
A N N M C N A M A R A

U S I N G P Y T H O N
S C R I P T I N G T O
E N H A N C E W O R K F L O W
I N A U T O D E S K M AYA :
C O U R E S N O T E S

Contents

1 Introduction 5

1.1 Motivation 5

1.2 Focus Areas 5

1.3 A note on code listings 6

2 Setting Up Python & Autodesk Maya 7

2.1 A Note on Maya.cmds 9

2.2 Summary 12

3 Project 1: Randomly Placing Objects in a Scene 13

3.1 Introduction 13

3.2 The Random Library 13

3.3 Code 13

3.4 Creating Multiple Objects 14

3.5 Bundling Code into Functions 15

3.6 Summary 20

4 Project 2: Creating a Custom GUI 23

4.1 Graphical User Interfaces in Maya 23

4.2 Creating a Window 23

4.3 Creating Buttons 24

4.4 Linking Buttons to Actions 24

using python scripting to enhance workflow in autodesk maya: coures notes 3

4.5 Capturing Input from GUIs 25

4.6 Using Classes 28

4.7 Summary 29

5 Project 3: Programming MASH Networks 30

5.1 Introduction to MASH Networks 30

5.2 Creating Dynamics with MASH 30

5.3 MASH with FallOff Element 32

5.4 Summary 33

6 Project 4: Creating basic Joint Chains 34

6.1 Introduction 34

6.2 Creating a simple joint chain 34

6.3 Creating a jointed hand 35

6.4 Summary 36

7 Additional Resources Resources 37

7.1 Resource Links 37

Listings

1.1 python code example (1.1_firstExample.py) . 6

3.1 Using Maya functions to create mutliple objects in a scene (3.1_justLoop.py) 14

3.2 Using Maya functions to create multiple objects in a scene (3.2_loopRandomX.py) 14

3.3 Using Maya functions to create multiple objects in a scene (3.3_loopRandomXYZ.py) 15

3.4 Using Maya functions to create size and randomly place objects in a scene (3.4_mayaFunc-
tions.py) . 17

3.5 Using Maya functions to create shade and randomly place objects in a scene (3.5_mayaFunc-
tions.py) . 19

4.1 Using Python functions to create a simple Window in Maya (4.1_Window.py) 23

4.2 Creating a cube by calling polyCube() directly . 24

4.3 Using command to trigger an action from a button press . 24

4.4 Using a function call to trigger an action from a button press 24

4.5 Using Python functions to create a simple GUI (4.6_simpleGUI.py) 25

4.6 Capturing input from the user . 25

4.7 Using UI to create shapes at the touch of a button (4.7_addButtonsFunctions.py) 26

4.8 Using UI to create stacks of spheres or cubes (4.8_getinput.py) 26

4.9 Using UI to create stacks of spheres or cubes (4.9_slider.py) . 27

4.10 Using UI to create stacks of spheres or cubes (4.10_Classes.py) 28

5.1 Using Using MASH to create some dynamics (5.1_MASH.py) 30

5.2 Using Using MASH to create some dynamics (5.2_MASH_FallOff.py) 32

6.1 Using Python functions to create a simple GUI (6.1_singleChain.py) 34

6.2 Using Python functions to create a simple GUI (6.2_createHand.py) 35

1
Introduction

1.1 Motivation

Coding empowers automation. Scripts can handle mundane and repetitive tasks in an efficient and precise
manner. This course will offer will use an hands-on interactive format to walk attendees through represen-
tative scripting projects, selected to be useful for everyday workflows. It is intended to be an intermediate
course. The goal is to cover provide enough information for attendees to build on later. Python scripting
can automate many tasks in Maya, from running simple commands to developing plug-ins. Attendees will
learn how to automate simple tasks using the magic of scripting, through four distinct projects. The course
will placing objects randomly in a scene, designing custom User Interfaces (GUIs) in Maya, scripting MASH
(motion graphic) networks, and scripting a leg rig, with foot-roll. By the end of the course, attendees should
walk away with a solid understanding of the power Python scripting and Maya commands provide, and the
the ability to build their own advance projects for Maya. This course will equip attendees with the tools,
confidence, and initiative to explore more advanced scripts independently. Attendees should have program-
ming experience, preferably in Python, but a solid grasp of the foundational programming constructs should
suffice. Attendees should have Autodesk Maya, Python, and Visual Studio Code pre-loaded on their devices
if they intend to follow along.

