
Machine Learning
& Neural Networks

Rajesh Sharma @xarmalarma

Mia Tang @miamiamia0103



Thu Dec 14 2023 
SIGGRAPH ASIA 



Course Materials - Slides and Notebooks
http://bit.ly/3qm76Fg



Hour 1 - BASICS, NEURAL NETWORKS, MATH
Learning Outcome:
    After this hour you should be able to:

● Define machine learning
● Do preliminary data analysis
● Understand the general framework for ML development
● Understand Regression and Classification
● Describe a Neural Network and associated terms
● Know how to minimize loss via Gradient Descent
● Gain a probabilistic intuition for Log-likelihood, MSE

-- HOUR 1 TOPICS -- 
❖ • Introduction and Course Overview
❖ • Software setup for Hands-on programming
❖ • What is Machine Learning, What are Neural Networks?
❖ • Framework for Learning: Theory, Intuition, Practice
❖ • Machine Learning Model vs Theoretical Model Example
❖ • Data Analysis: Example Housing Prices
❖ • General Framework for ML development, Training & Inference
❖ • Example: Regression with Neural Networks
❖ • Math: Loss Minimization, Gradient Descent, MLE, Log-Likelihood
❖ • Classification: Example: Flower Type Identification

Hour 1.5 - NEURAL NETWORKS
Learning Outcome:
    After this hour you should be able to:

● Understand different kinds of Neural Networks
● Explain supervised learning for images

-- HOUR 1.5  TOPICS -- 
❖ Types of Neural Networks
❖ Example: AutoEncoder, Application to Denoising
❖ Example: Convolutional Neural Network
❖ Example: Variational Autoencoder
❖ Latent Space Examination
❖ Example: Generative Adversarial Network

C
ou

rse D
etails

Hour 2 GENERATIVE MODELS - TRANSFORMERS
Learning Outcome:
    After this hour you should be able to:

● Understand 'attention'
● Learn what is Word2Vec and what are Word-Embeddings
● Explain the basic Transformer architecture
● Describe how Chat-GPT like models work

-- HOUR 2 TOPICS -- 
❖ Attention mechanism
❖ Transformer Architecture
❖ Transformer → Chat
❖ Fine Tuning
❖ Reinforcement Learning from Human Feedback (RLHF)

Hour 3 OTHER GENERATIVE MODELS 
Learning Outcome:
    After this hour you should be able to:

● Understand NeRFs and Gaussian splatting for novel view synthesis
● Explain the diffusion model and how these are used for image generation
● Realize the ethical and legal issues in AI and ML
● Separate hype from reality
● Seek additional resources for further learning

-- HOUR 4 TOPICS -- 
❖ Gaussian Splatting
❖ NeRFs
❖ Diffusion
❖ Ethical Issues in Machine Learning & AI
❖ Summary and Next Steps for Additional Learning



ML/AI is already everywhere

Smartphones: voice assistant, identity, battery life 
Email/Text: spam filters, autocomplete, grammar
Driving: vision, lidar, self-driving
Photography: enhancement, geometry capture
Navigation: live view, directions, mapping
Banking: identity, fraud detection, credit scoring
Agriculture: watering, fertilizer, weed control
e-Commerce: recommendations, adtech, translation 
Entertainment: recommendations, CGI, SORA, Diffusion
Coding/Chat: ChatGPT, Bard, Gemini, Claude, LLama



Computer Graphics Applications

★ Scheduling Optimization
★ Character AI 
★ Style Transfer
★ Slow Motion
★ Up-Res 
★ Photogrammetry
★ Rendering

★ Denoising
★ Story Sentiment
★ Rough to Fine
★ Body Tracking
★ Image Generation
★ Simulation
★ Materials/PBR



Why now?

Enormous data 



Why now?

Faster Compute (GPU)
Enormous data 



Why now?

Internet & Cloud
Faster Compute (GPU)
Enormous data



Why now?

Advanced Research 
New Algorithms (Models) 

Novel Applications



What is it?

Use and development of computer systems 
that are able to learn and adapt without 
following explicit instructions by using 
algorithms and statistical models to analyze 
and draw inferences from patterns in data.



Machine Learning

Use and development of 
-- computer systems that are able to learn and adapt 
-- without following explicit instructions 
-- by using algorithms and statistical models
-- to analyze and draw inferences
-- from patterns in data



Machine Learning

Some 
Complex 
Process



Machine Learning

BLACK BOXInputs Outputs

Some 
Complex 
Process



Machine Learning

Inputs Outputs

Some 
Complex 
Process

A
pp

ro
xi

m
at

io
n



Machine Learning

Inputs Outputs

Some 
Complex 
Process

Model



Example: Measuring Gravity
Measuring 

Gravity

Experimentation & Data Collection

● Drop ball from different heights
● Measure time for drop
● Repeat experiment multiple times



Example: Measuring Gravity

Measuring 
Gravity

Experiment and Data Collection

● Drop ball from different heights
● Measure time for drop
● Repeat experiment multiple times



Example: Measuring Gravity
Measuring 

Gravity

TIM
E

DISTANCE



Example: Measuring Gravity
Measuring 

Gravity

dist = 15*t - 11



Example (Linear Regression)



Example (Regression)



Actual: yi
Prediction: 

ŷ = ax + b 
Error: |yi-ŷi|

Total Squared Error: 
∑ (yi-ŷi)

2, for i=(1, n)

