“A Vector Field Design Approach to Animated Transitions” by Wang, Archambault, Scheidegger and Qu – ACM SIGGRAPH HISTORY ARCHIVES

“A Vector Field Design Approach to Animated Transitions” by Wang, Archambault, Scheidegger and Qu

  • ©

Conference:


Type(s):


Interest Area:


    Research / Education

Title:

    A Vector Field Design Approach to Animated Transitions

Session/Category Title:   IEEE TVCG Session on Advances in Data Visualization


Presenter(s)/Author(s):



Abstract:


    Animated transitions can be effective in explaining and exploring a small number of visualizations where there are drastic changes in the scene over a short interval of time. This is especially true if data elements cannot be visually distinguished by other means. Current research in animated transitions has mainly focused on linear transitions (all elements follow straight line paths) or enhancing coordinated motion through bundling of linear trajectories. In this paper, we introduce animated transition design, a technique to build smooth, non-linear transitions for clustered data with either minimal or no user involvement. The technique is flexible and simple to implement, and has the additional advantage that it explicitly enhances coordinated motion and can avoid crowding, which are both important factors to support object tracking in a scene. We investigate its usability, provide preliminary evidence for the effectiveness of this technique through metric evaluations and user study and discuss limitations and future directions.

References:


    [1] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale, ?A descriptive framework for temporal data visualizations based on generalized space-time cubes,? Comput. Graph. Forum, vol. 36, pp. 36?61, 2017.

    [2] D. Fisher, ?Animation for visualization: Opportunities and drawbacks,? in Beautiful Visualization: Looking at Data Through the Eyes of Experts, J. Steele and N. Iliinsky, Eds. Sebastopol, CA, USA: O?Reilly Media, 2010, ch. 19, pp. 329?352.

    [3] J. Heer and G. Robertson, ?Animated transitions in statistical data graphics,? IEEE Trans. Vis. Comput. Graph., vol. 13, no. 6, pp. 1240?1247, Nov./Dec. 2007.

    [4] F. Chevalier, P. Dragicevic, and S. Franconeri, ?The not-so-staggering effect of staggered animated transitions on visual tracking,? IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2241?2250, Dec. 2014.

    [5] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and J. Fekete, ?Temporal distortion for animated transitions,? in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2011, pp. 2009?2018.

    [6] F. Du, N. Cao, J. Zhao, and Y. Lin, ?Trajectory bundling for animated transitions,? in Proc. 33rd Annu. ACM Conf. Human Factors Comput. Syst., 2015, pp. 289?298.

    [7] N. Elmqvist, P. Dragicevic, and J. Fekete, ?Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation,? IEEE Trans. Vis. Comput. Graph., vol. 14, no. 6, pp. 1539? 1148, Nov./Dec. 2008.

    [8] D. Archambault and H. C. Purchase, ?Can animation support the visualization of dynamic graphs?? Inf. Sci., vol. 330, pp. 495?509, 2016.

    [9] B. Tversky, J. B. Morrison, and M. Betrancourt, ?Animation: Can it facilitate?? Int. J. Human-Comput. Studies, vol. 57, no. 4, pp. 247? 262, 2002.

    [10] S. Yantis, ?Multielement visual tracking: Attention and perceptual organization,? Cogn. Psychology, vol. 24, no. 3, pp. 295?340, 1992.

    [11] S. L. Franconeri, J. Y. Lin, J. T. Enns, Z. W. Pylyshyn, and B. Fisher, ?Evidence against a speed limit in multiple-object tracking,? Psychonomic Bulletin Rev., vol. 15, no. 4, pp. 802?808, 2008.

    [12] C. Friedrich and M. E. Houle, ?Graph drawing in motion II,? in Proc. 9th Int. Symp. Graph Drawing, 2001, pp. 220?231.

    [13] K.-P. Yee, D. Fisher, R. Dhamija, and M. Hearst, ?Animated exploration of dynamic graphs with radial layout,? in Proc. IEEE Symp. Inf. Vis., 2001, pp. 43?50.