1.2 Focus Areas

This course will focus on a handful of small, yet meaningful, projects that use the of the Python programming
language to create effective scripts that seamlessly execute in Autodesk Maya. Each project is useful in it’s
own right, but also serves as a foundation to build larger projects. The hope is that introducing projects that
demonstrate the power of scripting will motivate programmers and artists to experiment and explore the
possibilities. We will spend about 20 to 25 minutes on each project to allow for questions.

1. Welcome and Introduction - 5 minutes

2. Getting Set Up (Python/Maya/VisualStudioCode) - 5 minutes

3. Project 1: Randomly placing objects in a scene - 20 minutes

4. Project 2: Creating a Custom GUI - 20 minutes

5. Project 3: Programming MASH (motion graphics) Networks - 25 minutes

6 ann mcnamara

6. Project 4: Creating a Leg Rig with Foot Roll - 25 minutes

7. Wrap Up, Resources, Next Steps, Questions - 5 minutes

1.3 A note on code listings

Each code listing, as shown in Listing 1.1, represents a python file that is also included with these Course
Notes. All the files can be downloaded from the authors web page, linked here. Comments appear in green
and are included to provide documentation for the human reader. Python ignores any text after a #.

1 # A first example in python

2 # print statements will display the

3 # result of evaluating the expressions

4 # everything in green

5 # after a # is a comment and is for the

6 # human reader and ignored in the program

7

8 print 10 # output 10

9 print 10 + 10 # output 20

10 print 10 * 10 # output 100

11 print 5 * 10 # output 50

12 print 40/10 # output 4

13 print 42/10 # output 4 (only whole number portion)

14

15 print 'Hello' # output Hello

Listing 1.1: python code example (1.1_firstExample.py)

http://people.tamu.edu/~annmcnamara/introductiontopython

2
Setting Up Python & Autodesk Maya

There are some steps that are necessary to set up communication between Python and Autodesk Maya.

1. Download and install Autodesk Maya 2022 - you can select the educational version if you are affiliated
with a university by providing your user id. (or you can download a 30-day free trial while you wait
for your id to be approved. For this course we just need Maya 2022 (there is no need for additional
installations such as Arnold, Bitfrost etc)

• Student Version

• 30 Day Trial Version

2. Download and install Visual Studio Code. Visual Studio Code is a text editor that allows extensive and
specialized extensions/plugins that help speed up your workflow. Youcan think of VSC as Notepad/-
TextEdit but with extendable functionality.

• Visual Studio Code

3. Install Maya Code (click the green install button and open in Visual Studio Code). This extension allows
you to see the Maya hierarchy within Visual Studio code, colors the words of your script for readability
(syntax highlighting), and provides intellisense (smart autocomplete) for MEL scripting.

• Maya Code

4. Put the following two lines of code in a file called userSetup.mel. Maya will execute this file every time
it opens - the code basically tells VSCode how to “talk” to Autodesk Maya. You can create the file in
notepad or any text editor you like (even VSCode)

commandPort -name "localhost:5678" -sourceType "python";

commandPort -name "localhost:7001" -sourceType "mel";

5. Put the following line of code in a file called userSetup.py. Maya will automatically execute this file on
startup when Maya opens. We are just going to save ourselves from typing this line of code over and over.

import maya.cmds as cmds

6. Be careful with the file names. They need to be exactly as listed in bold

7. Place both userSetup.mel and userSetup.py in the following folder:

https://www.autodesk.com/education/edu-software/overview?sorting=featured&page=1
https://www.autodesk.com/products/maya/free-trial?support=ADVANCED&plc=MAYA&t erm=1-YEAR&quantity=1
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=saviof.mayacode

8 ann mcnamara

• MAC:
/Users/username/Library/Preferences/Autodesk/maya/2020/scripts

For example on my mac my folder is called
/Users/annmcnamara/Library/Preferences/Autodesk/maya/2020/scripts

• PC:
..\MyDocuments\maya\<Version>\scripts

The version is 2022 as that is what you just downloaded so the path should be
..\MyDocuments\maya\2022\scripts

8. Navigate to VSCode extension directory. Because the VSCode extensions folder is hidden, you normally
won’t be able to find it with your file browser. Instead, make sure MayaCode is already installed and try
these:

On Windows machines, click Start > Run and paste the following in, then click Run:

%USERPROFILE%\.vscode\extensions\saviof.mayacode-1.4.0\out

On Mac machines, open a Finder window, then go to the menu bar and click Go > Go to Folder... and
paste the following in, then click Go:

~/.vscode/extensions/saviof.mayacode-1.4.0/out

9. Open extension.js in a text editor Find the following line using Ctrl-F; it is around line 236:

cmd = `python("execfile('${posixPath}')")`;

Replace it with this:

cmd = `python("exec(open('${posixPath}').read())")`;

Be sure to keep the indentation the same!