Minimize Total Squared Error:
𝐸rr(a,𝑏) = ∑(𝑦𝑖−a𝑥𝑖−𝑏)2

(a,𝑏) are the parameters (weights)

yi

ŷi
|yi-ŷi|

Example (Regression) - Sum of least squares



Prediction: 
ŷ = ax + b 

Actual: yi

Error: |yi-ŷi|

Total Squared Error: 
∑ (yi-ŷi)

2, for i=(1, n)

Minimize Total Squared Error:
𝐸rr(a,𝑏) = ∑(𝑦𝑖−a𝑥𝑖−𝑏)2

(a,𝑏) are the parameters (weights)

yi

ŷi
|yi-ŷi|

Example (Regression) - Sum of least squares



Prediction: 
ŷ = ax + b 

Actual: yi

Error: |yi-ŷi|

Total Squared Error: 
∑ (yi-ŷi)

2, for i=(1, n)

Minimize Total Squared Error:
𝐸rr(a,𝑏) = ∑(𝑦𝑖−a𝑥𝑖−𝑏)2

(a,𝑏) are the parameters (weights)

yi

ŷi
|yi-ŷi|

Example (Regression) - Sum of least squares



Regression - Minimize Error (Cost) via Gradient Descent

Minimize Error:

∑(𝑦𝑖−a𝑥𝑖−𝑏)2



Regression - Minimize Error (Cost) via Gradient Descent



Regression - Minimize Error (Cost) via Gradient Descent

Minimize Cost:

∑(𝑦𝑖−a𝑥𝑖−𝑏)2



Example: Measuring Gravity
Measuring 

Gravity

t = 0.06*d - 0.7



Linear Regression - Is this Machine Learning?



Linear function as a Network & a Matrix op

Line: y = a + b*x
i1=x, i2=1, w11=b, w12=a

i1   
i2

w11
w12



Example: Measuring Gravity
Non-Linear Relationship!

Measuring 
Gravity

dist = 0.5*9.81*t*t



Example



Example

BIAS
(UNDERFIT)

VARIANCE
(OVERFIT)



Adding non-linearity via an activation function

  a



Adding complexity via a layer:



Forward Pass: Generalizing for 1-Node



Universal Approximation Theorem:
In the mathematical theory of artificial neural networks, the universal 
approximation theorem states[1] that a feed-forward network with a 
single hidden layer containing a finite number of neurons can approximate 
arbitrary well real-valued continuous functions on compact subsets of Rn.

But, No Free Lunch Theorem:

For optimization problems... if an algorithm performs well on a certain 
class of problems then it necessarily pays for that with degraded 
performance on the set of all remaining problems.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Universal_approximation_theorem#cite_note-1
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Euclidean_space




Solving the network

● Set the initial weights of the network randomly

● Make a forward pass through the network and compute output

● Compare the output with expected result and compute loss

● Change the weights by a small amount (Gradient descent via back prop)

● Repeat until desired minimization of error (cost) is achieved



Try it yourself:
○ Colab: Jupyter derived python IDE in the cloud 
○ Software and tools:

■ Python 3.x - programming
■ Tensorflow 2.1.0 - machine learning
■ Numpy - numerical mathematics, linear algebra
■ Pandas - data analysis
■ Matplotlib - plotting
■ Seaborn - advanced plotting

Files:
○ Housing.ipynb,
○ HousingRegression.ipynb, 
○ FlowerClassification.ipynb



ML Problem Solving Process:

● FRAMING:  What is observed & what answer you want to predict

● DATA COLLECTION: Collect, clean, and prepare data 

● DATA ANALYSIS: Visualize & analyze the data

● FEATURE PROCESSING: Transform raw data for better predictive input

● MODEL BUILDING: Design and build the learning algorithm 

● TRAINING: Feed data to the model and evaluate the quality of the models 

● PREDICTION: Use model to generate predictions for new data instances



ML project - process - 
apply to housing problem 1/7

● FRAMING:  what is observed & what answer you want to predict

Observed: parameters related to homes for a census block

Predict: Median home-price for the block



Housing project steps - 2/7

● DATA COLLECTION: Collect, clean, and prepare data 

Already given in a csv file: housing.csv

isna(), np.where(), dropna()



Housing project steps - 3/7

● DATA ANALYSIS: Visualize & analyze the data 

○ sns.pairplot(...)

○ data.describe()



Housing project steps - 4/7
● FEATURE PROCESSING: Transform raw data for better predictive input

-- Normalize (x-x.min())/(x.max()-x.min()) : brings data between 0 and 1

-- Standardize (x-x.mean())/x.std(): remaps to mean of 0, and std_dev of 1

-- Keep 20% for testing: 

train=data.sample(frac=0.8) 

test=data.drop(train.index)

-- Separate features (x) from labels (y): 

X_train = train.drop('median_house_value', axis=1)

Y_train = train[‘median_house_value’]



Housing project steps - 5/7
● MODEL BUILDING: Feed features to learning algorithm to build models 

(size=8)



Housing project steps - 5/7
● MODEL BUILDING: Feed features to learning algorithm to build models 

import tensorflow as tf

INPUT_SHAPE=[9]

model = tf.keras.Sequential([
    tf.keras.layers.InputLayer(INPUT_SHAPE, name="Input_Layer"),
    tf.keras.layers.Dense(32, activation='relu', name="dense_01"),
    tf.keras.layers.Dense(32, activation='relu', name="dense_02"),
    tf.keras.layers.Dense(1, name="Output_Layer")
  ])

model.compile(loss='mse',
              optimizer=tf.keras.optimizers.RMSprop(0.001),
              metrics=['mae', 'mse'])

print(model.summary())