    [14] J. Lasseter, ?Principles of traditional animation applied to 3D computer animation,? in Proc. 14th Annu. Conf. Comput. Graph. Interactive Techn., 1987, pp. 35?44.

    [15] S. L. Franconeri, Z. W. Pylyshyn, and B. J. Scholl, ?A simple proximity heuristic allows tracking of multiple objects through occlusion,? Attention Perception Psychophysics, vol. 74, no. 4, pp. 691?702, 2012.

    [16] P. Jolicoeur, S. Ullman, and M. Mackay, ?Curve tracing: A possible basic operation in the perception of spatial relations,? Memory Cognition, vol. 14, no. 2, pp. 129?140, 1986.

    [17] Z. W. Pylyshyn and R. W. Storm, ?Tracking multiple independent targets: Evidence for a parallel tracking mechanism,? Spatial Vis., vol. 3, no. 3, pp. 179?197, 1988.

    [18] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang, ?Vector field editing and periodic orbit extraction using morse decomposition,? IEEE Trans. Vis. Comput. Graph., vol. 13, no. 4, pp. 769?785, Jul./Aug. 2007.

    [19] H. Theisel, ?Designing 2D vector fields of arbitrary topology,? Comput. Graph. Forum, vol. 21, no. 3, pp. 595?604, 2002.

    [20] E. Zhang, K. Mischaikow, and G. Turk, ?Vector field design on surfaces,? ACM Trans. Graph., vol. 25, no. 4, pp. 1294?1326, 2006.

    [21] S. E. Palmer, Vision Science: Photons to Phenomenology. Cambridge, MA, USA: MIT Press, 1999.

    [22] M. Wattenberg and J. Kriss, ?Designing for social data analysis,? IEEE Trans. Vis. Comput. Graph., vol. 12, no. 4, pp. 549?557, Jul./ Aug. 2006.

    [23] P. Baudisch et al., ?Phosphor: Explaining transitions in the user interface using afterglow effects,? in Proc. 19th Annu. ACM Symp. User Interface Softw. Technol., 2006, pp. 169?178.

    [24] B. S. Hasler, B. Kersten, and J. Sweller, ?Learner control, cognitive load and instructional animation,? Appl. Cogn. Psychology, vol. 21, no. 6, pp. 713?729, 2007.

    [25] P. Dragicevic, S. Huot, and F. Chevalier, ?Gliimpse: Animating from markup code to rendered documents and vice versa,? in Proc. 24th Annu. ACM Symp. User Interface Softw. Technol., 2011, pp. 257?262.

    [26] C. Schlienger, P. Dragicevic, C. Ollagnon, and S. Chatty, ?Les transitions visuelles differenciees: Principes et applications,? in Proc. 18th Conf. L?Interaction Homme-Mach., 2006, pp. 59?66.

    [27] J. Popovic, S. M. Seitz, and M. Erdmann, ?Motion sketching for control of rigid-body simulations,? ACM Trans. Graph., vol. 22, no. 4, pp. 1034?1054, 2003.

    [28] M. Gleicher, ?Motion path editing,? in Proc. Symp. Interactive 3D Graph., 2001, pp. 195?202.

    [29] R. M. Baecker, ?Picture-driven animation,? in Proc. Spring Joint Comput. Conf., 1969, pp. 273?288.

    [30] R. C. Davis, B. Colwell, and J. A. Landay, ?K-sketch: A ?kinetic? sketch pad for novice animators,? in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2008, pp. 413?422.

    [31] R. H. Kazi, F. Chevalier, T. Grossman, S. Zhao, and G. Fitzmaurice, ?Draco: Bringing life to illustrations with kinetic textures,? in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2014, pp. 351?360.

    [32] C. S. Feria, ?Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors,? Attention Perception Psychophysics, vol. 75, no. 1, pp. 53?67, 2013.