10. Save the file extension.js and relaunch both VSCode and Maya 2022. You should now be able to send
your code to Maya 2022 from within VSCode.

11. Once you have the files correctly in the directory open Maya. Open Visual Studio Code if you don’t have
it open and create a new python script (File->New). Type in the following two lines of code and save the
file as test.py (File->Save As) - make sure you save it as test.py, the .py extension at the end tells VSCode
that it is a python file.

cmds.polyCube(name='myCube')

cmds.polySphere(name="mySphere")

12. Now the moment of truth, right-click anywhere in your script test.py window in Visual Studio Code
and you should see an option called Maya: Send Python Code to Maya, or you can use use the hotkey
combo: shift plus ctrl plus M, since you will be doing this all throughout it might be faster. The very first
time you do this you may need to scroll down to the bottom and open the command palette. if you start
typing Maya at the > then select Maya: Send Python Code to Maya, it should work thereafter.

using python scripting to enhance workflow in autodesk maya: coures notes 9

13. If you have followed all the instructions carefully you should see a sphere and a cube in your Maya
window with the names mySphere and myCube, as shown in Figure 2.1. When first drawn the sphere
will be on top of the cube so you wont be able to see the cube unless you move the sphere (or move the
cube).

Figure 2.1:
A sphere
and a
cube
using
python
for Maya.

2.1 A Note on Maya.cmds

Maya provides the cmds API to allow us to program Maya functions. At the beginning of each Python
program that uses Maya cmds, we must first import the maya.cmds API.

import maya.cmds as cmds

Here we could import maya.cmds as any name we would like, but a popular convention is to use cmds. I
have seen it written as

import maya.cmds as mc

where mc is short for maya.cmds, again you can call it anything you like. For this course we will use the
first way and then precede our calls to the API with cmds. An example to to create a cube would be:

cmds.polyCube()

This line of code will create a polygon cube in Maya with all the default values. If we want to set specific
values at creation time we can look to the Maya command reference, Figure ?? If we search for polyCube
the documentation will list all the flags, or attributes, available to set. Each flag has a long name and an
abbreviation. The examples in this course use the long names for completeness but once you get used to the
flags it’s very handy to be able to use the abbreviations.

https://help.autodesk.com/cloudhelp/2020/ENU/Maya-Tech-Docs/Commands/index.html

10 ann mcnamara

The polyCube() command has the following flags, axis, caching, constructionHistory, createUVs, depth,
height, name, nodeState, object, subdivisionsDepth, subdivisionsHeight, subdivisionsWidth, subdivisionsX,
subdivisionsY, subdivisionsZ, texture, width. It is not necessary to remember all of these, or to use them
every time you create a cube. It is good to know what is available. An example to create a cube called “box"
with a width of three and height of two would be as follows. We are going to store this in the variable called
aBox. This is separated from the name we set to “box" using the -name flag. that name, “box" will be used
inside Maya to name the object.

cmds.polyCube(name='box', width=3, height=2))

Once you are familiar with the long names you can use the short names. The following line of code is exactly
the same as the line above, but the abbreviated versions of the flag names are used.

cmds.polyCube(n='box', w=3, h=2))

The documentation typically includes an example of how to use the Maya cmd. This example is taken
directly from the documentation and illustrates how to create a cube and query the width attribute. The
documentation does use the abbreviated version of the flags.

import maya.cmds as cmds

cmds.polyCube(sx=10, sy=15, sz=5, h=20)

#result is a 20 units height rectangular box

#with 10 subdivisions along X, 15 along Y and 20 along Z.

cmds.polyCube(sx=5, sy=5, sz=5)

#result has 5 subdivisions along all directions, default size

query the width of a cube

w = cmds.polyCube('polyCube1', q=True, w=True)

For completeness, the above code is repeated but with the full names for each flag.

