“Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color Filtering” by Itoh, Langlotz, Iwai, Kiyokawa and Amano – ACM SIGGRAPH HISTORY ARCHIVES

“Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color Filtering” by Itoh, Langlotz, Iwai, Kiyokawa and Amano

  • ©

Conference:


Type(s):


Interest Area:


    Gaming & Interactive and Research / Education

Title:

    Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color Filtering

Session/Category Title:   IEEE TVCG Session on Virtual and Augmented Reality


Presenter(s)/Author(s):



Abstract:


    We present a display for optical see-through near-eye displays based on light attenuation, a new paradigm that forms images by spatially subtracting colors of light. Existing optical see-through head-mounted displays (OST-HMDs) form virtual images in an additive manner-they optically combine the light from an embedded light source such as a microdisplay into the users’ field of view (FoV). Instead, our light attenuation display filters the color of the real background light pixel-wise in the users’ see-through view, resulting in an image as a spatial color filter. Our image formation is complementary to existing light-additive OST-HMDs. The core optical component in our system is a phase-only spatial light modulator (PSLM), a liquid crystal module that can control the phase of the light in each pixel. By combining PSLMs with polarization optics, our system realizes a spatially programmable color filter. In this paper, we introduce our optics design, evaluate the spatial color filter, consider applications including image rendering and FoV color control, and discuss the limitations of the current prototype.

References:


    [1] O. Aharon and I. Abdulhalim. Liquid crystal lyot tunable filter with extended free spectral range. Optics Express, 17(14):11426–11433, 2009.

    [2] B. E. Bayer. Color imaging array. US patent 3,971,065, 1976.

    [3] O. Cakmakci, Y. Ha, and J. P. Rolland. A compact optical see-through head-worn display with occlusion support. In 3rd IEEE/ACM ISMAR, pages 16–25. IEEE, 2004.

    [4] M. P. Chrisp. Convex diffraction grating imaging spectrometer, Mar. 9 1999. US Patent 5,880,834.

    [5] K.-H. Chung and Y.-H. Chan. A lossless compression scheme for bayer color filter array images. IEEE Transactions on Image Processing, 17(2):134–144, 2008.

    [6] H. Dai, K. X. Y. Liu, X. Wang, and J. Liu. Characteristics of lcos phaseonly spatial light modulator and its applications. Optics Communications, 238(4-6):269–276, 2004.

    [7] G. Damberg, J. Gregson, and W. Heidrich. High brightness hdr projection using dynamic freeform lensing. ACM TOG, 35(3):24, 2016.

    [8] EnChroma. Enchroma – see the difference.

    [9] H. Fuchs, M. A. Livingston, R. Raskar, K. Keller, J. R. Crawford, P. Rademacher, S. H. Drake, A. A. Meyer, et al. Augmented reality visualization for laparoscopic surgery. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 934–943. Springer, 1998.

    [10] C. Gao, Y. Lin, and H. Hua. Occlusion capable optical see-through headmounted display using freeform optics. In 11th IEEE ISMAR, pages 281–282. IEEE, 2012.

    [11] C. Gao, Y. Lin, and H. Hua. Optical see-through head-mounted display with occlusion capability. In Proc. SPIE, volume 8735, pages 87350F–1:9, 2013.

    [12] D. Glasner, T. Zickler, and A. Levin. A reflectance display. ACM TOG, 33(4):61, 2014.

    [13] A. Grundhofer and D. Iwai. Recent advances in projection mapping ¨ algorithms, hardware and applications. In Computer Graphics Forum, volume 37, pages 653–675. Wiley Online Library, 2018.

    [14] L. J. Guo. Recent progress in nanoimprint technology and its applications. Journal of Physics D: Applied Physics, 37(11):R123, 2004.

    [15] W. Harm, A. Jesacher, G. Thalhammer, S. Bernet, and M. Ritsch-Marte. How to use a phase-only spatial light modulator as a color display. Optics letters, 40(4):581–584, 2015.

    [16] E. Hecht. Optics. Pearson Education, 2016.

    [17] S. Hecht. The visual discrimination of intensity and the weber-fechner law. The Journal of General Physiology, 7(2):235–267, 1924.

    [18] A. Hermerschmidt, S. Quiram, F. Kallmeyer, and H. J. Eichler. Determination of the jones matrix of an lc cell and derivation of the physical parameters of the lc molecules. In Liquid Crystals and Applications in Optics, volume 6587, page 65871B. International Society for Optics and Photonics, 2007.