    [33] G. Liu et al., ?Multiple-object tracking is based on scene, not retinal, coordinates,? J. Exp. Psychology: Human Perception Perform., vol. 31, no. 2, 2005, Art. no. 235.

    [34] T. S. Horowitz, S. B. Klieger, D. E. Fencsik, K. K. Yang, G. A. Alvarez, and J. M. Wolfe, ?Tracking unique objects,? Perception Psychophysics, vol. 69, no. 2, pp. 172?184, 2007.

    [35] Z. W. Pylyshyn, ?Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets,? Vis. Cognition, vol. 14, no. 2, pp. 175?198, 2006.

    [36] G. A. Alvarez and S. L. Franconeri, ?How many objects can you track? Evidence for a resource-limited attentive tracking mechanism,? J. Vis., vol. 7, no. 13, pp. 14?14, 2007.

    [37] S. Franconeri, S. Jonathan, and J. Scimeca, ?Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity,? Psychological Sci., vol. 21, no. 7, pp. 920?925, 2010.

    [38] W. M. Shim, G. A. Alvarez, and Y. V. Jiang, ?Spatial separation between targets constrains maintenance of attention on multiple objects,? Psychonomic Bulletin Rev., vol. 15, no. 2, pp. 390?397, 2008.

    [39] B. J. Scholl and Z. W. Pylyshyn, ?Tracking multiple items through occlusion: Clues to visual objecthood,? Cogn. Psychology, vol. 38, no. 2, pp. 259?290, 1999.

    [40] F. de Goes, M. Desbrun, and Y. Tong, ?Vector field processing on triangle meshes,? in Proc. SIGGRAPH Asia Courses, 2015, Art. no. 17.

    [41] M. Fisher, P. Schroder, M. Desbrun, and H. Hoppe, ?Design of tan- ? gent vector fields,? ACM Trans. Graph., vol. 26, no. 3, 2007, Art. no. 56.

    [42] G. Chen, V. Kwatra, L.-Y. Wei, C. D. Hansen, and E. Zhang, ?Design of 2D time-varying vector fields,? IEEE Trans. Vis. Comput. Graph., vol. 18, no. 10, pp. 1717?1730, Oct. 2012.

    [43] N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva, ?Vector field K-means: Clustering trajectories by fitting multiple vector fields,? in Proc. 15th Eurographics Conf. Vis., 2013, pp. 201?210.

    [44] H. Bhatia et al., ?Flow visualization with quantified spatial and temporal errors using edge maps,? IEEE Trans. Vis. Comput. Graph., vol. 18, no. 9, pp. 1383?1396, Sep. 2012.

    [45] P. Simonetto, D. Archambault, and C. Scheidegger, ?A simple approach for boundary improvement of Euler diagrams,? IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 678?687, Jan. 2016.

    [46] J. R. Shewchuk, ?An introduction to the conjugate gradient method without the agonizing pain,? Tech. Rep. CMU-CS-94-125, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, 1994.

    [47] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. New York, NY, USA: Cambridge Univ. Press, 2007.

    [48] G. E. Farin, Curves and Surfaces for CAGD: A Practical Guide, 5th ed. San Francisco, CA, USA: Morgan Kaufmann, 2002.

    [49] R. A. Fisher, ?The use of multiple measurements in taxonomic problems,? Ann. Eugenics, vol. 7, no. 2, pp. 179?188, 1936.

    [50] J. E. Da Silva, J. M. De Sa, and J. Jossinet, ?Classification of breast tissue by electrical impedance spectroscopy,? Med. Biol. Eng. Comput., vol. 38, no. 1, pp. 26?30, 2000.

    [51] Y. Zheng et al., ?TelcoFlow: Visual exploration of collective behaviors based on telco data,? in Proc. IEEE Int. Conf. Big Data, 2016, pp. 843?852.


ACM Digital Library Publication:



Overview Page:



Submit a story:

If you would like to submit a story about this presentation, please contact us: historyarchives@siggraph.org