Housing project steps - 6/7
● TRAINING: compute weights and Evaluate the quality of the models 

example_batch = x_train[:10]
example_result = model.predict(example_batch)
print(example_result)

history = model.fit(x_train, y_train,
                    batch_size=32,
                    epochs=10,
                    validation_split=0.2,
                    verbose=1)

# Plot training & validation loss values
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validate'], loc='upper left')
plt.show()

loss, mae, mse = model.evaluate(x_test, y_test, verbose=2)
print("Loss:", loss, " mae:", mae, " mse:", mse)



Summarizing

● Given: Features (X, Attributes), Output (Y, Labels, Ground Truth): Y=f(X)

● Network (Model)

● Loss Function (Metric, Cost)

● Activation Function (adds non-linearity, Ex: sigmoid, ReLU)

● Training (fit, Optimization to minimize Loss Function)

● Evaluate (performance, correctness)

● Predict (Inference, on new data)



Housing project steps - 7/7
● PREDICTION: Use model to generate predictions for new data instances 

p_test = model.predict(x_test)
print(p_test, y_test)

a = plt.axes(aspect='equal')
plt.scatter(y_test, p_test)
plt.xlabel('True Values')
plt.ylabel('Predictions')
lims = [0, 1]
plt.xlim(lims)
plt.ylim(lims)
plt.plot(lims, lims)
plt.show()

error = p_test.flatten() - y_test
print(error)
plt.hist(error, bins = 25)
plt.xlabel("Prediction Error")
plt.ylabel("Count")
plt.show()



Housing project steps - Improving Results
● Tune  hyperparameters

○ Increase/Decrease # of epochs

○ Try different batch sizes: 16 

○ Try different learning rates (0.01, 0.000001)

○ Try different optimizers (‘adam’)  

○ Try different loss functions (‘mse’, ‘mae’) 

○ Make the network deeper (layers) or denser (nodes per layer)



Flower Project - Classification

● FRAMING:  what is observed & what answer you want to predict

○ Given data: about 3 species of iris flowers

● DATA COLLECTION: Collect, clean, and prepare data

● DATA ANALYSIS: Visualize & analyze the data

● FEATURE PROCESSING: Transform raw data for better predictive input:

● MODEL BUILDING: Feed features to learning algorithm to build models 

● TRAINING: Evaluate the quality of the models 

● PREDICTION: Use model to generate predictions for new data instances



Flower Project - Classification



Flower Classification: get data ready

120    4  setosa  versicolor  virginica
0  6.4  2.8     5.6         2.2          2
1  5.0  2.3     3.3         1.0          1
2  4.9  2.5     4.5         1.7          2
3  4.9  3.1     1.5         0.1          0
4  5.7  3.8     1.7         0.3          0

Given: Features about Iris: sepal length, sepal width, petal length, petal width
Task: Classify into kind of Iris: setosa (0), versicolor (1), or virginica (2)

● Plot data

● Split data for training and testing

● Normalize training data



Flowers - Classification - get data ready

#----------DATA READING
filename = 'https://storage.googleapis.com/download.tensorflow.org/data/iris_training.csv'

# read file

csv_data = pd.read_csv(filename, sep= ',')

print(csv_data.head())

column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']

class_names = ['Iris setosa', 'Iris versicolor' , 'Iris virginica']

#----------DATA CLEANUP

csv_data.columns = column_names # new_header --set the header row as the data header

print(csv_data.head())

# look at simple data statistics

print(csv_data.describe().transpose())

# plot of all features against each other

sns.pairplot(csv_data)



Flowers - Classification - get data ready
 #----------TRAIN/TEST SPLIT
train_data = csv_data.sample(frac= 0.8) # take 80% randomly from the data for training

test_data = csv_data.drop(train_data.index) # reserve the rest for testing

# separate out the y (results) from x (features) for training

x_train = train_data.drop( 'species', axis=1)

y_train = train_data[ 'species']

# normalize the training data

x_train = (x_train-x_train. min())/(x_train.max()-x_train.min())

# separate out the y (results) from x (features) testing

x_test = test_data.drop( 'species', axis=1)

y_test = test_data[ 'species']

# normalize the test data

x_test = (x_test-x_test. min())/(x_test.max()-x_test.min())

print('Training Data\n' , x_train.describe().transpose())

print('Test Data\n', x_test.describe().transpose())



Flowers - Classification steps - model

#--------MODEL BUILDING

num_params = len(x_train.keys())

print(num_params)

model = tf.keras.Sequential([

   tf.keras.layers.InputLayer([num_params], name= "Input_Layer"),

   tf.keras.layers.Dense( 32, activation='relu', name="dense_01"),

   tf.keras.layers.Dense( 32, activation='relu', name="dense_02"),

   # 1 node in the output for the median_house_vale

   tf.keras.layers.Dense( 3, name="Output_Layer")

 ])

model.compile(optimizer=tf.keras.optimizers.RMSprop( 0.001),

             # loss function to minimize

             loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits= True),

             # list of metrics to monitor

             metrics=[ 'acc',])

model.summary()



Flowers - Classification Log Likelihood
Note:  Loss Function: SparseCategoricalCrossentropy(from_logits= True)

● Instead of a value, it returns a ‘LOG LIKELIHOOD’ for each output class
● Which we convert into a probability for each output class
● We take the class with the highest probability as the predicted class

Log Likelihood: 
      class-A class-B class-C
 [ 0.02669345  0.03092438 -0.01683718 ]

Convert to probabilites (using softmax function) 
 [ 0.13765042   0.739082   0.12326758 ]
 

Output class: B (class with the maximum probability)