import maya.cmds as cmds

cmds.polyCube(subdivisionsX=10, subdivisionsY=15, subdivisionsZ=5, height=20)

#result is a 20 units height rectangular box

#with 10 subdivisions along X, 15 along Y and 20 along Z.

cmds.polyCube(subdivisionsX=5,subdivisionsY=5, subdivisionsZ=5)

#result has 5 subdivisions along all directions, default size

query the width of a cube

using python scripting to enhance workflow in autodesk maya: coures notes 11

cubeWidth = cmds.polyCube('polyCube1', query=True, width=True)

Both code segments produce the exact same results. The second one where the flags are written in full is a
little easier to read and understand when you are starting out. Once the flags become familiar it is easier to
use the abbreviated versions. Note while this example stored the width in the variable called cubeWidth (or
w) we do no actually do anything with this value, if we wanted to examine it we could print it out.

print cubeWidth

Using maya.cmds in Python allows us to create many objects including spheres, torii, cylinders, planes and
disc. To create a sphere, we can use polySphere()

cmds.polySphere() # Create a default sphere

cmds.polySphere(name='globe', radius=2) # Create a sphere with the name globe and a radius of 2

cmds.polySphere(n='globe', r=2) # Same as preceding line with flag abbreviations

2.1.1 Getting Quick Help on flags

Figure 2.2:
Getting
Quick
Help

The script editor in Maya has a nice feature to enable a listing of all the flags called Quick Help. To activate
this, simply type the maya cmd into the Python tab of the script editor, right click and choose Quick help.
This reveals a list of all possible flags along with the data type of the expected argument. Figure 2.2 shows
the Quick Help for cmds.polySphere(). We can see, for example, that -r is the abbreviation for radius, and
that we need to provide a length for the radius. We can also see that -sx is short for subdivisionsX and we
are expected to provide a int data type.

12 ann mcnamara

2.2 Summary

There are several steps necessary to complete before communication between Visual Studio Code and Maya
2022 is established. This section outlined those steps. It also described the maya.cmds library, and how to
access the documentation that accompanies the functions available in that library.

3
Project 1: Randomly Placing Objects in a Scene

Note: Sample Notes Only, This section will include additional resources upon acceptance

3.1 Introduction

In this project we will learn how to place objects randomly in a scene. We will begin by placing objects
randomly on the x, y, and z planes individually, then show how we can combine them.

3.2 The Random Library

The random library in Python allows us to generate (pseudo) random numbers. To use the library, as with
maya.cmds, we must first import the library using the following line of code.

import random

If you prefer you can import random as an alias, like we did with cmds, we could use:

import random as rdm

The method random will return a float between 0 and 1. While the method randint(start, stop) returns a
random number between the given range. These are the two methods we will use most in this course. The
documentation for random will provide more insight into the methods available through the random library.

Note: Sample Notes Only, This section will include SIGNIFICANT additional resources

upon acceptance

3.3 Code

For this project we will begin with a sphere as our object. We will just use the default sphere, then scale
it later as we wish. To create a sphere we use the maya command polySphere. There are several flags
(parameters) available for polySphere(), but for now we will just use the defaults to create a unit sphere.

14 ann mcnamara

#import the maya commands library

import maya.cmds as cmds

cmds.polySphere() # This will create a default (unit) sphere

3.4 Creating Multiple Objects

To create multiple objects we will use a for loop. We first create a variable to hold the number of objects
we want to create. Just so we can see everything working we will start out with five objects then increase
than number later. Our for loop will then iterate over that number of objects and create the objects. This is
shown in Listing 3.1. However, we have not moved the objects so they will appear on top of each other at
the default position, the origin. This is shown in Figure 3.1. Listing ?? adds a single line of code to move
the objects to random locations along X. Again shown in the center of Figure 3.1 with fifty spheres, and on
the right with 250 spheres. This demonstrates the ease at which we can build scenes with Python scripts to
place objects randomly in a scene.

1 import maya.cmds as cmds #import the maya commands library

2 import random #import the random library

3

4 # Create a variable to hold the number of objects

5 numObjects = 5

6

7 # Loop over number of objects

8 # creating and placing each object as it is created

9

10 for object in range(numObjects):

11 cmds.polySphere() # Create a polySphere

Listing 3.1: Using Maya functions to create mutliple objects in a scene (3.1_justLoop.py)

Figure 3.1:
The result
of using
functions
to create,
size and
randomly
place
objects in
a scene
and place
them
randomly
in the x-
direction

Five objects on a single dimension does not yield very complex results. Listing ?? shows how we can
place objects randomly in each axis.

