
Differentiable Simulation

STELIAN COROS, ETH Zurich
MILES MACKLIN, Nvidia
BERNHARD THOMASZEWSKI, Université de Montréal & ETH Zurich
NILS THÜREY, Technical University of Munich

Differentiable simulation is emerging as a fundamental building block for
many cutting-edge applications in computer graphics, vision and robotics,
among others. This course provides an introduction to this topic and an
overview of state-of-the-art methods in this context. Starting with the basics
of dynamic mechanical systems, we will present a general theoretical frame-
work for differentiable simulation, which we will specialize to rigid bodies,
deformable solids, and fluids. A particular focus will be on the different
alternatives for computing simulation derivatives, ranging from analytical
expressions via sensitivity analysis to reverse-mode automatic differentia-
tion. As an important step towards real-world applications, we also present
extensions to non-smooth phenomena such as frictional contact. Finally,
we will discuss different ways of integrating differentiable simulation into
machine learning frameworks.

The material covered in this course is based on the author’s own works
and experience, complemented by a state-of-the-art review of this young but
rapidly evolving field. It will be richly illustrated, annotated, and supported
by examples ranging from robotic manipulation of deformable materials
to simulation-based capture of dynamic fluids. The theoretical parts will
be accompanied by source code examples that will be made available to
participants prior to this course.

ACM Reference Format:
Stelian Coros, Miles Macklin, Bernhard Thomaszewski, and Nils Thürey.
2021. Differentiable Simulation. 1, 1 (June 2021), 1 page. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

SINGLE SENTENCE SUMMARY
This course provides an introduction to the theory and practice
of differentiable simulation of dynamic mechanical systems (rigid
bodies, deformable solids, and fluids) with applications to robotic
manipulation, parameter estimation, and fluid capture.

INTENDED AUDIENCE
This course is aimed at students and practitioners from the field
of physics-based animation who are interested to learn about the
theory and practice of differentiable simulation, and to researchers
with computer vision andmachine learning backgroundswhowould
like to leverage differentiable simulation for their applications.

PREREQUISITES
Besides a solid background knowledge in linear algebra, basic calcu-
lus, and ordinary differential equations, we also expect a working
knowledge in physics-based simulation of rigid bodies, deformable
solids, and fluids.

Authors’ addresses: Stelian Coros, ETH Zurich; Miles Macklin, Nvidia; Bernhard
Thomaszewski, Université de Montréal & ETH Zurich; Nils Thürey, Technical Univer-
sity of Munich.

2021. XXXX-XXXX/2021/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

COURSE RATIONAL
Participants will gain an understanding of the theory and practice
of differentiable simulation. This knowledge will be valuable both
for practitioners seeking to use differentiable simulation for solving
specific problems, as well as researchers interested in exploring this
emerging field.

PEDAGOGICAL INTENTIONS AND METHODS
Our approach is to provide a self-contained account of the basic the-
ory, accompanied by source code examples, while providing pointers
to the literature for advanced topics. This, we believe, will provide
participants with basic theoretical and practical understanding of
differentiable simulation, and provide directions for deepening their
knowledge as desired. If the format allows for it, we will actively
solicit questions from the audience at regular intervals.

2021-06-24 07:13 page 1 (pp. 1-1) Submission ID: 354 , Vol. 1, No. 1, Article . Publication date: June 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Course Content and Syllabus

Introduction . (10 min.)
Stelian Coros, Miles Macklin, Bernhard Thomaszewski, Nils Thürey

Differentiable Simulation Basics . (30 min.)
Stelian Coros, Bernhard Thomaszewski

Computing Simulation Derivatives . (25 min.)
Bernhard Thomaszewski, Miles Macklin

Differentiable Simulation with Frictional Contact (20 min.)
Stelian Coros, Miles Macklin

Integration with Machine Learning Frameworks (20 min.)
Nils Thürey

Break (15 min.)

Robotic Manipulation of Deformable Materials (30 min.)
Stelian Coros, Bernhard Thomaszewski

Industry-Scale Differentiable Simulation . (30 min.)
Miles Macklin

Differentiable Simulation and Deep-Learning for Fluids (30 min.)
Nils Thürey

Conclusions and Questions . (15 min.)
Stelian Coros, Miles Macklin, Bernhard Thomaszewski, Nils Thürey

1

DIFFERENTIABLE SIMULATION
BASICS
Stelian Coros, Bernhard Thomaszewski

Digital TwinPhysical World

The forward problem

The inverse problem

Traditional Simulation

input parameters 𝒑
(e.g. initial velocity)

Traditional Simulation

𝒙1𝒙2

𝒙3
𝒙9

𝒙8

𝒙4

𝒙5

𝒙6

𝒙7

A control problem

input parameters 𝒑
(e.g. initial velocity)

ෝ𝒙

A control problem

input parameters 𝒑
(e.g. initial velocity)

Control as an optimization problem:

min
𝒑

𝑂 𝒙 𝒑 , 𝒑

ෝ𝒙 𝑑𝑂

𝑑𝒑
=
𝜕𝑂

𝜕𝒙

𝑑𝒙

𝑑𝒑
+
𝜕𝑂

𝜕𝒑
Gradient:

e.g. 𝒙𝒏 − ෝ𝒙 2
2

Differentiable Simulation

input parameters 𝒑
(e.g. initial velocity)

simulation derivatives:
𝑑𝒙

𝑑𝒑

simulation output: 𝒙(𝒑)