Flowers - Classification - train and test
# Fit/TRAIN model on training data

history = model.fit(x_train, y_train,

                   batch_size= 4,

                   epochs= 10,

                   validation_split= 0.2,

                   verbose= 1)

#--------MONITOR

# Plot training & validation loss values

fig = plt.figure(figsize=( 12,9))

plt.plot(history.history[ 'loss'])

plt.plot(history.history[ 'val_loss'])

plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Validate'], loc='upper left')

plt.show()



Classification - Evaluation - Confusion Matrix

positive negative

positive TRUE 
POSITIVE

FALSE
POSITIVE

negative FALSE 
NEGATIVE

TRUE 
NEGATIVE

P
redicted Value

Actual Value



Classification - Evaluation - Confusion Matrix*



Classification - Evaluation - Confusion Matrix

# plot the confusion matrix as heatmap

sns.heatmap(tf.math.confusion_matrix(y_test,

            p_test_class), cmap="Blues"        

            annot=True)



Probability & Statistics: Normal Distribution



Probability & Statistics: Normal Distribution



MSE ---> Log Likelihood
Linear Regression Model

where  
This means that each       is normally distributed around                      with 
variance      .
Probability Density Function (PDF) for a normal distribution                  is:

66



Prediction: ŷ = ax + b 

Actual: yi

Error: |yi-ŷi|

yi

ŷi
|yi-ŷi|

Regression → Maximum Likelihood Estimation

predicted actual



MSE ---> Log Likelihood

68



MSE ---> Log Likelihood

69



MSE ---> Log Likelihood

70



MSE ---> Log Likelihood

71



MSE ---> Log Likelihood

72
Minimizing MSE = Maximizing Log Likelihood!!



Classification: Choose Bernoulli Distribution



Classification: Choose Bernoulli Distribution



Classification: Choose Bernoulli Distribution



Information Theory View

Entropy: Measure of uncertainty (surprise)



Information Theory View

Entropy: Measure of uncertainty (surprise)



Information Theory View

Cross-Entropy: Difference between distributions 



KL-Divergence

Cross-Entropy: Actual (P) vs Predicted (Q)



Machine Learning
& Neural Networks

Neural Networks



Autoencoder
For regression, we had a fully-connected network, output layer size=1

(size=8)



Autoencoder



Autoencoder (Conceptual)



Autoencoder

Original Input Latent Representation Reconstructed Output

ENCODER DECODER

x E(x) l D(l) o



Autoencoder - results

Compression Factor: 28x28/32 ~ 25X



Adversarial Attack



Application: Image Denoising



Noisy image.....<similar image>.....Clean image



Noisy image.....<similar image>.....Clean image

● If we have a set of noisy images and, a set of 
corresponding clean images, 

● We can train our network to recover
○ Clean images from noisy images

● How 
○ By setting Clean image as the ground truth,
○ the Noisy image as input and,
○ the loss function as the difference btwn the two



Don’t have a noisy version?
   
● Take a clean image 
● Add synthetic noise to it  (Synthetic Data)



But first, we need some more Engineering!
   
● Take a look at DenoiserCNN.ipynb

○ --tensorflow data sets and pipeline
○ --addNoise
○ --extractPatches  



Other things you can try

def saturate(original, factor=1.5):

   saturated = tf.image.adjust_saturation(original, factor)

   # return both the saturated and the normal image

   tensor_tuple = (saturated, original)

   return tensor_tuple 

def downres(original):

   scaled_down = tf.image.resize(original, size=[ 100,100], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

   downres = tf.image.resize(scaled_down, size=[PATCH_HEIGHT,PATCH_WIDTH],               

                                          method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

   # return both the downres'd and the normal image

   tensor_tuple = (downres, original)

   return tensor_tuple 



Issues with basic MLP & Autoencoder

● Too many connections!
● Position, Orientation, and Scale dependent
● Hard to operate on small patches
 



Convolutional Neural Network (CNN)



Convolution: apply a kernel to pixels



CNN: Learn the kernels!

https://github.com/vdumoulin/conv_arithmetic



Convolutional Neural Network (CNN)



Convolutional Neural Network (CNN)



CNN details (Homework Reading)

CNN Arithmetic:
https://arxiv.org/pdf/1603.07285.pdf

Some animations of CNN operations:
https://github.com/vdumoulin/conv_arithmetic

https://arxiv.org/pdf/1603.07285.pdf
https://github.com/vdumoulin/conv_arithmetic


UNet/Residual Network (resnet)
   



Autoencoder - Revisited



Autoencoder - Revisited

x x

y y



Autoencoder - A variation

x x+∆x

y y+∆y
?



Latent Space



Latent Space

Z1 = X1
2 + X2

2 



Finding a matching distribution

● We have some data (X) from an unknown distribution (P).
● We try to find a known distribution (Q) posterior that is as close to (P) as possible. 
● Then we can sample from this known distribution to find the probability of a new sample.



Latent space and the input space are different!

We can treat x, y
as µ and σ of a normal distribution 



Latent space and the input space are different!

We can treat x, y
as µ and σ of a normal distribution 

● We can sample from it



Latent space and the input space are different!

We can treat x, y
as µ and σ of a normal distribution 

● We can sample from it
● Given a sample, we can tell its probability



Latent space and the input space are different!

We can treat x, y
as µ and σ of a normal distribution 

● We can sample from it
● Given a sample, we can tell its probability
● We can interpolate between samples



Variational Autoencoder

µ
x

σ ysa
m

pl
e



Latent Spaces and Embeddings

https://projector.tensorflow.org





10 Minute Break



Hour 2: Transformers, LLM, GPT



LLM - Large Language Models

Introduction to Generative Machine Learning [LLM] SOTA



LLM - Large Language Models

Introduction to Generative Machine Learning

ChatGPT Interface Demo

[LLM] SOTA



LLM - Large Language Models

User

What do meerkats 
like to eat?