1 import maya.cmds as cmds #import the maya commands library

2 import random #import the random library

3

4 cmds.file(new = True, force = True)

5

6 # Create a variable to hold the number of objects

7 numObjects = 5

8

9 # Loop over number of objects

using python scripting to enhance workflow in autodesk maya: coures notes 15

10 # creating and placing each object as it is created

11

12 for object in range(numObjects):

13 cmds.polySphere() # Create a polySphere

14 # now we will move the spheres as they are created

15 cmds.move(random.randint(-10, 10), 0, 0)

Listing 3.2: Using Maya functions to create multiple objects in a scene (3.2_loopRandomX.py)

This code can easily be adapted to create different objects for example changing line 11 in Listing 3.2 would
yield an scenes as shown in Figure 3.2. We can also move in all directions as shown in Listing 3.3. Here we
have created variables to hold the upper and lower values to provide to our randomint() function. The values
for each dimension do not have to be the same. For example, if we wanted the objects placed closer together
in Y we could reduce the bounds for Y. We also do not have to have a negative number as the lower bound.
As shown in Figure 3.3, if we change line 25 in Listing 3.3 from cmds.polySphere() to cmds.polyCube() we
will change the result. This also applies to all the objects available to create in Maya.

1 import maya.cmds as cmds #import the maya commands library

2 import random #import the random library

3

4 cmds.file(new = True, force = True)

5

6 # Create a variable to hold the number of objects

7 numObjects = 250

8 # Create variables for the random bounds so we can

9 # easily update them

10 # we can have more control if we have separate

11 # bounds for X Y and X

12 upperX = 10

13 lowerX = -10

14

15 upperY = 3

16 lowerY = -3

17

18 upperZ = 10

19 lowerZ = -10

20

21 # Loop over number of objects

22 # creating and placing each object as it is created

23

24 for object in range(numObjects):

25 cmds.polySphere() # Create a polySphere

26 # now we will move the spheres as they are created

27 cmds.move(random.randint(lowerX, upperX), random.randint(lowerY, upperY), random.randint(lowerZ, upperZ))

28 cmds.move(random.randint(lowerX, upperX), random.randint(lowerY, upperY), random.randint(lowerZ, upperZ))

29 cmds.move(random.randint(lowerX, upperX), random.randint(lowerY, upperY), random.randint(lowerZ, upperZ))

30

31 # clear the active list

32 cmds.select(clear=True)

Listing 3.3: Using Maya functions to create multiple objects in a scene (3.3_loopRandomXYZ.py)

3.5 Bundling Code into Functions

Functions are a convenient way to package up a group of statements that accomplish a specific task. Once
we package our code in a function it can be reused over and over again. We call a function by using its name,

16 ann mcnamara

Figure 3.2:
The re-
sult of
changing
the object
created
in Listing
3.3

and we provide any input the function might need, and store any results the function might return back to
us. We have already encountered many functions but we just used them (ex. scale(), move(), select(), print()).
These are built in functions, or functions that come with the programming language. As programmers we
want to write our own functions to solve our own particular problems.

You use functions in programming to bundle a set of instructions that you want to use repeatedly or that,
because of their complexity, are better self-contained in a sub-program and called when needed. That means
that a function is a piece of code written to carry out a specified task.

To carry out that specific task, the function may or may not need multiple pieces of information provided to
it, these are called inputs. (Functions can have optional inputs.). When the task is carried out, the function
might have a value to return, so a function may or may not return values. (Functions can have optional
outputs/return-values.)

Generally, a good rule of thumb is if you’ve written the same code twice, then you should think about
putting it into a function. One of the objectives of good programming is to keep things DRY (Don’t Repeat
Yourself), that way if you need to make a change it will only need to happen in one place and it also makes
debugging far quicker and simplified.
There are a few steps to define a function

1. Use the keyword def to declare a function and give it a name NOTE the name should reflect what the
function does - believe me you want to name your functions well

2. If you have parameters they go inside () after the function name and then end that line with a :

3. Add your code indented

4. End your function with the keyword “return" and a value if you want the function to return anything (if
not then it will simply continue to the next line of code)

def functionName(parameter1, parameter2...):

code to execute

return value # optional

using python scripting to enhance workflow in autodesk maya: coures notes 17

the function name should describe the action

to INVOKE a function we have to CALL it

functionName(argument1, argument2). # this is calling the function

You can pass any number of arguments, each argument is mapped to each parameter in the function

If you have more than a few parameters you might # want to rethink if the function could be

separated into multiple function, maybe you are # not trying to just do one thing.