Start from Newton’s 2nd law of motion → 𝐌 ሷ𝒙 = 𝑭(𝒙, 𝒑)

𝐌 ሷ𝒙𝑘 = 𝐹 𝒙𝑘 , 𝒑

Implicit time stepping:
𝐌 ሷ𝒙𝑘 = 𝐹 𝒙𝑘−1, 𝒑

Explicit time stepping:

Briefly, how it works – forward simulation

Use Newton’s Method to find 𝒙𝑘 such that 𝐌 ሷ𝒙𝑘 = 𝐹 𝒙𝑘 , 𝒑

where, for example, ሷ𝒙𝑘 ≈
𝒙𝑘−2𝒙𝑘−1+𝒙𝑘−2

ℎ2
, ሶ𝒙𝑘 ≈

𝒙𝑘−𝒙𝑘−1

ℎ

⋮

𝒙 =

𝒙𝟏

𝒙𝟐

⋮

𝒙𝒏

Where:
- 𝒑 is the input driving the simulation
- what we want is 𝑑𝒙

𝑑𝒑

- 𝒙 𝒑 does not have an analytic form

But:
- for any 𝒑, we compute 𝒙 𝒑 such that 𝑮 𝒙(𝒑), 𝒑 = 0

→ 𝐌 ሷ𝒙1 − 𝐹 𝒙1, 𝒑 = 0

→ 𝐌 ሷ𝒙2 − 𝐹 𝒙2, 𝒑 = 0

→ 𝐌 ሷ𝒙𝑛 − 𝐹 𝒙𝑛, 𝒑 = 0

𝑮 𝒙(𝒑), 𝒑

Simulation output:

Briefly, how it works – forward simulation

𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮

𝑑𝒑
= 𝟎

𝑑𝒙

𝑑𝒑
= −

𝜕𝑮

𝜕𝒙

−1
𝜕𝑮

𝜕𝒑

=
𝜕𝑮

𝜕𝒙

𝑑𝒙

𝑑𝒑
+
𝜕𝑮

𝜕𝒑

, ∀𝒑

𝜕𝑮

𝜕𝒙

d𝒙

d𝒑

𝜕𝑮

𝜕𝒑

𝑮k = 𝑀
𝒙𝑘 − 2𝒙𝑘−1 + 𝒙𝑘−2

ℎ2
− 𝐹 𝒙𝑘 , 𝒑

𝜕𝑮𝒊

𝜕𝒙𝒋
(how does the “F-Ma” residual at time step 𝒊 change wrt system

configuration at time step 𝒋)

Briefly, how it works – simulation derivatives

𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮

𝑑𝒑
= 𝟎

𝑑𝒙

𝑑𝒑
= −

𝜕𝑮

𝜕𝒙

−1
𝜕𝑮

𝜕𝒑

=
𝜕𝑮

𝜕𝒙

𝑑𝒙

𝑑𝒑
+
𝜕𝑮

𝜕𝒑

, ∀𝒑

𝜕𝑮

𝜕𝒙

d𝒙

d𝒑

𝜕𝑮

𝜕𝒑

𝜕𝑮𝒊

𝜕𝒑𝒋

(how does the “F-Ma” residual at time step
𝒊 change wrt the jth input parameter 𝒑𝒋)

Briefly, how it works – simulation derivatives

𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮

𝑑𝒑
= 𝟎

𝑑𝒙

𝑑𝒑
= −

𝜕𝑮

𝜕𝒙

−1
𝜕𝑮

𝜕𝒑

=
𝜕𝑮

𝜕𝒙

𝑑𝒙

𝑑𝒑
+
𝜕𝑮

𝜕𝒑

, ∀𝒑

𝜕𝑮

𝜕𝒙

d𝒙

d𝒑

𝜕𝑮

𝜕𝒑

d𝒙𝒊

d𝒑𝒋
(how does the system’s configuration at time step

𝒊 change with respect to the 𝒋th input parameter)

Briefly, how it works – simulation derivatives

𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮

𝑑𝒑
= 𝟎

𝑑𝒙

𝑑𝒑
= −

𝜕𝑮

𝜕𝒙

−1
𝜕𝑮

𝜕𝒑

=
𝜕𝑮

𝜕𝒙

𝑑𝒙

𝑑𝒑
+
𝜕𝑮

𝜕𝒑

, ∀𝒑

𝜕𝑮

𝜕𝒙

d𝒙

d𝒑

𝜕𝑮

𝜕𝒑

Note: the sparsity structure of 𝜕𝑮
𝜕𝒑

(and d𝒙
d𝒑

) depends on the type of problem we are solving.
Specialized solvers that exploit this structure can easily be developed.

Briefly, how it works – simulation derivatives

𝑮 𝒙(𝒑), 𝒑 = 𝟎

𝑑𝑮

𝑑𝒑
= 𝟎

𝑑𝒙

𝑑𝒑
= −

𝜕𝑮

𝜕𝒙

−1
𝜕𝑮

𝜕𝒑

=
𝜕𝑮

𝜕𝒙

𝑑𝒙

𝑑𝒑
+
𝜕𝑮

𝜕𝒑

, ∀𝒑

𝜕𝑮

𝜕𝒙

d𝒙

d𝒑

𝜕𝑮

𝜕𝒑

Note: the sparsity structure of 𝜕𝑮
𝜕𝒑

(and d𝒙
d𝒑

) depends on the type of problem we are solving.
Specialized solvers that exploit this structure can easily be developed.