Input ML Model 

Watermelons

Output 

Introduction to Generative Machine Learning [LLM] Generation



LLM - Large Language Models

User

What do meerkats 
like to eat?

Input ML Model 

Watermelons

Output 

Introduction to Generative Machine Learning [LLM] Generation



LLM - Large Language Models

User

What do meerkats 
like to eat?

Input ML Model 

Watermelons

Output 

Introduction to Generative Machine Learning [LLM] Generation



LLM - Large Language Models

User

What do meerkats 
like to eat?

Input ML Model 

Watermelons

Output 

Introduction to Generative Machine Learning [LLM] Generation



Introduction to Generative Machine Learning

https://toloka.ai/blog/history-of-llms/

[LLM] History



1967: ELIZA

Introduction to Generative Machine Learning [LLM] History



1967: ELIZA

Introduction to Generative Machine Learning [LLM] History

https://web.njit.edu/~ronkowit/eliza.html

Young Sheldon
Episode - "A Computer, a Plastic 

Pony, and a Case of Beer



Introduction to Generative Machine Learning

https://toloka.ai/blog/history-of-llms/

[LLM] History



LSTM is a type of Recurrent Neural Network

Introduction to Generative Machine Learning [LLM] History

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

input

network A

output



1997: Unrolled RNN

Introduction to Generative Machine Learning [LLM] History

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



1997: RNN Problem

Introduction to Generative Machine Learning [LLM] History

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



1997: LSTM 

Introduction to Generative Machine Learning [LLM] History

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



1997: LSTM - Long Short-Term Memory

● Remembers info over long periods 

Introduction to Generative Machine Learning [LLM] History

Hello there! I'm a little meerkat, my name is Steven. And you can 
usually find me standing on my hind legs, keeping a lookout for my 
family. We live together in large groups called 'mobs', and it's my job 
to make sure everyone is safe while they're busy digging or playing. You 
know, life in the desert can be quite an adventure! We love to bask in 
the sun, but we're always ready to dart into our burrows if danger comes 
close. Oh, and we are super curious! I often find myself nosing around, 
exploring every nook and cranny of our sandy home. We meerkats are also 
great at working together. Whether it’s finding food or taking care of 
our little pups, teamwork is our secret to a happy life. And guess what? 
We have a special way of talking to each other with chirps, barks, and 
purrs. It's like our own secret language! So, if you ever hear a bunch 
of chattering and see a group of us looking around intently, just know, 
we're having a lively chat about our day's adventures and watching out 
for each other, because that's what families do

ML Model 



1997: LSTM - Long Short-Term Memory

● Remembers info over long periods 

Introduction to Generative Machine Learning [LLM] History

Hello there! I'm a little meerkat, my name is Steven. And you can 
usually find me standing on my hind legs, keeping a lookout for my 
family. We live together in large groups called 'mobs', and it's my job 
to make sure everyone is safe while they're busy digging or playing. You 
know, life in the desert can be quite an adventure! We love to bask in 
the sun, but we're always ready to dart into our burrows if danger comes 
close. Oh, and we are super curious! I often find myself nosing around, 
exploring every nook and cranny of our sandy home. We meerkats are also 
great at working together. Whether it’s finding food or taking care of 
our little pups, teamwork is our secret to a happy life. And guess what? 
We have a special way of talking to each other with chirps, barks, and 
purrs. It's like our own secret language! So, if you ever hear a bunch 
of chattering and see a group of us looking around intently, just know, 
we're having a lively chat about our day's adventures and watching out 
for each other, because that's what families do

ML Model 



Watermelons

Output 

User

What do meerkats 
like to eat?

Input ML Model 

Introduction to Generative Machine Learning [LLM] History

RNN LSTM



Chatbots w/ Different ML Model

Introduction to Generative Machine Learning [LLM] History

https://github.com/ShrishtiHore/Conversational_Chatbot_using_LSTMhttps://hub.packtpub.com/build-and-train-rnn-chatbot-using-tensorflow/

Why haven’t we heard of these 
AI-powered Chatbots? 



Watermelons

Output 

User

What do meerkats 
like to eat?

Input ML Model 

Introduction to Generative Machine Learning [LLM] History

RNN LSTM Transformer☹ ☹ 😄

Generative 
Pre-trained 
Transformer



Introduction to Generative Machine Learning

https://toloka.ai/blog/history-of-llms/

[LLM] History



Introduction to Generative Machine Learning [LLM] History

https://www.digitalinformationworld.
com/2023/01/chat-gpt-achieved-one-mi
llion-users-in.html

https://hbr.org/2022/12
/chatgpt-is-a-tipping-p
oint-for-ai



ChatGPT’s Success

Introduction to Generative Machine Learning [LLM] History

Model 
Architecture 
Advancements

Data



LLM

Introduction to Generative Machine Learning [LLM] History

Model 
Architecture 
Advancements

● Transformer
○ Word Vectors
○ Attention Mechanism
○ Residual Connections

● Text Generation
○ Predict next token

● RLHF



Transformer 

Introduction to Generative Machine Learning [Transformer] Theory

Transformers



Transformer Architecture

Introduction to Generative Machine Learning [Transformer] Theory

Simon J.D. Prince (2023). Understanding Deep Learning

I’m an abstract 
representation!



Transformer - Origin
Yeah! It was such 
a good movie!