Figure 3.3:
The result
of using
functions
to create,
size and
randomly
place
objects in
a scene

1 # MAYA

2 import maya.cmds as cmds

3 import random

4 #This Creates a new file

5 cmds.file(force=True, new=True)

6

7 # create a sphere

18 ann mcnamara

8 def createSphere(theRadius):

9 print 'Creating A Sphere'

10 sphere = cmds.polySphere(radius = theRadius)

11 return sphere

12

13 # scale an object - this will work for any object

14 def scaleObject(theObject, scaleX, scaleY, scaleZ):

15 cmds.select(clear = True)

16 cmds.select(theObject)

17 cmds.scale(scaleX, scaleY, scaleZ, theObject)

18

19 # uniformScale

20 # 2 parameters

21 # theObject

22 # scaleFactor - this will work on any object

23 def uniformScale(theObject, scaleFactor):

24 cmds.scale(scaleFactor, scaleFactor, scaleFactor, theObject)

25

26 def randomPlace(theObject, gridSize):

27 xTranslate = random.randint(0, gridSize)

28 yTranslate = random.randint(0, gridSize)

29 zTranslate = random.randint(0, gridSize)

30

31 cmds.move(xTranslate, yTranslate, zTranslate, theObject)

32

33

34 mySphere = createSphere(5)

35 scaleObject(mySphere[0], 1, 3, 4)

36

37 myCube = cmds.polyCube()

38 scaleObject(myCube[0], 1, 8, 1)

39

40 myTorus = cmds.polyTorus()

41

42 uniformScale(mySphere[0], 10)

43 uniformScale(myCube[0], 10)

44

45 #This Creates a new file

46 cmds.file(force=True, new=True)

47

48 numberOfSpheres = 30

49 for i in range(numberOfSpheres):

50 sphereRadius = random.randint(1, 5)

51 sphere = createSphere(sphereRadius)

52 randomPlace(sphere[0], 55)

53

54 numberOfCubes = 20

55 for i in range(numberOfCubes):

56 cubeSize = random.randint(1, 3)

57 cube = cmds.polyCube()

58 uniformScale(cube[0], cubeSize)

59 randomPlace(cube[0], 60)

60

61 numberOfTorii = 40

62 for i in range(numberOfTorii):

63 torusSize = random.randint(1, 6)

64 torus = cmds.polyTorus()

65 uniformScale(torus[0], torusSize)

66 randomPlace(torus[0], 70)

67

68

using python scripting to enhance workflow in autodesk maya: coures notes 19

69 cmds.select(clear=True)

Listing 3.4: Using Maya functions to create size and randomly place objects in a scene
(3.4_mayaFunctions.py)

In Listing 3.5 the code first uses a loop to call the functions, then packages that loop into its own function so
it can be called with a single line of code. Here we introduce default parameter values. If no argument values
are provided when the function is called then the function will use the default values. Figure 3.4 shows the
result of calling this function with fifty spheres, and an a thirty by thirty by thirty grid. Of course we can
repeatedly call the function, we could even put the function call inside a loop, and this would result in a
denser grid as shown in Figure 3.5.

1 # Remember a function should really just do one thing

2 # We have 2 functions one creating the sphere and shading it

3 import maya.cmds as cmds

4 import random

5

6 #This Creates a new file

7 cmds.file(force=True, new=True)

8

9 # Creates a sphere, prints out its name, and returns the sphere.

10 # we can assign default values to the parameters

11 # here if no values are passed in the the default values are used

12 def createSphere(theRadius = 3, xScale = 1, yScale = 1, zScale = 1):

13 sphere = cmds.polySphere(radius = theRadius)

14 print 'Creating: ' + sphere[0]

15 return sphere

16

17 # Shades the object based off rgb values.

