“A Dual-Particle Approach for Incompressible SPH Fluids” – ACM SIGGRAPH HISTORY ARCHIVES

“A Dual-Particle Approach for Incompressible SPH Fluids”

  • ©

Conference:


Type(s):


Title:

    A Dual-Particle Approach for Incompressible SPH Fluids

Presenter(s)/Author(s):



Abstract:


    We propose a dual-particle approach to deal with tensile instability in particle methods in fluid simulation, which involves incorporating supplementary virtual particles designed to capture and store particle pressures. Our approach can accurately simulate free-surface flows with rich small-scale thin features, such as droplets, streamlines, and sheets.

References:


    [1]
    Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans Graph (TOG) 32, 6, Article 182 (nov2013), 8 pages. DOI:

    [2]
    Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph (TOG) 31, 4, Article 62 (jul2012), 8 pages. DOI:

    [3]
    Ryoichi Ando, Nils Thurey, and Reiji Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Transactions on Visualization and Computer Graphics 18, 8 (2012), 1202?1214.

    [4]
    Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans Graph (TOG) 26, 3 (072007), 100:1?100:7. DOI:

    [5]
    Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ?07). Eurographics Association, Goslar, DEU, 209?217.

    [6]
    T. Belytschko and Shaoping Xiao. 2002. Stability analysis of particle methods with corrected derivatives. Computers & Mathematics with Applications 43, 3 (2002), 329?350. DOI:

    [7]
    Jan Bender and Dan Koschier. 2015. Divergence-free smoothed particle hydrodynamics. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA ?15). Association for Computing Machinery, New York, NY, 147?155. DOI:

    [8]
    J. Brackbill and H. Ruppel. 1986. Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J Comp Phys 65, 2 (1986), 314?343.

    [9]
    Robert Bridson. 2015. Fluid Simulation for Computer Graphics, Second Edition. CRC press. 1?256 pages.

    [10]
    Caitlin Chalk, Manuel Pastor, J. Peakall, Duncan Borman, Andrew Sleigh, William Murphy, and Raul Fuentes. 2020. Stress-particle smoothed particle hydrodynamics: An application to the failure and post-failure behaviour of slopes. Computer Methods in Applied Mechanics and Engineering 366, 7 (032020), 113034. DOI:

    [11]
    J. K. Chen and J. E. Beraun. 2000. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Computer Methods in Applied Mechanics and Engineering 190, 1 (2000), 225?239. DOI:

    [12]
    J. K. Chen, J. E. Beraun, and C. J. Jih. 1999. An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics 23, 4 (1999), 279?287.

    [13]
    Xiao Song Chen, Chen Feng Li, Geng Chen Cao, Yun Tao Jiang, and Shi Min Hu. 2020a. A moving least square reproducing kernel particle method for unified multiphase continuum simulation. ACM Trans Graph (TOG) 39, 6 (2020), 1?15.

    [14]
    Yilu Chen, Jonathan Meier, Barbara Solenthaler, and Vinicius C. Azevedo. 2020b. An extended cut-cell method for sub-grid liquids tracking with surface tension. ACM Trans Graph (TOG) 39, 6, Article 169 (nov2020), 13 pages. DOI:

    [15]
    Andrea Colagrossi. 2005. A meshless Lagrangian method for free-surface and interface flows with fragmentation. These, Universita di Roma (2005).

    [16]
    Andrea Colagrossi, Matteo Antuono, and David Le Touz?. 2009. Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. Phys. Rev. E 79, 5 (May2009), 056701. DOI:

    [17]
    Jens Cornelis, Markus Ihmsen, Andreas Peer, and Matthias Teschner. 2014. IISPH-FLIP for incompressible fluids. Computer Graphics Forum 33, 2 (2014), 255?262. DOI:

    [18]
    Sharen J. Cummins and Murray Rudman. 1999. An SPH projection method. J. Comput. Phys. 152, 2 (1999), 584?607.

    [19]
    Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed Particles: A new paradigm for animating highly deformable bodies. In Computer Animation and Simulation?96. Ronan Boulic and Gerard H?gron (Eds.). Springer Vienna, Vienna, 61?76.

    [20]
    C. T. Dyka and R. P. Ingel. 1995. An approach for tension instability in smoothed particle hydrodynamics (SPH). Computers & Structures 57, 4 (1995), 573?580. DOI:

    [21]
    C. T. Dyka, P. W. Randles, and R. P. Ingel. 1997. Stress points for tension instability in SPH. Internat. J. Numer. Methods Engrg. 40, 13 (1997), 2325?2341.