Did you see the 
new Transformers?

Introduction to Generative Machine Learning [Transformer] Theory



Transformer - Parallel Neural Networks

Introduction to Generative Machine Learning [Transformer] Theory

Simon J.D. Prince (2023). Understanding Deep Learning

Parallel neural 
networks



Processing

Introduction to Generative Machine Learning [Transformer] Theory

Simon J.D. Prince (2023). Understanding Deep Learning

Parallel 
Processing

Sequential 
Processing



Transformer - Attention

Multi-head
self-attention

Introduction to Generative Machine Learning [Transformer] Theory

Simon J.D. Prince (2023). Understanding Deep Learning



Introduction to Generative Machine Learning [Transformer] Theory

Paying Attention



How do we work with raw text

We want meaningful numerical representation of text. 

“Today is a great 
day to learn about 
generative AI.” 

Numbers

Introduction to Generative Machine Learning [Transformer] Theory

?

raw text input meaningful 
representation



Introduction to Generative Machine Learning [Transformer] Theory

Introducing Tokenizer

Unknown artist

Raw Text 
Input Tokens



Types of Tokenizer: Character-based

Introduction to Generative Machine Learning [Transformer] Theory

Input: “Let’s do tokenization!”



Types of Tokenizer: Word-based

Introduction to Generative Machine Learning [Transformer] Theory

Input: “Let’s do tokenization!”



Types of Tokenizer: Subword-based

Introduction to Generative Machine Learning [Transformer] Theory

Input: “Let’s do tokenization!”



Tokens → IDs

Introduction to Generative Machine Learning [Transformer] Theory

1592 99 24 155 28

��
Vocabulary



Introduction to Generative Machine Learning [Transformer] Colab

Tokenization IRL



Tokens → IDs → Embeddings

Introduction to Generative Machine Learning [Transformer] Theory

1592 99 24 155 28

[9,55…][1242,129…] [9824,2…] [142,22…] [12,999…]

📗

Embedding = n-dimensional vectors

Learned!



Introduction to Generative Machine Learning [Transformer] Theory

Tokens → IDs → Embeddings IRL

Why embeddings?



Introduction to Generative Machine Learning [Transformer] Theory

Embedding (Word Vector) Motivation



Introduction to Generative Machine Learning [Transformer] Theory

Text vector 

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

encode(queen)=

Vocabulary: [“King”, “Queen”, “Man”, “Woman”, Child”]



Introduction to Generative Machine Learning [Transformer] Theory

Text vector with distributed weights

Learned

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

elements of a word



Word Vectors

Introduction to Generative Machine Learning [Transformer] Theory

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/



Word Vectors

Introduction to Generative Machine Learning [Transformer] Theory

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

king - man + woman = queen



https://projector.tensorflow.org/

Introduction to Generative Machine Learning [Transformer] Theory

Text as a point in space



Paying Attention

Introduction to Generative Machine Learning [Transformer] Theory

Text 
Embedding 
Vector

Our Goal



Paying Attention

Introduction to Generative Machine Learning [Transformer] Theory

? ? ? ? Attention Weights

Our Goal



Paying Attention

Introduction to Generative Machine Learning [Transformer] Theory

0.25 0.25 0.25 0.25 Uniform Attention



Paying Attention

Introduction to Generative Machine Learning [Transformer] Theory

0.10 0.40 0.10 0.40 Scaled Attention][



Paying Attention

Introduction to Generative Machine Learning [Transformer] Theory

0.10 0.40 0.10 0.40[ ]



Paying Attention to Yourself - Self-attention

Introduction to Generative Machine Learning [Transformer] Theory



Self-Attention Computation

167

Embedded 
Sequence 

W_q = torch.nn.Parameter(torch.rand(...))
W_k = torch.nn.Parameter(torch.rand(...))
W_v = torch.nn.Parameter(torch.rand(...))

Attention 
Weights

Weighted 
Sequence

Introduction to Generative Machine Learning [Transformer] Theory



Multi-head Self-attention

168

Embedded 
Sequence 

Introduction to Generative Machine Learning [Transformer] Theory



Takeaway

● Tokenization: text → tokens
● Embedding: n-dim word vector
● Self-attention computation

Introduction to Generative Machine Learning [Transformer] Theory



Positional Encoding

Introduction to Generative Machine Learning [Transformer] Theory

Meerkats love watermelons.

Watermelons love meerkats.



Transformer - Residual Connection

Residual Connection Residual Connection

Introduction to Generative Machine Learning [Transformer] Theory

Simon J.D. Prince (2023). Understanding Deep Learning



Input Output Some Layers

Introduction to Generative Machine Learning [Residual] Motivation



Input Output A LOT MORE Layers

Introduction to Generative Machine Learning [Residual] Motivation



Shattered Gradient Problem 

As depth increases, gradients in standard 
feedforward networks increasingly resemble 
white noise.

Introduction to Generative Machine Learning [Residual] Motivation



Shattered Gradient Problem 

Balduzzi, D., Frean, M., Leary, L., et al. (2018). The shattered gradients problem

Introduction to Generative Machine Learning [Residual] Motivation



Residual Connections 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory

We are lost!



