“A Dynamic Duo of Finite Elements and Material Points”
Conference:
Type(s):
Title:
- A Dynamic Duo of Finite Elements and Material Points
Presenter(s)/Author(s):
Abstract:
DynamicDuo is a novel framework designed to integrate FEM and MPM seamlessly. The IMEX framework combines the optimal performance of implicit FEM and the flexibility of explicit MPM in applying plasticity. We achieve this through asynchronous time-splitting, where IPC is applied to model inter-domain frictional contact between FEM and MPM.
References:
[1]
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. 43?54.
[2]
A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3 (2007), 16?es.
[3]
Mikl?s Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete elastic rods. In ACM SIGGRAPH 2008 papers. 1?12.
[4]
S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM Trans. Graph. 33, 4 (2014), 1?11.
[5]
Y. Chen, T. Xie, C. Yuksel, D. Kaufman, Y. Yang, C. Jiang, and M. Li. 2023. Multi-Layer Thick Shells. In ACM SIGGRAPH Conference Proceedings. 1?9.
[6]
ZP Chen, XM Qiu, X Zhang, and YP Lian. 2015. Improved coupling of finite element method with material point method based on a particle-to-surface contact algorithm. Computer Methods in Applied Mechanics and Engineering 293 (2015), 1?19.
[7]
G. Daviet and F. Bertails-Descoubes. 2016. A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans. Graph. 35, 4 (2016).
[8]
Linxu Fan, Floyd M Chitalu, and Taku Komura. 2022. Simulating brittle fracture with material points. ACM Transactions on Graphics (TOG) 41, 5 (2022), 1?20.
[9]
Yu Fang, Yuanming Hu, Shi-Min Hu, and Chenfanfu Jiang. 2018. A temporally adaptive material point method with regional time stepping. In Computer graphics forum, Vol. 37. Wiley Online Library, 195?204.
[10]
Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1?13.
[11]
Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2018. A multi-scale model for simulating liquid-fabric interactions. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1?16.
[12]
Y. Fei, C. Batty, E. Grinspun, and C. Zheng. 2019. A multi-scale model for coupling strands with shear-dependent liquid. ACM Trans. Graph. 38, 6 (2019), 1?20.
[13]
Yun Fei, Yuhan Huang, and Ming Gao. 2021. Principles towards real-time simulation of material point method on modern GPUs. arXiv preprint arXiv:2111.00699 (2021).
[14]
Y. Fei, H. T. Maia, C. Batty, C. Zheng, and E. Grinspun. 2017. A multi-scale model for simulating liquid-hair interactions. ACM Trans. Graph. 36, 4 (2017), 1?17.
[15]
Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1?12.
[16]
Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018. GPU optimization of material point methods. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1?12.
[17]
Theodore F Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M Teran. 2015. Optimization integrator for large time steps. IEEE transactions on visualization and computer graphics 21, 10 (2015), 1103?1115.
[18]
Johan Gaume, T Gast, J Teran, A Van Herwijnen, and C Jiang. 2018. Dynamic anticrack propagation in snow. Nature communications 9, 1 (2018), 3047.
[19]
Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schr?der. 2003. Discrete shells. In ACM SIGGRAPH/Eurographics symposium on Computer animation. 62?67.
[20]
Xuchen Han, Theodore F Gast, Qi Guo, Stephanie Wang, Chenfanfu Jiang, and Joseph Teran. 2019. A hybrid material point method for frictional contact with diverse materials. Proc. ACM Comput. Graph. Interact. Tech. 2, 2 (2019), 1?24.
[21]
J. Hegemann, C. Jiang, C. Schroeder, and J. M. Teran. 2013. A level set method for ductile fracture. In ACM SIGGR. / Eurogr. Symp. Comput. Animat.193?201.
[22]
Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph. 37, 4 (2018), 1?14.
[23]
Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B Tenenbaum, and Chuang Gan. 2021. Plasticinelab: A soft-body manipulation benchmark with differentiable physics. arXiv preprint arXiv:2104.03311 (2021).
[24]
Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In ACM SIGGRAPH/Eurographics symposium on Computer animation. 131?140.
[25]
Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. 2006. Tetrahedral and hexahedral invertible finite elements. Graphical Models 68, 2 (2006), 66?89.
[26]
Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. 36, 4 (2017), 1?14.
[27]
Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4 (2015), 1?10.
[28]
C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The material point method for simulating continuum materials. In Acm siggraph 2016 courses. 1?52.
[29]
Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic elasticity for inversion-safety and element rehabilitation. ACM Trans. Graph. 38, 4 (2019), 1?15.
[30]
Gergely Kl?r, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu Jiang, and Joseph Teran. 2016. Drucker-prager elastoplasticity for sand animation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1?12.
[31]
L. Lan, D. Kaufman, M. Li, C. Jiang, and Y. Yang. 2022. Affine body dynamics: fast, stable and intersection-free simulation of stiff materials. ACM Trans. Graph. 41, 4 (2022), 1?14.