    [19] Y. Itoh, T. Hamasaki, and M. Sugimoto. Occlusion leak compensation for optical see-through displays using a single-layer transmissive spatial light modulator. IEEE TVCG, 23(11):2463–2473, 2017.

    [20] K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods. An occlusioncapable optical see-through head mount display for supporting co-located collaboration. In 2nd IEEE/ACM ISMAR, page 133. IEEE Computer Society, 2003.

    [21] K. Kiyokawa, Y. Kurata, and H. Ohno. An optical see-through display for mutual occlusion with a real-time stereovision system. Computers & Graphics, 25(5):765–779, 2001.

    [22] T. Kozacki and M. Chlipala. Color holographic display with white light led source and single phase only slm. Optics Express, 24(3):2189–2199, 2016.

    [23] T. Langlotz, M. Cook, and H. Regenbrecht. Real-time radiometric compensation for optical see-through head-mounted displays. IEEE TVCG, 22(11):2385–2394, 2016.

    [24] T. Langlotz, J. Sutton, S. Zollmann, Y. Itoh, and H. Regenbrecht. Chromaglasses: Computational glasses for compensating colour blindness. In CHI, CHI ’18, pages 390:1–390:12, New York, NY, USA, 2018. ACM.

    [25] G. Lazarev, A. Hermerschmidt, S. Kruger, and S. Osten. Lcos spatial ¨ light modulators: trends and applications. Optical Imaging and Metrology: Advanced Technologies, pages 1–29, 2012.

    [26] B. Lyot. Optical apparatus with wide field using interference of polarized light. CR Acad. Sci.(Paris), 197(1593), 1933.

    [27] A. Maimone and H. Fuchs. Computational augmented reality eyeglasses. In 12th IEEE ISMAR, pages 29–38. IEEE, 2013.

    [28] A. Maimone, A. Georgiou, and J. S. Kollin. Holographic near-eye displays for virtual and augmented reality. ACM TOG, 36(4):85, 2017.

    [29] A. Manakov, J. Restrepo, O. Klehm, R. Hegedus, E. Eisemann, H.-P. Seidel, and I. Ihrke. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging. ACM TOG, 32(4):47–1, 2013.

    [30] N. Matsuda, A. Fix, and D. Lanman. Focal surface displays. ACM TOG, 36(4):86, 2017.

    [31] D. L. Post, S. R. Dodd, W. C. Heinze, and R. O. Shaffner. Improved lamp and polarizers for subtractive color displays. Journal of the Society for Information Display, 5(3):251–259, 1997.

    [32] R. G. Stewart and W. R. Roach. Field-sequential display system utilizing a backlit lcd pixel array and method for forming an image, Aug. 9 1994. US Patent 5,337,068.

    [33] I. E. Sutherland. A head-mounted three dimensional display. Fall Joint Computer Conference, pages 757–764, 1968.

    [34] B. Thomas, B. Close, J. Donoghue, J. Squires, P. De Bondi, and W. Piekarski. First person indoor/outdoor augmented reality application: Arquake. Personal and Ubiquitous Computing, 6(1):75–86, 2002.

    [35] T.-H. Tsai, X. Yuan, and D. J. Brady. Spatial light modulator based color polarization imaging. Optics Express, 23(9):11912–11926, 2015.

    [36] C. Wang, Q. Fu, X. Dun, and W. Heidrich. Megapixel adaptive optics: towards correcting large-scale distortions in computational cameras. ACM TOG, 37(4):115, 2018.

    [37] J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou. Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography. Journal of Vacuum Science & Technology B, 17(6):2957–2960, 1999.

    [38] G. Wetzstein, W. Heidrich, and D. Luebke. Optical image processing using light modulation displays. In Computer Graphics Forum, volume 29, pages 1934–1944. Wiley Online Library, 2010.

    [39] Y. Yamaguchi and Y. Takaki. See-through integral imaging display with background occlusion capability. Applied Optics, 55(3):A144–A149, 2016.

    [40] Z. Zhang, Z. You, and D. Chu. Fundamentals of phase-only liquid crystal on silicon (lcos) devices. Light: Science & Applications, 3(10):e213, 2014.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org