Briefly, how it works – simulation derivatives

Until convergence

Δ𝐩 = −
𝜕𝑂

𝜕𝒙

𝑑𝒙

𝑑𝒑
+

𝜕𝑂

𝜕𝒑

𝛼 = line_search(Δ𝐩)
𝐩 = 𝐩 + 𝛼Δ𝐩;
𝐱 = simulate(𝐱, 𝐩)

end

𝒙1
𝒙2𝒙n

Input parameters 𝒑
(i.e. input velocity)

𝜕𝑮

𝜕𝒙

−1
𝜕𝑮

𝜕𝒑

Briefly, how it works – the inverse simulation loop

▪ Gradient descent: Δ𝒑 = −
𝑑𝑂

𝑑𝒑
= −

𝜕𝑂

𝜕𝒙
𝑺 +

𝜕𝑂

𝜕𝒑
, where 𝑺 ≔ 𝑑𝒙

𝑑𝒑

▪ Newton’s method: Δ𝒑 = −𝐻−1 𝑑𝑂

𝑑𝒑
, where

▪ Generalized Gauss-Newton: Δ𝒑 = −෩𝐻−1 𝑑𝑂

𝑑𝒑
, where

Computing search directions

𝐻 =
𝑑2𝑂

𝑑𝒑2
=
𝜕𝑂

𝜕𝒙
𝑺𝑇

𝜕𝑺

𝜕𝒙
+
𝜕𝑺

𝜕𝒑
+ 𝑺𝑇

𝜕2𝑂

𝜕𝒙2
𝑺 + 𝑺𝑇

𝜕2𝑂

𝜕𝒙𝜕𝒑
+

𝜕2𝑂

𝜕𝒙𝜕𝒑

𝑇

𝑺 +
𝜕2𝑂

𝜕𝒑2

෩𝐻 = 𝑺𝑇
𝜕2𝑂

𝜕𝒙2
𝑺 +

𝜕2𝑂

𝜕𝒑2

Gauss-Newton: dense linear system solve

෩𝐻 = 𝑺𝑇
𝜕2𝑂

𝜕𝒙2
𝑺 +

𝜕2𝑂

𝜕𝒑2

෩𝐻Δ𝒑 = −
𝑑𝑂

𝑑𝒑

Gauss-Newton – sparse reformulation

𝜕2𝑂

𝜕𝒙2
0

𝜕𝑮

𝜕𝒙

𝑇

0
𝜕2𝑂

𝜕𝒑2
𝜕𝑮

𝜕𝒑

𝑇

𝜕𝑮

𝜕𝒙

𝜕𝑮

𝜕𝒑
𝟎

Δ𝒙
Δ𝒑
Δ𝝀

=

𝟎

−
𝑑𝑂

𝑑𝒑
𝟎

𝜕2𝑂

𝜕𝒙2
0

𝜕𝑮

𝜕𝒙

𝑇

0
𝜕2𝑂

𝜕𝒑2
𝜕𝑮

𝜕𝒑

𝑇

𝜕𝑮

𝜕𝒙

𝜕𝑮

𝜕𝒑
𝟎

Δ𝒙
Δ𝒑
Δ𝝀

=

𝟎

−
𝑑𝑂

𝑑𝒑
𝟎

Sparse Gauss Newton for accelerated sensitivity analysis

[Zehnder et al., Trans. on Graphics, 2021]
▪ Dense and sparse linear systems give same search direction Δ𝒑
▪ Sparse system leads to asymptotically better performance
▪ Formal connection between Sensitivity Analysis and the method of

Lagrange Multipliers

Sparse Gauss Newton for accelerated sensitivity analysis

Problem size Problem size

[Zehnder et al., TOG 2021]

DIFFERENTIABLE SIMULATION:
COMPUTING DERIVATIVES
Miles Macklin

2

GOAL

• Minimize a scalar loss function s() w.r.t system parameters

System State: Forward ODE:

3

EXAMPLE - MASS SPRING CAGE

• Minimize distance of center particle
to target after 2 sec

• Optimize over spring rest lengths

• 3-4 LBFGS iterations

AUTO DIFFERENTIATION

• For optimization we want the gradient of scalar loss at

• Define the adjoint of a variable as

• Goal: given compute

5

COMPUTING GRADIENTS

Adjoint Variable

6

CONTINUOUS ADJOINT METHOD

• Computes gradient of scalar loss function via. reverse ODE

Forward ODE:

Reverse ODE:

State

Adjoint

Calculus of Variations

7

DISCRETE ADJOINT METHOD

• Replace ODE with time-stepping equations:

• Discrete trajectory + loss:

• Apply chain rule:

• Two ways to evaluate the chain rule..