More layers ≠ better results

He et al. (2015) Deep Residual Learning for Image Recognition

Deeper

Shallower

Introduction to Generative Machine Learning [Residual] Motivation

# of Errors

# of Iterations



Residual Connection 

Introduction to Generative Machine Learning [Residual] Theory



Sequential Connection 

Introduction to Generative Machine Learning [Residual] Theory



Sequential Connection 

Introduction to Generative Machine Learning [Residual] Theory



Residual Connection 

Introduction to Generative Machine Learning [Residual] Theory



Residual Connection 

Introduction to Generative Machine Learning [Residual] Theory



Residual Connections 

Simon J.D. Prince (2023). Understanding Deep Learning

= weights & biases 

Introduction to Generative Machine Learning [Residual] Theory



Residual Connections 

= weights & biases 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

= weights & biases 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory

Input Transf. WeightsIntermediate



Residual Connections 

= weights & biases 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

= weights & biases 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

= weights & biases 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

Woah! So 
many!

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory



Residual Connections 

Introduction to Generative Machine Learning

Simon J.D. Prince (2023). Understanding Deep Learning

[Residual] Theory

Thank you! 
Now we can 

find our way.



Residual Network 

Equation Diagram from Simon J.D. Prince (2023). Understanding Deep Learning. MIT Press.

RNN - Theory

= output

Residual connections 
suffer less from 
gradient problems. 

Takeaway

Introduction to Generative Machine Learning [Residual] Theory



Input Output A LOT MORE Layers

What else 
can we do 
for bad 

gradients? 

Introduction to Generative Machine Learning [Residual] Theory



Batch Normalization
torch.nn.BatchNorm2d(num_features,…)

Introduction to Generative Machine Learning [Residual] Theory



Batch Normalization
torch.nn.BatchNorm2d(num_features,…)

● Reduce shattered 
gradients 

● Stable forward 
propagation

● Regularization

Introduction to Generative Machine Learning [Residual] Theory



ResNet

● Batch Normalization
● Residual Connection

this 
model 
kinda 
wild

Introduction to Generative Machine Learning [Residual] Example



ResNet 

He et al. (2015) Deep Residual Learning for Image Recognition

Introduction to Generative Machine Learning [Residual] Motivation

Deeper

Shallower

# of Errors

# of Iterations



Transformer - LayerNorm

LayerNormLayerNorm

Introduction to Generative Machine Learning [Transformer] Theory

Simon J.D. Prince (2023). Understanding Deep Learning



Layer Normalization
torch.nn.LayerNorm(normalized_shape,…)

Introduction to Generative Machine Learning [Transformer] Theory

● Reduce shattered 
gradients 

● Stable forward 
propagation



Transformer Architecture

Introduction to Generative Machine Learning [Transformer] Theory

Simon J.D. Prince (2023). Understanding Deep Learning



LLM

Introduction to Generative Machine Learning [LLM] Summary

Model 
Architecture 
Advancements

● Transformer
○ Word Vectors
○ Attention Mechanism
○ Residual Connections

● Text Generation
○ Predict next token

● RLHF



LLM - Large Language Models

User

What do meerkats 
like to eat?

Input ML Model 

Meerkats love to 
eat watermelons 

when they …
Output 

Introduction to Generative Machine Learning [LLM] Generation



Introduction to Generative Machine Learning [LLM] Generation



Can you 
finish my 
sentence 
with one 
word?

Okay! 

Introduction to Generative Machine Learning [LLM] Generation



Introduction to Generative Machine Learning [LLM] Generation

What do meerkats 
like to eat?

Watermelon
 
Sun 

Sleep 

Entire 
Vocab

0.9
 
0.05

0.05 

P📗



Introduction to Generative Machine Learning [LLM] Generation



Introduction to Generative Machine Learning [LLM] Generation



Word Selection

- Greedy Search
- Beam Search
- Top-K Sampling
- … 

Introduction to Generative Machine Learning [LLM] Generation



Introduction to Generative Machine Learning [LLM] Generation



Introduction to Generative Machine Learning [LLM] Generation



Input Output A LOT MORE Layers

Can we capture 
the entire 

distribution?

Introduction to Generative Machine Learning [Transformer] LLM

��



Introduction to Generative Machine Learning [LLM] Distribution

Capturing Distribution

Our goal: 
Generate fish that 
looks and behaves 
like it belongs to 
this river



Introduction to Generative Machine Learning [LLM] Distribution

Capturing Distribution

Capture  fish from the river



Introduction to Generative Machine Learning [LLM] Distribution

Capturing Distribution



Input Output A LOT MORE Layers

We are trying!

Introduction to Generative Machine Learning [LLM] Distribution



Fine-tuning

Introduction to Generative Machine Learning [LLM] Finetune



Introduction to Generative Machine Learning [LLM] Finetune



Introduction to Generative Machine Learning [LLM] Finetune



Introduction to Generative Machine Learning [LLM] Finetune



Introduction to Generative Machine Learning [LLM] Finetune



Introduction to Generative Machine Learning [LLM] Finetune



Introduction to Generative Machine Learning [LLM] Finetune



Reinforcement Learning w/ Human Feedback

Introduction to Generative Machine Learning [LLM] RLHF



Introduction to Generative Machine Learning [LLM] RLHF



Introduction to Generative Machine Learning [LLM] RLHF



Introduction to Generative Machine Learning [LLM] RLHF



Introduction to Generative Machine Learning [LLM] Reward

Reward Model Fine-tuning



10 Minute Break



Machine Learning
& Neural Networks

Rajesh Sharma
Mia Tang

Rajesh Sharma @xarmalarma

Mia Tang @miamiamia0103



3D Gaussian Splatting



Why should I care?

It’s useful! It’s used!



What’s Splatting?

https://en.wikipedia.org/wiki/Texture_splatting



What’s 3D Gaussian?



