“Modelling a Feather as a Strongly Anisotropic Elastic Shell” – ACM SIGGRAPH HISTORY ARCHIVES

“Modelling a Feather as a Strongly Anisotropic Elastic Shell”

  • ©

Conference:


Type(s):


Title:

    Modelling a Feather as a Strongly Anisotropic Elastic Shell

Presenter(s)/Author(s):



Abstract:


    We investigate the mechanical properties of bird feathers. Our lab experiments reveal a linear strain-stress relationship of the feather membrane in addition to an extreme anisotropy. From these findings we build a simple orthotropic model for the feather vane, whose numerical implementation avoids locking and ill-conditioning issues.

References:


    [1]
    Nicholas Augello, David Tonnesen, and Arunachalam Somasundaram. 2019. Hummingbird: Dreamworks Feather System. In ACM SIGGRAPH Talks. Article 60, 2 pages.

    [2]
    Jessica Baron, Daljit Singh Dhillon, N Adam Smith, and Eric Patterson. 2022. Microstructure-based appearance rendering for feathers. Computers & Graphics 102 (2022), 452?459.

    [3]
    Jessica Baron and Eric Patterson. 2019. Procedurally generating biologically driven feathers. In Computer Graphics International Conference. Springer, 342?348.

    [4]
    Mikl?s Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete Elastic Rods. ACM Trans. Graph. 27, 3, Article 63 (Aug. 2008), 12 pages.

    [5]
    Florence Bertails. 2009. Linear Time Super-Helices. Computer Graphics Forum (Proceedings of Eurographics) (2009).

    [6]
    Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Fr?d?ric Leroy, and Jean-Luc L?v?que. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. In ACM Transactions on Graphics.

    [7]
    R Bonser and P Purslow. 1995. The Young?s modulus of feather keratin. Journal of Experimental Biology 198, 4 (1995), 1029?1033.

    [8]
    Stephen D. Bowline and Zoran Ka?i?-Alesi?. 2011. Dynamic, Penetration-free Feathers in Rango. In ACM SIGGRAPH Talks. Article 35, 1 pages.

    [9]
    Hsiao-Yu Chen, Arnav Sastry, Wim M. van Rees, and Etienne Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (jul 2018), 13 pages.

    [10]
    Qiang Chen, Stanislav Gorb, Alexander Kovalev, Zhiyong Li, and Nicola Pugno. 2016. An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers. EPL (Europhysics Letters) 116, 2 (2016), 24001.

    [11]
    Yanyun Chen, Yingqing Xu, Baining Guo, and Heung-Yeung Shum. 2002. Modeling and Rendering of Realistic Feathers. ACM Trans. Graph. 21, 3 (July 2002), 630?636.

    [12]
    Cheng-Ming Chuong, Rajas Chodankar, Randall B Widelitz, and Ting-Xin Jiang. 2000. Evo-Devo of feathers and scales: building complex epithelial appendages. Current Opinion in Genetics & Development 10 (2000), 449?456.

    [13]
    David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Modeling and data-driven parameter estimation for woven fabrics. Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (2017).

    [14]
    Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schr?der. 2003. Discrete Shells. (2003), 62?67.

    [15]
    Rasmus Haapaoja and Christoph Genzw?rker. 2019. Mesh-driven Generation and Animation of Groomed Feathers. In ACM SIGGRAPH Talks. Article 61, 2 pages.

    [16]
    J. S. Hale, M. Brunetti, S. Bordas, and C. Maurini. 2018. Simple and extensible plate and shell finite element models through automatic code generation tools. Computers & Structures 209 (2018), 163?181.

    [17]
    Todd Alan Harvey, Kimberly S. Bostwick, and Steve Marschner. 2013. Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus. Journal of The Royal Society Interface 10, 86 (2013), 20130391.

    [18]
    Daniel Heckenberg, Damien Gray, Bryan Smith, Jonathan Wills, and Chris Bone. 2011. Quill: Birds of a Feather Tool. In ACM SIGGRAPH Talks. Article 34, 1 pages.

    [19]
    Weizhen Huang, Sebastian Merzbach, Clara Callenberg, Doekele Stavenga, and Matthias Hullin. 2022. Rendering Iridescent Rock Dove Neck Feathers. In Proceedings of SIGGRAPH. 1?8.

    [20]
    Alexander Kovalev, Alexander E. Filippov, and Stanislav N. Gorb. 2014. Unzipping bird feathers. Journal of The Royal Society Interface 11, 92 (2014).