State

Adjoint

8

FORWARD ACCUMULATION (TANGENT MODE)

• Forward:

• Evaluate inside->out

• Simple, but large matrix multiplies are expensive

• Use forward mode when outputs >> params (e.g.: vector valued loss)

()

9

REVERSE ACCUMULATION (ADJOINT MODE)

• Reverse:

• Evaluate outside->in

• Use reverse mode when outputs << params (e.g.: scalar valued loss)

()

10

CONTINUOUS/DISCRETE SIDE-BY-SIDE

Forward ODE: Forward Time-stepping:

Continuous Loss: Discrete Loss:

Reverse ODE: Reverse Time-stepping:

11

ADJOINT OF A FUNCTION

• Given a function:

• Define adjoint (*) as follows:

• Adjoint returns derivative of scalar loss with respect to function inputs

Adjoint Variable:

12

ADJOINT EXAMPLES

• Example:

• Forward evaluation graph:

13

REVERSE MODE AUTO. DIFF

a

b

sin

mul

add s

c

d

14

REVERSE MODE AUTO. DIFF

a*

b*

sin*

mul*

add* s*

c*

d*

• Example:

Adjoint Variables:

Seed Variable:

Solution:

15

AUTODIFF FRAMEWORKS

• Graph Evaluation

• Runtime

• Functional, tensor centric

• PyTorch, TensorFlow

• Program Transformation

• Compile time

• Imperative, thread centric

• DiffTaichi, Google Tangent, Tapenade, dFlex

• Symbolic

• Expression rewriting

• Matlab, Mathematica, Maple

16

3-LEVEL AUTO DIFF

• Top level

• computation graph + tape

• e.g.: loss functions, NN model

• Middle level

• forward/backward kernels

• e.g.: force evaluation

• Bottom level

• mathematical primitives

• e.g.: sin, cos, dot, cross, etc

Spring Force

Kernel 1

Load

Mul

Dot

Store

Contact Force

Kernel 2

Load

Mul

Sin

Store

Integrate

Kernel 3

Load

Add

Mul

Store

NN

17

PROGRAM TRANSFORMATION

• Middle level auto-diff

• Given abstract syntax tree generate a function’s
adjoint:

• Traverse tree (import ast)

• Convert to static single assignment (SSA) form

• Run function forward (recording state)

• Run function backward (accumulate gradients)

Python

AST

SSA

Adjoint

C++/CUDA

NVCC

18

SIMPLE EXAMPLE

• Python->C++ SSA

• State is local in registers

• Kernel fusion is implicit

• Flexible indexing

• Gather/Scatter Ops

• Runtime JIT compilation

19

COMPLEX KERNEL

@df.kernel
def eval_bending(x : df.tensor(df.float3),

v : df.tensor(df.float3),
indices : df.tensor(int),
rest : df.tensor(float),
ke : float,
kd : float,
f : df.tensor(df.float3)):

tid = df.tid()

triangle indices
i = df.load(indices, tid*4+0)
j = df.load(indices, tid*4+1)
k = df.load(indices, tid*4+2)
l = df.load(indices, tid*4+3)

rest_angle = df.load(rest, tid)

load positions
x1 = df.load(x, i)
x2 = df.load(x, j)
x3 = df.load(x, k)
x4 = df.load(x, l)

load velocities
v1 = df.load(v, i)
v2 = df.load(v, j)
v3 = df.load(v, k)
v4 = df.load(v, l)

n1 = df.cross(x3-x1, x4-x1)
n2 = df.cross(x4-x2, x3-x2)

n1_length = df.length(n1)
n2_length = df.length(n2)

rcp_n1 = 1.0/n1_length
rcp_n2 = 1.0/n2_length
cos_theta = df.dot(n1, n2)*rcp_n1*rcp_n2

n1 = n1*rcp_n1*rcp_n1
n2 = n2*rcp_n2*rcp_n2

e = x4-x3
e_hat = df.normalize(e)
e_length = df.length(e)

s = df.sign(df.dot(df.cross(n2, n1), e_hat))
angle = df.acos(cos_theta)*s

d1 = n1*e_length
d2 = n2*e_length
d3 = n1*df.dot(x1-x4, e_hat) + n2*df.dot(x2-x4, e_hat)
d4 = n1*df.dot(x3-x1, e_hat) + n2*df.dot(x3-x2, e_hat)

elastic forces
f_elastic = ke*(angle - rest_angle)

damping forces
f_damp = kd*(df.dot(d1, v1) + df.dot(d2, v2) + df.dot(d3, v3) + df.dot(d4, v4))

total force, proportional to edge length
f_total = 0.0 - e_length*(f_elastic + f_damp)
df.atomic_add(f, i, d1*f_total)
df.atomic_add(f, j, d2*f_total)
df.atomic_add(f, k, d3*f_total)
df.atomic_add(f, l, d4*f_total)

• Triangle bending force kernel

• Many nested expressions

• Random access loads/stores

• Atomic-add accumulation

20

PROGRAM TRANSFORMATION - ALGORITHM

• Given an AST

• Recursive program to
generate the adjoint
of a function

• Assume that each
node knows how to
compute f, f*

21

VERIFICATION

• Check gradients via. finite differencing

• torch.autograd.gradcheck

• Call function adjoint with each basis vector to evaluate full Jacobian

• n calls, one for each output

22

FURTHER READING

• [Griewank & Walther 2008]