    [22]
    Yun (Raymond) Fei, Qi Guo, Rundong Wu, Li Huang, and Ming Gao. 2021. Revisiting integration in the material point method: A scheme for easier separation and less dissipation. ACM Trans Graph (TOG) 40, 4, Article 109 (jul2021), 16 pages. DOI:

    [23]
    N. Foster and D. Metaxas. 1996. Realistic animation of liquids. Graph Mod Imag Proc 58, 5 (1996), 471?483.

    [24]
    Thomas-Peter Fries and Ted Belytschko. 2008. Convergence and stabilization of stress-point integration in mesh-free and particle methods. Internat. J. Numer. Methods Engrg. 74, 7 (2008), 1067?1087.

    [25]
    Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A polynomial particle-in-cell method. ACM Trans Graph (TOG) 36, 6, Article 222 (Nov.2017), 12 pages. DOI:

    [26]
    Jan-Philipp F?rstenau, Bircan Avci, and Peter Wriggers. 2017. A comparative numerical study of pressure-Poisson-equation discretization strategies for SPH. In 12th International SPHERIC Workshop.

    [27]
    Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana, Eftychios Sifakis, Cem Yuksel, and Chenfanfu Jiang. 2018. GPU optimization of material point methods. ACM Trans. Graph. 37, 6, Article 254 (dec2018), 12 pages. DOI:

    [28]
    Dan Gerszewski and Adam W. Bargteil. 2013. Physics-based animation of large-scale splashing liquids. ACM Trans Graph (TOG) 32, 6, Article 185 (nov2013), 6 pages. DOI:

    [29]
    Robert A. Gingold and Joseph J. Monaghan. 1977. Smoothed particle hydrodynamics?theory and application to non-spherical stars. mnras 181, 3 (111977), 375?389. DOI:

    [30]
    Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019. Interlinked SPH pressure solvers for strong fluid-rigid coupling. ACM Trans Graph (TOG) 38, 1, Article 5 (jan2019), 13 pages. DOI:

    [31]
    Hitoshi Gotoh and Abbas Khayyer. 2016. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. Journal of Ocean Engineering and Marine Energy 2, 3 (2016), 251?278.

    [32]
    Francis H. Harlow. 1962. The particle-in-cell method for numerical solution of problems in fluid dynamics. United States: N, 1962. DOI:

    [33]
    Francis H. Harlow and E. Welch. 1965. Numerical calculation of time dependent viscous flow of fluid with a free surface. Phys Fluid 8, 12 (1965), 2182?2189.

    [34]
    Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping. Wang. 2012a. Local poisson SPH for viscous incompressible fluids. Computer Graphics Forum 31, 6 (2012), 1948?1958.

    [35]
    Xiaowei He, Ning Liu, Guoping Wang, Fengjun Zhang, Sheng Li, Songdong Shao, and Hongan Wang. 2012b. Staggered meshless solid-fluid coupling. ACM Trans Graph (TOG) 31, 6 (2012), 149.

    [36]
    Xiaowei He, Huamin Wang, Guoping Wang, Hongan Wang, and Enhua Wu. 2020. A variational staggered particle framework for incompressible free-surface flows. arXiv:2001.09421. Retrieved from https://arxiv.org/abs/2001.09421

    [37]
    Xiaowei He, Huamin Wang, Fengjun Zhang, Hongan Wang, Guoping Wang, and Kun Zhou. 2014. Robust simulation of sparsely sampled thin features in SPH-based free surface flows. ACM Trans Graph (TOG) 34, 1, Article 7 (Dec.2014), 9 pages.

    [38]
    Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. 2018. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans Graph (TOG) 37, 4, Article 150 (July2018), 14 pages. DOI:

    [39]
    Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014a. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2014), 426?435.

    [40]
    Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014b. SPH fluids in computer graphics. Eurographics (State of the Art Reports) (2014), 21?42.

    [41]
    Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Trans Graph (TOG) 35, 4 (Aug.2015), 51:1?51:10. DOI:

    [42]
    Abbas Khayyer and Hitoshi Gotoh. 2011. Enhancement of stability and accuracy of the moving particle semi-implicit method. J. Comput. Phys. 230, 8 (2011), 3093?3118. DOI:

    [43]
    Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids. The Eurographics Association (2019).

    [44]
    Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2022. A survey on SPH methods in computer graphics. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 737?760.

