: A Modular Framework for Neural Radiance Field Development. In ACM SIGGRAPH 2023 Conference Proceedings (SIGGRAPH ’23).
[37]
Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song Han. 2022. TorchSparse: Efficient Point Cloud Inference Engine. In Conference on Machine Learning and Systems (MLSys). Indio, CA, USA.
[38]
Haotian Tang, Shang Yang, Zhijian Liu, Ke Hong, Zhongming Yu, Xiuyu Li, Guohao Dai, Yu Wang, and Song Han. 2023. TorchSparse++: Efficient Training and Inference Framework for Sparse Convolution on GPUs. In IEEE/ACM International Symposium on Microarchitecture (MICRO).
[39]
Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack Kosaian, Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish Gupta. 2023. CUTLASS. https://github.com/NVIDIA/cutlass
[40]
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Transactions on Graphics 36, 4 (July 2017), 1–11.
[41]
Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and Vladlen Koltun. 2021. Point Transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). New York, NY, USA, 16259–16268.