    [21]
    Eric Landreneau and Scott Schaefer. 2010. Scales and Scale-like Structures. Computer Graphics Forum (Proceedings of Eurographics) 29, 5 (2010), 1653?1660.

    [22]
    Le Liu, Xiaosheng Li, Yanyun Chen, Xuehui Liu, Jian J. Zhang, and Enhua Wu. 2015. An Efficient Feathering System with Collision Control. Computer Graphics Forum (Proceedings of Pacific Graphics) 34, 7 (2015), 279?288.

    [23]
    Le Liu, Xuehui Liu, Bin Sheng, Yanyun Chen, and Enhua Wu. 2017. Incremental collision-free feathering for animated surfaces. The Visual Computer 33, 6 (Jun 2017), 883?890.

    [24]
    G.D. Macleod. 1980. Mechanical Properties of Contour Feathers. Journal of Experimental Biology 87, 1 (1980), 65?72.

    [25]
    Eder Miguel, Derek Bradley, B. Thomaszewski, B. Bickel, Wojciech Matusik, Miguel A. Otaduy, and Steve Marschner. 2012. Data?Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31 (2012).

    [26]
    G.W. Milton. 2002. The theory of composites. Cambridge University Press.

    [27]
    Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O?Brien. 2014. Adaptive tearing and cracking of thin sheets. ACM Transactions on Graphics (TOG) 33 (2014), 1 ? 9.

    [28]
    P.P. Purslow and J.F. V. Vincent. 1978. Mechanical Properties of Primary Feathers From the Pigeon. Journal of Experimental Biology 72, 1 (02 1978), 251?260.

    [29]
    Georg Sperl, Rosa M. S?nchez-Banderas, Manwen Li, Chris Wojtan, and Miguel A. Otaduy. 2022. Estimation of Yarn-Level Simulation Models for Production Fabrics. ACM Transactions on Graphics (TOG) 41, 4 (2022).

    [30]
    L. Streit and W. Heidrich. 2002. A Biologically-Parameterized Feather Model. Computer Graphics Forum (Proceedings of Eurographics) 21, 3 (2002), 565?573.

    [31]
    R.H.W. ten Thije and R. Akkerman. 2008. Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials. Composites Part A: Applied Science and Manufacturing 39, 7 (2008), 1167?1176.

    [32]
    Pascal Volino, Nadia Magnenat-Thalmann, and Fran?ois Faure. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28 (2009), 105:1?105:16.

    [33]
    Andreas W?chter and Lorenz T. Biegler. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106 (2006), 25?57.

    [34]
    Huamin Wang, Ravi Ramamoorthi, and James F. O?Brien. 2011. Data-Driven Elastic Models for Cloth: Modeling and Measurement. ACM Transactions on Graphics 30, 4 (July 2011), 71:1?11. Proceedings of ACM SIGGRAPH 2011, Vancouver, BC Canada.

    [35]
    Andrew J. Weber and Galen Gornowicz. 2009. Collision-free Construction of Animated Feathers Using Implicit Constraint Surfaces. ACM Trans. Graph. 28, 2, Article 12 (May 2009), 8 pages.

    [36]
    Xiaoming Wei, Ye Zhao, Zhe Fan, Wei Li, Suzanne Yoakum-Stover, and Arie Kaufman. 2003. Blowing in the Wind. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 75?85.

    [37]
    Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to Train Your Dragon: Example-guided Control of Flapping Flight. ACM Trans. Graph. 36, 6, Article 198 (Nov. 2017), 13 pages.

    [38]
    Mingjiang Zhan; Richard P. Wool. 2011. Mechanical properties of chicken feather fibers. Polymer Composites 32 (2011). Issue 6.

    [39]
    Jia-chi Wu and Zoran Popovi?. 2003. Realistic Modeling of Bird Flight Animations. ACM Trans. Graph. 22, 3 (July 2003), 888?895.

    [40]
    Xiaobo Yu, Bruce Cartwright, Damian McGuckin, Lin Ye, and Yiu-Wing Mai. 2006. Intra-ply shear locking in finite element analyses of woven fabric forming processes. Composites Part A: Applied Science and Manufacturing 37, 5 (2006), 790?803.

    [41]
    F. Zhang, L. Jiang, and S. Wang. 2018. Repairable cascaded slide-lock system endows bird feathers with tear-resistance and superdurability. Proceedings of the National Academy of Sciences 115 (2018), 10046 ? 10051.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org