Gaussian Splatting

- A rasterization technique
- analogous to triangle rasterization in 

computer graphics
- Triangles → Gaussians

Images from https://huggingface.co/blog/gaussian-splatting



Gaussian Splatting Definition



Gaussian Splatting

3 Gaussians



Gaussian Splatting

7 Million Gaussians



Step One: Structure From Motion

- Structure from Motion 
(SfM) method

- estimate a point cloud 
from a set of images



Step Two: Point Cloud → Gaussians

/ each point

(position, color)
(alpha, covariance) 🤖



Gaussian Splatting Training

1. Rasterize the gaussians to an image using differentiable 
gaussian rasterization 

2. Calculate the loss based on the difference between the 
rasterized image and ground truth image

3. Adjust the gaussian parameters according to the loss
4. Apply automated densification and pruning
5. Clone and split gaussians when needed



How to render a gaussian splat?

1. Project each gaussian into 2D from the camera 
perspective.

2. Sort the gaussians by depth.
3. For each pixel, iterate over each gaussian 

front-to-back, blending them together.

Fast Differentiable



NeRF



NeRF 



NeRF 
Input: Set of images containing the object from 
different viewpoints 

- images must rotate about a fixed origin
- need to know the depth value of pixels
- lighting should remain constant between scenes



NeRF Training 
We optimize a function that can describe the object from every view!



NeRF Training 
We optimize a function that can describe the object from every view!

location (x, y, z) and 
viewing direction (Θ, ɸ)

color (R,G,B) and 
volume density (𝝈)



NeRF Training 



NeRF Training 

● Overfit - good only for that once scene
● Small Network - only need a small MLP
● Positional Encoding - sin/cos, hash-grid
● Entire process needs to be differentiable



252



Diffusion Model (GLIDE)



Diffusion - Forward: Image to Noise



Diffusion - Backward: Noise to Image



Training diffusion models

256

• We predict the noise added and use MSE loss between predicted 
noise and the actual noise added to the image

DDPM Training Loop



Sampling diffusion models

257

DDPM Sampling Loop



Using diffusion models without code!

258comfyUI



259

DALL.E 2



260

DALL.E 2 (CLIP + GLIDE)

CLIP (Contrastive Language-Image Pre-training):

    Associates text with images
    Trained on millions of captioned images. 

GLIDE (Diffusion Model):

    Generate images     

Transformer based TEXT CONDITIONING

    Generate images based on Text Encodings
    



261

DALL.E 2 (CLIP)

1. Encode Images and Captions

2. Compute cosine similarity of each (image, text) pair

3. Contrastive Loss: Maximize similarity, minimize dissimilarity



262

DALL.E 2 (CLIP)



263

DALL.E 2 (GLIDE)



Ethical Issues in AI/ML

-- Bias and Fairness: can perpetuate and amplify biases 
-- Privacy and Security: private data, misuse
-- Job Displacement: forced to adapt
-- Responsibility and Accountability: who is responsible 
-- Transparency & Explainability: distrust and skepticism
-- Exacerbate inequalities: benefits don’t spread widely



Bias & Fairness

Source: Wold Economic Forum



Summary

-- Basics: data, fully connected, regression, classification
-- Autoencoder: compression, latent space
-- CNN: building block for image-based training
-- Transformer: time series, language, text
-- Unet, resNet: CNN-like with better detail transfer
-- Variational AutoEncoder: Generative:(mean,variance)
-- NeRF, Gaussian Splats: Novel-View Synthesis
-- Diffusion: Generative: noise→sample



Summary (Practice)

-- Bias vs Variance: Overtraining, Undertraining
-- Data: Lots of it, augmentation, un-biased 
-- Hyperparameters: layers, nodes, optimizer, L-Rate
-- Loss function: logits (log-likelihood), L2, L1
-- Training: epochs, batches, tfds, plotting
-- Distributions: find a closely matching distribution
-- Work like a scientist: 

Hypothesis, experiment, observe, record, change: 
Repeat 



Summary (things we did not cover)

-- Cloud-based: Training and Deployment, ML-ops
-- Local: clusters, machines, environment
-- Tensorboard: for logging, visualizations, checkpoints
-- Intermediate layer visualization
-- Other methods: Random Forests, XGBoost
-- Reinforcement Learning: Agent, State, Env, Reward 
-- More theory



What we covered today

MLOps: Overview, Definition, and Architecture, Kreuzberger, Kühl, and Hirschl 



Careers

MLOps: Overview, Definition, and Architecture, 
Kreuzberger, Kühl, and Hirschl 



Jobs and Roles

MLOps: Overview, Definition, and Architecture, 
Kreuzberger, Kühl, and Hirschl 

ML Researcher



Where to go from here:
Deep Learning: https://www.deeplearningbook.org
and some excellent lectures to go along:
Ian Goodfellow, Yoshua Bengio and Aaron Courville

Reinforcement Learning:
Reinforcement Learning: An Introduction ****Complete Draft****

Statistical Inference: 
https://link.springer.com/book/10.1007/978-0-387-21736-9

A roadmap to reading: 
https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap

A More comprehensive list of resources: 
https://www.kdnuggets.com/2020/03/24-best-free-books-understand-machine-learning.html

Video Tutorials (3Blue1Brown):
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw/videos

https://www.deeplearningbook.org/
https://www.deeplearningbook.org/lecture_slides.html
http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap
https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap
https://www.kdnuggets.com/2020/03/24-best-free-books-understand-machine-learning.html
https://www.kdnuggets.com/2020/03/24-best-free-books-understand-machine-learning.html
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw/videos




Thank You!

Rajesh Sharma 
@xarmalarma

Mia Tang 
@miamiamia0103