    [45]
    Egor Larionov, Christopher Batty, and Robert Bridson. 2017. Variational stokes: A unified pressure-viscosity solver for accurate viscous liquids. ACM Trans Graph (TOG) 36, 4 (072017), 101:1?101:11. DOI:

    [46]
    Moubin Liu and Guiren Liu. 2010. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering 17, 1 (2010), 25?76.

    [47]
    Shusen Liu, Xiaowei He, Wencheng Wang, and Enhua Wu. 2021. Adapted SIMPLE algorithm for incompressible SPH fluids with a broad range viscosity. IEEE Transactions on Visualization and Computer Graphics 28, 9 (2021), 3168?3179.

    [48]
    Wing Kam Liu, Sukky Jun, Shaofan Li, Jonathan Adee, and Ted Belytschko. 1995. Reproducing kernel particle methods for structural dynamics. Internat. J. Numer. Methods Engrg. 38, 10 (1995), 1655?1679.

    [49]
    Xiaoxing Liu, Koji Morita, and Shuai Zhang. 2018. An advanced moving particle semi-implicit method for accurate and stable simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering 339 (2018), 467?487.

    [50]
    Leon B. Lucy. 1977. A numerical approach to the testing of the fission hypothesis. The Astrophysical Journal 8, 12 (011977), 1013?1024.

    [51]
    Hong-Guan Lyu, Peng-Nan Sun, Xiao-Ting Huang, Shun-Hua Chen, and A-Man Zhang. 2021. On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid?structure interaction problems in ocean engineering. Applied Ocean Research 117 (2021), 102938.

    [52]
    Miles Macklin and Matthias M?ller. 2013. Position based fluids. ACM Trans Graph (TOG) 32, 4 (2013), 104.

    [53]
    Joseph J. Monaghan. 1992. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 1 (1992), 543?574.

    [54]
    Joseph J. Monaghan. 2000. SPH without a tensile instability. J. Comput. Phys. 159, 2 (2000), 290?311. DOI:

    [55]
    Matthias M?ller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of SCA. 154?159.

    [56]
    Ken Museth. 2021. NanoVDB: A GPU-friendly and portable VDB data structure for real-time rendering and simulation. In ACM SIGGRAPH 2021 Talks (SIGGRAPH ?21). Association for Computing Machinery, New York, NY, Article 1, 2 pages. DOI:

    [57]
    Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden, Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: An open-source data structure and toolkit for high-resolution volumes. In ACM SIGGRAPH 2013 Courses (SIGGRAPH ?13). Association for Computing Machinery, New York, NY, Article 19, 1 pages. DOI:

    [58]
    Prapanch Nair and Gaurav Tomar. 2014. An improved free surface modeling for incompressible SPH. Computers and Fluids 102, 10 (2014), 304?314.

    [59]
    Rafael Nakanishi, Filipe Nascimento, Rafael Campos, Paulo Pagliosa, and Afonso Paiva. 2020. RBF liquids: An adaptive PIC solver using RBF-FD. ACM Trans Graph (TOG) 39, 6 (2020), 170:1?170:13.

    [60]
    G. Oger, M. Doring, B. Alessandrini, and P. Ferrant. 2007. An improved SPH method: Towards higher order convergence. J. Comput. Phys. 225, 2 (2007), 1472?1492. DOI:

    [61]
    P. W. Randles and L. D. Libersky. 2000. Normalized SPH with stress points. Internat. J. Numer. Methods Engrg. 48, 10 (2000), 1445?1462. DOI:

    [62]
    Karthik Raveendran, Chris Wojtan, and Greg Turk. 2011. Hybrid smoothed particle hydrodynamics. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 33?42.

    [63]
    Stefan Reinhardt, Tim Krake, Bernhard Eberhardt, and Daniel Weiskopf. 2019. Consistent shepard interpolation for SPH-based fluid animation. ACM Trans Graph (TOG) 38, 6, Article 189 (nov2019), 11 pages. DOI:

    [64]
    Hagit Schechter and Robert Bridson. 2012. Ghost SPH for animating water. ACM Trans Graph (TOG) 31, 4, Article 61 (jul2012), 8 pages. DOI:

    [65]
    Jonathan R. Shewchuk. 1994. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Technical Report. Carnegie Mellon University.

    [66]
    Weixin Si, Jing Qin, Zhuchao Chen, Xiangyun Liao, Qiong Wang, and Pheng-Ann Heng. 2018. Thin-feature-aware transport-velocity formulation for SPH-based liquid animation. IEEE Transactions on Multimedia 20, 11 (2018), 3033?3044. DOI:

    [67]
    Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Trans Graph (TOG) 28, 3, Article 40 (jul2009), 6 pages. DOI:

    [68]
    Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A material point method for snow simulation. ACM Trans Graph (TOG) 32, 4 (2013), 102:1?102:10.