18 def shadeObject(theObject, red = 1.0, green = 1.0, blue = 1.0):

19 shadingNode = cmds.shadingNode('blinn', asShader=True)

20 cmds.setAttr(shadingNode+".color", red, green, blue, type='double3')

21 shadingGroup = cmds.sets(name=theObject+'SG', empty=True, renderable=True, noSurfaceShader = True)

22 print shadingGroup

23 cmds.connectAttr(shadingNode+'.outColor', shadingGroup+'.surfaceShader')

24 cmds.select(theObject)

25 cmds.sets(e=True, forceElement=shadingGroup)

26

27 # Scales the object, but uses default values

28 def scaleObject(theObject, xScale = 1, yScale = 1, zScale = 1):

29 cmds.scale(xScale, yScale, zScale, theObject)

30

31 # Scales the object uniformly

32 def uniformScale(theObject, scaleFactor = 1):

33 cmds.scale(scaleFactor, scaleFactor, scaleFactor, theObject)

34

35 # places the object randomly in a 3D grid

36 def randomPlace(theObject, gridSize):

37 xTranslate = random.randint(0, gridSize)

38 yTranslate = random.randint(0, gridSize)

39 zTranslate = random.randint(0, gridSize)

40

41 cmds.move(xTranslate, yTranslate, zTranslate, theObject)

42

43

44 sphere = createSphere(2)

45 shadeObject(sphere[0], 1, 0, 0)

46

20 ann mcnamara

47 cube = cmds.polyCube()

48 cmds.move(-2, 0, 0, cube)

49 shadeObject(cube[0], 1, 0, 1) # Change this to see different colors

50 scaleObject(cube[0],1, 8, 5)

51

52 # Lets make something colorful

53 numSpheres = 30

54 gridSize = 40

55 for i in range(numSpheres):

56 xTranslate = random.randint(0, numSpheres)

57 yTranslate = random.randint(0, numSpheres/10)

58 zTranslate = random.randint(0, numSpheres)

59

60 sphereRadius = random.randint(1, 3)

61 sphere = createSphere(sphereRadius)

62 shadeObject(sphere[0], random.random(), random.random(), random.random())

63 randomPlace(sphere, gridSize)

64

65 # Completely reset the Maya scene (similar to using "cmds.select(all=True) cmds.delete()")

66 cmds.file(force=True, new=True)

67

68 ##

69 # Now lets actually put that loop into a function so

70 # we can call it easily.

71

72 # Returns a random integer based off the number of objects

73 def myRandom(start = 0, numObjects = 100, divideBy = 1):

74 return random.randint(start, numObjects/divideBy)

75

76 # Creates a specified number of spheres, randomly moves them, and adds a random color

77 def lotsOfSpheres(numObjects = 100, gridSize=100):

78 for i in range(numObjects):

79 sphereRadius = random.randint(1, 3)

80 sphere = createSphere(sphereRadius)

81 shadeObject(sphere[0], random.random(), random.random(), random.random())

82 randomPlace(sphere, gridSize)

83 cmds.select(all=True, clear=True)

84

85 # lotsOfSpheres() # Calling like this will use the default values

86 lotsOfSpheres(50, 30)

Listing 3.5: Using Maya functions to create shade and randomly place objects in a scene
(3.5_mayaFunctions.py)

3.6 Summary

In this section, we illustrated how we can use Python scripting to quickly populate scenes. The examples
used simple primitives but are trivial to generalize to more complex objects, or groups of objects. These
examples begin to show the power of Python scripting when compared to manually adding a large number
of diverse objects to a complex scene. It is effective and efficient to use python scripting to create, place, and
even shade multiple objects in Maya scenes. The code presented in this chapter is intended as a foundation to
encourage the reader to imagine and innovate new examples that will satisfy their own project requirements.

using python scripting to enhance workflow in autodesk maya: coures notes 21

Figure 3.4:
The result
of using
functions
to draw
multiple
spheres in
random
colors on
a 3D grid
in Maya

22 ann mcnamara

Figure 3.5:
The result
of re-
peatedly
calling a
function
to draw
multiple
spheres in
random
colors on
a 3D grid

4
Project 2: Creating a Custom GUI

4.1 Graphical User Interfaces in Maya

Creating Graphical User Interfaces (GUIs) is a straightforward process using Python and Maya 2022. We
create a window, populate it with buttons, or other UI elements. Each button (UI element) in the GUI can
then be connected to a Python Function. In this chapter we will cover