[32]
M. Li, Z. Ferguson, T. Schneider, T. Langlois, D. Zorin, D. Panozzo, C. Jiang, and D. Kaufman. 2020. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics.ACM Trans. Graph. 39, 4 (2020), 49.
[33]
Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M Kaufman. 2019. Decomposed optimization time integrator for large-step elastodynamics. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1?10.
[34]
Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental Potential Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170 (2021).
[35]
Xuan Li, Yu Fang, Minchen Li, and Chenfanfu Jiang. 2022a. BFEMP: Interpenetration-free MPM?FEM coupling with barrier contact. Computer Methods in Applied Mechanics and Engineering 390 (2022), 114350.
[36]
Xuan Li, Minchen Li, and Chenfanfu Jiang. 2022b. Energetically consistent inelasticity for optimization time integration. ACM Trans. Graph. 41, 4 (2022), 1?16.
[37]
YP Lian, X Zhang, and Y Liu. 2011a. Coupling of finite element method with material point method by local multi-mesh contact method. Computer Methods in Applied Mechanics and Engineering 200, 47-48 (2011), 3482?3494.
[38]
YP Lian, X Zhang, X Zhou, and ZT Ma. 2011b. A FEMP method and its application in modeling dynamic response of reinforced concrete subjected to impact loading. Computer Methods in Applied Mechanics and Engineering 200, 17-20 (2011).
[39]
James F O?brien, Adam W Bargteil, and Jessica K Hodgins. 2002. Graphical modeling and animation of ductile fracture. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques. 291?294.
[40]
James F O?brien and Jessica K Hodgins. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. 137?146.
[41]
Matthew Overby, George E Brown, Jie Li, and Rahul Narain. 2017. ADMM ? projective dynamics: Fast simulation of hyperelastic models with dynamic constraints. IEEE Transactions on Visualization and Computer Graphics 23, 10 (2017), 2222?2234.
[42]
Yuxing Qiu, Samuel Temple Reeve, Minchen Li, Yin Yang, Stuart Ryan Slattery, and Chenfanfu Jiang. 2023. A Sparse Distributed Gigascale Resolution Material Point Method. ACM Transactions on Graphics 42, 2 (2023), 1?21.
[43]
Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin, Joseph Teran, and Pirouz Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 157?163.
[44]
Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean flesh simulation. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1?15.
[45]
Al. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4 (2013), 1?10.
[46]
Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1?11.
[47]
Haozhe Su, Tao Xue, Chengguizi Han, Chenfanfu Jiang, and Mridul Aanjaneya. 2021. A unified second-order accurate in time MPM formulation for simulating viscoelastic liquids with phase change. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1?18.
[48]
Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In ACM SIGGRAPH/Eurographics symposium on Computer animation. 181?190.
[49]
Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically deformable models. In Proceedings of the 14th annual conference on Computer graphics and interactive techniques. 205?214.
[50]
T. Trusty, D. Kaufman, and D. Levin. 2022. Mixed Variational Finite Elements for Implicit, General-Purpose Simulation of Deformables. arXiv:2202.00183 (2022).
[51]
Xinlei Wang, Minchen Li, Yu Fang, Xinxin Zhang, Ming Gao, Min Tang, Danny M Kaufman, and Chenfanfu Jiang. 2020a. Hierarchical optimization time integration for cfl-rate mpm stepping. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1?16.
[52]
X. Wang, Y. Qiu, S. Slattery, Y. Fang, M. Li, S. Zhu, Y. Zhu, M. Tang, D. Manocha, and C. Jiang. 2020b. A massively parallel and scalable multi-GPU material point method. ACM Transactions on Graphics (TOG) 39, 4 (2020), 30?1.
[53]
Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. In ACM SIGGRAPH 2008 papers. 1?8.
[54]
Joshuah Wolper, Yunuo Chen, Minchen Li, Yu Fang, Ziyin Qu, Jiecong Lu, Meggie Cheng, and Chenfanfu Jiang. 2020. AnisoMPM: Animating anisotropic damage mechanics: Supplemental document. ACM Trans. Graph 39, 4 (2020).
[55]
Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, and Chenfanfu Jiang. 2019. CD-MPM: continuum damage material point methods for dynamic fracture animation. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1?15.
[56]
Botao Wu, Zhendong Wang, and Huamin Wang. 2022. A GPU-based multilevel additive schwarz preconditioner for cloth and deformable body simulation. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1?14.
[57]
Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum foam: A material point method for shear-dependent flows. ACM Transactions on Graphics (TOG) 34, 5 (2015), 1?20.
[58]
Yidong Zhao, Jinhyun Choo, Yupeng Jiang, and Liuchi Li. 2023a. Coupled material point and level set methods for simulating soils interacting with rigid objects with complex geometry. Computers and Geotechnics 163 (2023), 105708.
[59]
Yidong Zhao, Chenfanfu Jiang, and Jinhyun Choo. 2023b. Circumventing volumetric locking in explicit material point methods: A simple, efficient, and general approach. Internat. J. Numer. Methods Engrg. 124, 23 (2023), 5334?5355.