    [69]
    Peng-Nan Sun, Andrea Colagrossi, Salvatore Marrone, Matteo Antuono, and A-Man Zhang. 2018. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows. Computer Physics Communications 224 (2018), 63?80.

    [70]
    Peng-Nan Sun, Andrea Colagrossi, Salvatore Marrone, and A-Man Zhang. 2017. The
    plus-SPH model: Simple procedures for a further improvement of the SPH scheme. Computer Methods in Applied Mechanics and Engineering 315 (2017), 25?49.

    [71]
    Peng-Nan Sun, David Le Touze, Guillaume Oger, and A-Man Zhang. 2021. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Engineering 221 (2021), 108552.

    [72]
    Peng-Nan Sun, Min Luo, David Le Touz?, and A. Zhang. 2019. The suction effect during freak wave slamming on a fixed platform deck: Smoothed particle hydrodynamics simulation and experimental study. Physics of Fluids 31, 11 (2019), 117108.

    [73]
    Jeff W. Swegle, Darrell L. Hicks, and S. W. Attaway. 1995. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 1 (1995), 123?134.

    [74]
    Tetsuya Takahashi, Yoshinori Dobashi, Tomoyuki Nishita, and Ming C. Lin. 2018. An efficient hybrid incompressible SPH solver with interface handling for boundary conditions. Computer Graphics Forum 37, 1 (2018), 313?324. DOI:

    [75]
    Naoki Tsuruta, Abbas Khayyer, and Hitoshi Gotoh. 2013. A short note on dynamic stabilization of moving particle semi-implicit method. Computers and Fluids 82, 15 (2013), 158?164. DOI:

    [76]
    Kiwon Um, Seungho Baek, and JungHyun Han. 2014. Advanced hybrid particle-grid method with sub-grid particle correction. In Computer Graphics Forum, Vol. 33. Wiley Online Library, 209?218.

    [77]
    Renato Vacondio, Corrado Altomare, Matthieu De Leffe, Xiangyu Hu, David Le Touz?, Steven Lind, Jean-Christophe Marongiu, Salvatore Marrone, Benedict D. Rogers, and Antonio Souto-Iglesias. 2021. Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Computational Particle Mechanics 8, 3 (2021), 575?588.

    [78]
    Xinlei Wang, Yuxing Qiu, Stuart R. Slattery, Yu Fang, Minchen Li, Song-Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang. 2020. A massively parallel and scalable multi-GPU material point method. ACM Trans Graph (TOG) 39, 4 (2020), 30?1.

    [79]
    Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A physically consistent implicit viscosity solver for SPH fluids. Computer Graphics Forum 37, 2 (2018), 145?155.

    [80]
    Rene Winchenbach and Andreas Kolb. 2021. Optimized refinement for spatially adaptive SPH. ACM Trans Graph (TOG) 40, 1 (2021), 1?15.

    [81]
    Rui Xu, Peter Stansby, and Dominique Laurence. 2009. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228, 18 (2009), 6703?6725.

    [82]
    Meng Yang, Xiaosheng Li, Youquan Liu, Yang Gang, and Enhua Wu. 2017a. A novel surface tension formulation for SPH fluid simulation. The Visual Computer 33 (052017). DOI:

    [83]
    Sheng Yang, Xiaowei He, Huamin Wang, Sheng Li, Guoping Wang, Enhua Wu, and Kun Zhou. 2016. Enriching SPH simulation by approximate capillary waves. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ?16). Eurographics Association, Goslar, DEU, 29? 36.

    [84]
    Tao Yang, Ralph R. Martin, Ming C. Lin, Jian Chang, and Shi-Min Hu. 2017b. Pairwise force SPH model for real-time multi-interaction applications. IEEE Transactions on Visualization and Computer Graphics 23, 10 (2017), 2235?2247. DOI:

    [85]
    Ling Zhan, Chong Peng, Bingyin Zhang, and Wei Wu. 2019. A stabilized TL?WC SPH approach with GPU acceleration for three-dimensional fluid?structure interaction. Journal of Fluids and Structures 86 (2019), 329?353.

    [86]
    Chi Zhang, Xiangyu Y. Hu, and Nikolaus A. Adams. 2017. A generalized transport-velocity formulation for smoothed particle hydrodynamics. J. Comput. Phys. 337, 15 (2017), 216?232.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org