• Covers program transformation approach in detail

• Many more optimizations possible

• I rely on NVCC to do the heavy lifting

SIMULATION

24

OPTIMIZATION

• Once we have gradients we can optimize using our favourite numerical method,
e.g.:

• Gradient descent (stochastic, accelerated, etc)

• Quasi-Newton (LBFGS, Hessian approximating, etc)

• Conjugate Gradient (Krylov methods)

• PPO up to 10x less efficient than vanilla gradient-based descent [Hu et al. 2018]

25

EXAMPLE - CLOTH

26

EXAMPLE - THIN SHELLS

• Thin-shell FEM

• 2D NeoHookean + bending energy

• Activations into bending energy

• Lift + Drag model

[Smith et al. 2018]

[Bridson et al. 2002]

27

EXAMPLE - OPEN LOOP CONTROL

Integrate

Control

TanhDense

SinCos

Loss

28

EXAMPLE - THIN SHELL FEM

• Solid FEM

29

EXAMPLE - THIN SHELL FEM

• Solid FEM

30

EXAMPLE - SOLID FEM

• Pixar’s stable NeoHookean model

• Tetrahedral elements

• Volumetric activations

31

EXAMPLE - SOLID FEM

32

RIGID ARTICULATIONS

• Reduced coordinate Featherstone (CRBA)

• Prismatic, Revolute, Spherical, Fixed, Free

• Joint / MTU-based actuation

• URDF, MJCF import

36

MUSCLE-BASED ACTUATION

37

MUSCLE-BASED ACTUATION

CONTACT

39

CONTACT SMOOTHNESS

40

FRICTION SMOOTHNESS

41

EXAMPLE - CONTACT

42

CONTACT SPARSENESS

• No gradient information until contact

• Optimization stuck at local minima

43

CONTACT + LEAKY GRADIENTS

44

CONTACT GENERATION

• Polygons -> contact points + normals

• Computational geometry problem

• Not autodiff friendly

• SDFs are promising

• e.g.: adjoint of SDF normal:

• I3D paper on SDFs accepted

45

LOCAL MINIMA

• Gradient methods are sensitive to local minima

• e.g.: oscillations of elastic bodies

• Momentum methods like Nesterov can ‘jump’ over these
to some degree

• Combine stochastic exploration with gradient-based
optimization

46

IMPLICIT METHODS

• What if we cannot write the solution to our time-stepping equations in a
closed form? e.g.:

• Explicit Euler:

• Implicit Euler:

47

IMPLICIT FUNCTION THEOREM

• Implicit function theorem to the rescue! We can still compute adjoint w.r.t input:

• Gradient of ‘output’ y w.r.t. ‘input’ x:

• Corollary: even if f() is nonlinear f*() only requires solving a linear system!

48

FUTURE WORK

• Differentiable CUDA / HLSL / Slang compiler

• Optimization through contact

• Application to reinforcement learning

• Application to system identification, e.g.: estimate friction/mass/restitution

• Extension to more physical models

49

REFERENCES

• dFlex:

• Repo: https://gitlab-master.nvidia.com/mmacklin/dflex

• Paper: https://drive.google.com/open?id=1JJaEXPXmv8TMrPIzx66b5JpHKAwHrha4

• Video: https://drive.google.com/open?id=1iwp7wKunc1E0rUFmwf46RMZvNgzFSG80

• Jos’s SIGGRAPH talk:

• Video: https://developer.nvidia.com/siggraph/2019/video/sig903-vid

• Related work:
• Griewank, A., & Walther, A. (2008). Evaluating derivatives: Principles and techniques of algorithmic differentiation

• Margossian (2019). A Review of Automatic Differentiation and its Efficient Implementation

• McNamara et al. (2004). Fluid Control Using the Adjoint Method

• Wojtan et al. (2006). Keyframe Control of Complex Particle Systems Using the Adjoint Method

• Hu et al. (2020). DiffTaichi: Differentiable Programming for Physical Simulation

https://gitlab-master.nvidia.com/mmacklin/dflex
https://drive.google.com/open?id=1JJaEXPXmv8TMrPIzx66b5JpHKAwHrha4
https://drive.google.com/open?id=1iwp7wKunc1E0rUFmwf46RMZvNgzFSG80
https://developer.nvidia.com/siggraph/2019/video/sig903-vid

DIFFERENTIABLE SIMULATION
FOR FRICTIONAL CONTACT
Stelian Coros, Bernhard Thomaszewski

Differentiable Simulation

Mechanical Systems
Rigid & Soft bodies

Rigid/soft multi-body systems

𝒙𝑖 ≔ (𝒄𝒙, 𝒄𝒚, 𝒄𝒛, 𝜶, 𝜷, 𝜸)

rigid bodies soft objects coupling springs

𝒙𝑖

Differentiable Simulation

Equations of Motion
Implicit Integration

Mechanical Systems
Rigid & Soft bodies

Forces and
Force Jacobians

𝑭𝑖𝑛𝑡 = −𝛁𝒙𝑊(𝒙, 𝐶)

Differentiable Simulation

Frictional Contact
Smooth Approximation

Equations of Motion
Implicit Integration

Differentiable Simulation Model
Sensitivity Analysis

Mechanical Systems
Rigid & Soft bodies

Forces and
Force Jacobians

Motion
Trajectory

Coulomb’s law of friction: no slip occurs
between two solids if 𝑓𝑡 ≤ 𝜇𝑓𝑛

Differentiable approximation of frictional contact

𝐟𝑡 = 𝑓𝑡𝐭

𝐟𝑛 = 𝑓𝑛𝐧
𝐱

𝐧 = 𝛻𝐱𝑔

𝐭 = ሶ𝐱𝑡/| ሶ𝐱𝑡|

𝑔(𝐱) < 0 𝑔(𝐱) > 0

non-penetration
constraints on normal force:

𝑓𝑛 ≥ 0, 𝑓𝑛𝑔 = 0

friction
constraints on tangent force:

stick ሶ𝐱𝑡 = 0 iff 𝑓𝑡 ≤ 𝜇𝑓𝑛
slip 𝐟𝑡 = −𝜇𝑓𝑛𝐭

𝜇𝑓𝑛

𝑓𝑡

ሶ𝐱𝑡−𝜇𝑓𝑛

tangent force

𝜇𝑓𝑛

𝑓𝑡

ሶ𝐱𝑡
−𝜇𝑓𝑛

Coulomb model

Frictional contact: smooth approximations

piece-wise linear

𝑘𝑡

𝑓𝑛

normal force

𝑔(𝐱)

e.g. 𝐟𝑛 = 𝑘𝑛𝑠𝑜𝑓𝑡𝑚𝑎𝑥(−𝑔, 0)𝐧

tanh
𝑘𝑛

Differentiable friction models: accuracy vs convergence speed

Differentiable friction models: impact on optimization landscapes

objective function (shading, isolines) and gradients (arrows)

Differentiable Simulation

Frictional Contact
Smooth Approximation

Motion Objective

Equations of Motion
Implicit Integration

Differentiable Simulation Model
Sensitivity Analysis

Solver for inverse problems
Sparse Gauss-Newton

Mechanical Systems
Rigid & Soft bodies

Analytic
Derivatives

Forces and
Force Jacobians

Forces and
Force Jacobians

Motion
Trajectory

Optimal Parameters

ROBOTIC MANIPULATION OF SOFT
MATERIALS
Stelian Coros, Bernhard Thomaszewski

Our goal: human-level dexterity

Physics-in-the-loop motion planning

Physics-in-the-loop motion planning

Robotic Manipulation of Soft Materials

[CRL, IROS ‘18]

6

Differentiable Simulation: use cases

Optimization
criterion

Decision Variables

control parameters policy parameters

Motion goals whole body control; model
predictive control; trajectory
optimization

self-supervised learning; policy
optimization

Self-supervised learning

𝒔 𝒂

𝝅𝜽: 𝕊 → 𝔸

m
o

ti
o

n
 t

ra
je

ct
o

ry

[Geilinger et al., SIGGRAPH Asia 2020]

Trajectory vs policy optimization

[Mora et al., ICML 2021]

Trajectory Optimization

min
𝒂

𝑂(𝒙 𝑠0, 𝒂 , 𝒂)

Policy Optimization

min
𝜽

න
𝑠

𝑂 𝒙 𝑠, 𝝅𝜽 𝑠 , 𝝅𝜽 𝑠 𝑑𝑠

Differentiable Simulation: use cases

Optimization
criterion

Decision Variables

control parameters policy parameters model parameters

Motion goals whole body control; model
predictive control; trajectory
optimization

self-supervised learning; policy
optimization

computational design

[Tang et al., SIGGRAPH Asia 2020; Bern et al., SIGGRAPH 2017; Megaro et al., SIGGRAPH 2017]

[Geilinger et al., SIGGRAPH Asia 2020][Bern et al., RSS 2019]

Locomotion for soft and hybrid rigid/compliant robots

Differentiable Simulation: use cases

Optimization
criterion

Decision Variables

control parameters policy parameters model parameters

Motion goals whole body control; model
predictive control; trajectory
optimization

self-supervised learning; policy
optimization

computational design

Model-data
mismatch

motion tracking controllers;
motion/pose estimation

Motion tracking for lifelike quadrupedal robots

[Kang et al., IROS 2021]

Differentiable Simulation: use cases

Optimization
criterion

Decision Variables

control parameters policy parameters model parameters

Motion goals whole body control; model
predictive control; trajectory
optimization

self-supervised learning; policy
optimization

computational design

Model-data
mismatch

motion tracking controllers;
motion/pose estimation

learning by demonstration

Demonstration learning and generalization

Differentiable Simulation: use cases

Optimization
criterion

Decision Variables

control parameters policy parameters model parameters

Motion goals whole body control; model
predictive control; trajectory
optimization

self-supervised learning; policy
optimization

computational design

Model-data
mismatch

motion tracking controllers;
motion/pose estimation

learning by demonstration real to sim

Real to sim

[Hahn et al., Siggraph Asia 2019]

Real to sim to real

[Hahn et al., Siggraph Asia 2019]

Differentiable Simulation: use cases

Optimization
criterion

Decision Variables

control parameters policy parameters model parameters

Motion goals whole body control; model
predictive control; trajectory
optimization

self-supervised learning; policy
optimization

computational design

Model-data
mismatch

motion tracking controllers;
motion/pose estimation

learning by demonstration real to sim

DIFFERENTIABLE SIMULATION AND
DEEP LEARNING FOR FLUIDS
Nils Thürey

Physical Phenomena
Everywhere around us…

• Fluid Mechanics

• Robotic Control

Physical Phenomena
Everywhere around us…

• Fluid Mechanics

• Robotic Control

• Thermodynamics

• Plasma Physics

• Medical Simulations

• Many more…

E.g.: Navier-Stokes equations
Du

Dt
= �1

⇢
rp+ ⌫r ·ru , r · u = 0

😎
Physics:
Great but
idealized

Numerical
Methods:

Keep as much
as possible 🛠

Machine
Learning:  

Bridge gap to  
real world 🧹 👍

Numerical
Methods

Inverse

Problems

 
Forward

Simulation

Physical System

Physics-Based Learning
How to combine?

Machine

Learning

Physics Interleaved

Loss Terms

Supervised

Deep Learning

Related & Own Work

• Holl et. al: Learning to Control PDEs with Differentiable Physics

• Um et. al: Solver-in-the-Loop: Learning from Differentiable Physics to Interact with PDE-Solvers

• Bar-Sinai et. al: Learning data-driven discretizations for partial differential equations

• Raissi et. al: Hidden physics models: Machine learning of nonlinear partial differential equations

• Chen et. al.: Neural ordinary differential equations

• Morton et. al: Deep dynamical modeling and control of unsteady fluid flows

Tighter Integration of Physical Models

“Differentiable Physics”
Overview

Discretized PDE with phase space states

Learn via gradient

Requires differentiable physics simulator for

Note: not a soft-constrained residual loss of

→ Tight integration of numerical methods and learning process

𝒫 s

∂𝒫/∂s

𝒫

𝒫

Reducing Numerical Errors

Differentiable Physics Example 1
Um et. al: Solver-in-the-Loop: Learning from Differentiable Physics to Interact with PDE-Solvers

Reference data from
accurate solver

Reducing Numerical Errors
“Solver-in-the-Loop”

 r ∈ ℛPDE: 𝒫

Reference data from
accurate solver

Learned models & source
solver: reduce errors, …

Coarse source
simulations: increased

numerical errors.

… close gap towards
the reference.

Reducing Numerical Errors
“Solver-in-the-Loop”

 s ∈ 𝒮

 𝒞(s |θ)

Reducing Numerical Errors
Shift of Input Feature Distributions

Corrected Source

Reference

Does not exist
beforehand!

Reducing Numerical Errors
Supervised Learning from Physical PDEs

Tr0 𝒞(s |θ)

𝒞(s |θ)*

Update NN  
via ∂θ

𝜕s𝑛

Iteration m

Iteration
m+1

rn

Fully supervised loss: ∥si + 𝒞(si |θ) − Tri∥2

Solver
Pre-compute

r0 Solver… r𝑛−1 r𝑛Solverr1
Reference SolverTr0 Solver… s𝑛−1 s𝑛Solvers1

Source
Repeat for

Initial state from reference, i.e. s0 = Tr0

Reducing Numerical Errors
Partial Interaction via Physical Residuals

Tr0 𝒞(s |θ)

Reduced variant: Include residual of in loss formulation  
(physics-constrained / physics-informed)

𝒫

Iteration m

Iteration
m+1

Loss

s1 Residual

𝒞(s |θ)*

∂θ

𝜕s𝑛 Adjoint  
 

🧐 Not in the picture!

Solver

Convenient derivatives via
 for , but no control…𝒞 𝒫

 
Highly efficient solvers available!

Reducing Numerical Errors
Differentiable Physics Solvers

Provide via physics solver

Leverage existing NM for accurate & reliable discretization

Right “granularity” can require custom operations

E.g.: Poisson solve with , derivative for

Chain together via AutoDif

∂𝒫/∂s

A = ∇ ⋅ ∇ ∂A−1b/∂b = A−1

Reducing Numerical Errors
Learning Objective with Differentiable Physics

Modified state after steps

Correction function depends on states modified by

Objective for differentiable physics training:

n s̃t+n = (𝒫s𝒞)n (Trt)

𝒞(s̃ |θ) 𝒫s𝒞

argminθ ∑
t

n−1

∑
i=0

∥𝒫s(s̃t+i) + 𝒞(𝒫s(s̃t+i) |θ) − Trt+i+1∥2

Reducing Numerical Errors
Learning via Differentiable Physics

SolverTr0 Solver… s𝑛−1
~ s𝑛

~𝒞(s |θ)~Solvers1
~ 𝒞(s |θ)~𝒞(s |θ)

L
rn−1

…AdjointAdjoint 𝜕s1
~ 𝒞(s |θ)*~𝒞(s |θ)*

∂θ∂θ

Adjoint𝜕s𝑛−1
~ 𝜕s𝑛

~𝒞(s |θ)*~

∂θ

Iteration
m-1

Iteration m

Iteration
m+1

Loss
rn

L
r1

Correction via network for each unrolled simulation step 𝒞(s̃ |θ)

Full evaluated at
training time
𝒫

Gradient of via
controlled discretization 💫

𝒫

Source

Reference

 -1.

0.0

1.0

Re=2343.8

SOL32

A few more Details…

Unsteady Wake Flow in 2D

p = (
1
2

,
1
2

)

r = (
1

10
)

sx = 1

s y
=

2

vin = (0,1)

• Setup: Reference is 4x

• 3000 frames training data,

• Test data: new Re Nr.s

• Source MAE: 0.146

• SOL32 MAE: 0.013

• More than 10x reduction

Re ∈ {98 . . 3125}

Unsteady Wake Flow 2D

Evaluation Details in the Paper - Two Test Samples in Motion:

Re=146.5 Re=2343.75

RefSOL32Src RefSOL32Src

Looking into the Future

Learning via a Large Number of Simulation Steps

Evaluation:

• MAE Improvement over Src

• Supervised training: 29%

• D.P. with 4 steps: 41%

• D.P. with 128 steps: 60%

Long-term Stability

MAE=0.130MAE=0.144

Unsteady Wake Flow (250 time steps)

3D Test Case, Re=468.8

0.0

0.3

0.6

SOL16NON

3D Results
Unsteady Wake Flow

Second 3D Test Case, Re=546.9

0.0

0.3

0.6

MAE=0.167 MAE=0.130
ReferenceSOL16Source

Performance

3D Wake Flow - Avg. Runtimes for 100 time steps

• CPU-based reference simulation: 913.2 seconds

• Source solver with CNN: 13.3 seconds

➡ Speed-up of 68x

• Future hardware support (e.g., A14/M1)

Simulation Control

Differentiable Physics Example 2
Holl et. al: Learning to Control PDEs with Differentiable Physics

Solving Control Problems

Solving Control Problems

Long-term Planning

Hierarchical prediction of optimal trajectory

Task 1:

Predict

𝑢0 𝑢𝑝
1 𝑢𝑝

𝑛−1𝑢𝑝
𝑛/2

…
𝑢𝑛

Inference of controls

Solver𝑪𝑭𝑬
Task 2:

Correct 𝑢𝑖 𝑢𝑝

𝑖+1 𝑢𝑖+1

Solving Control Problems

Learning Control Forces (CFE Network)

SolverSolver Solver
…

𝑢0 𝑢1 𝑢𝑛−1 𝑢𝑛𝑪𝑭𝑬𝑪𝑭𝑬𝑪𝑭𝑬

Loss w.r.t. 
target

Target flow velocity

Condition control on state and target

u
Fi = CFE(ui, target, (n − 1) ⋅ Δt |θCFE)

…
AdjointAdjoint 𝜕𝑢1 𝑪𝑭𝑬∗𝑪𝑭𝑬∗

∂θ∂θ

Adjoint𝜕𝑢𝑛−1 𝜕𝑢𝑛𝑪𝑭𝑬∗

∂θ

Le
ar

ni
ng

 S
te

ps

2D Navier-Stokes
Move Marker (Yellow) to Target Region

Indirect Control in Blue Region (“Ventilation”)

Incompressible NS, 128 x 128 cells, 16 time steps, ca. 5000 control parameters.

2D Navier-Stokes
Move Marker (Yellow) to Target Region

Indirect Control in Blue Region (“Ventilation”)

Incompressible NS, 128 x 128 cells, 16 time steps, ca. 5000 control parameters.

2D Navier-Stokes
Move Marker (Yellow) to Target Region

Indirect Control in Blue Region (“Ventilation”)

Incompressible NS, 128 x 128 cells, 16 time steps, ca. 5000 control parameters.

Quantitative Evaluation

(Additional Details in the Paper)

The Less Force the Better:

- CFE chain (Sup): 83.4 ± 2.0

- CFE chain (D.P.): 28.8 ± 0.8

- Prediction Ref. (D.P.): 14.2 ± 0.7

Versus Classical Optimization

Why not just use Adjoint Method & Co? 🤨

→ Expensive, gets stuck
in local minima

(ca. 131s & 1500 steps)

→ Learns “global” view via
solution manifold

(ca. 0.5s)

H
ie

ra
rc

hi
ca

l S
ho

ot
in

g
w

ith
  

Ad
jo

in
t M

et
ho

d Learned Solution

Discussion - Non-linear Optimization
Energy Landscape

tap

tap

tap

taptap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

tap

Reinforcement LearningSupervised LearningDifferentiable Physics

Supervised + Diff. Physics

Non-linear Optimization

Real-world Flows

Outlook
Learn from Real-world Observations

[ScalarFlow: A Large-scale Data-set of Real-world Flows, 2019]

Multi-camera capture setup

Reconstructed volumetric motion

→ Reconstruct Measurements via Learning from Differentiable Physics

Outlook
Synergies between Vision & Graphics

→ Temporal Coherence & Physics for Video and 3D Reconstruction

[Xie 2018] tempoGAN: Generative adversarial networks with temporal coherence 

Outlook
Large-scale Effects

→ 3D Synthesis with Billions of Unknowns

Summary

Differentiable Simulations as Tool to bridge Physics & Learning 🤗

Physical Systems

Num.
Meth.

 
 

Phys.

Deep Learning
 
 

D.L.

ControlCorrection Next: NWP?

	CourseNotesSample1
	DiffSim_SigAsia_Course (1)
	Abstract

	DiffSimCourseSyllabus (6)
	DiffSimBasics
	ComputingDerivatives.Miles
	FrictionalContact
	RoboticManipulation

	NilsTitleSlide
	SGa-version