• Creating a simple window

• Populating a window with buttons

• linking buttons to commands (actions)

• Organizing a UI through classes

• Using tabs and scrolling

4.2 Creating a Window

To create a window we use the window command. Before we create the window we will want to check if
another copy of this window exists (otherwise we will simply create multiple copies of the same window -
this is typically not the desired result. This is shown in Listing 4.1. Prior to creating the window we first
check if it exists. Then we create the window. There are some optional arguments. The first is the name
of the window, followed by the title of the window, in this case My First Window, the icon title (which by
default is the same as the title) and the widthHeight sets the size of the window (500, 150). We assign the
new window to the variable name myWindow so we can reference it later. Before we can add any elements to
the window we must specify a layout. In listing 4.1 we set up column layout to add UI elements vertically
to the window. The code checks for the existence of the window and if it already exists, deletes it before we
create a window. Otherwise, we will end up with multiple windows, which is rarely the intended outcome.

1 import maya.cmds as cmds

2

3 # define a function to create the window

4 def createUI():

5 # As we dont want multiple copies of the window

6 # we first check if the window exists and if it does

7 # we need to delete it

8 if cmds.window('myWindow', exists=True):

24 ann mcnamara

9 cmds.deleteUI('myWindow')

10

11 # create a new window with the title My First Window,

12 # with a width of 200 and a height of 150

13 # Assign the window to a variable myWindow

14 window = cmds.window("myWindow", title="My First Window", iconName='Show me on Icon',widthHeight=(500, 150))

15

16

17 # Before adding elements we must provide a layout

18 # This is a single column layout so elements are

19 # added vertically

20 cmds.columnLayout()

21

22 # now we can add some text in the form of a label

23 # Whatever appears between the " " will appear in the window

24 cmds.text(label="My Window, Hello...")

25

26 # finally we must show the window

27 cmds.showWindow(window)

28

29 # Call the function to create the UI

30 createUI()

Listing 4.1: Using Python functions to create a simple Window in Maya (4.1_Window.py)

4.3 Creating Buttons

Once we have our window established we can start to add UI elements. One of the most common UI
elements is a button. We add a button using cmds.button as follows:

1 cmds.button(label = "Create a Cube", command = ('cmds.polyCube()'))

Listing 4.2: Creating a cube by calling polyCube() directly

4.4 Linking Buttons to Actions

In the previous section we added buttons, but they were just placeholder buttons. No action resulted from
a button press. To associate a button press with an action we can provide a couple of different options. The
first way is to simply connect a command to the button as shown here:

1 cmds.button(label = "Create a Cube", command = ('cmds.polyCube()'))

Listing 4.3: Using command to trigger an action from a button press

Another way to connect functionality is to call a function. There is a small idiosyncrasy here in that the
function will accept arguments, *args, even though we don’t provide, or use any arguments. This is because
when Maya triggers a function it passes some data to the function. If we write the function without the

*args it will result in an error saying the function takes no arguments (1 given). Even if we don’t want to
use these arguments we still need to write the UI functions to accept arguments.

1 # Simple function to create a cube

2 # We need to include *args as MAYA will

3 # pass information regardless of whether

4 # that information is used in the function

5 def createCube(*args):

using python scripting to enhance workflow in autodesk maya: coures notes 25

6 cmds.polyCube()

7

8 # body of code

9

10 # create the button and add the function name as the trigger

11 cmds.button(label = "Create a Cube", command = createCube)

Listing 4.4: Using a function call to trigger an action from a button press

4.5 Capturing Input from GUIs

Often we want to allow the user to provide data as input to functions. Let’s say we want to allow the user
to input the number of objects and the vertical distance between them. We can create two fields to capture
this data. The number of objects would be a whole number, integer, while the distance between them can
be a floating point number. We can create these fields in our UI using intField and floatField respectively.
Each creates a field that can only accept data of the type specified. The intField can only accept integers,
and the floatField only captures floats. The values in each case are bound by a minimum and maximum
value. There is an invisible slider built in to the field. To access the slider hold down CTRL and press the
mouse button. To increase the value, slide the mouse to the right, and to decrease the value slide it to the
left. The step is specified with the -s/step parameter.

Listing 4.5 illustrates the simplicity of a basic GUI.

1 # Import the Maya commands library

2 import maya.cmds as cmds

3

4 # Use the cmds.window command to create a window.

5 # here we are providing a title, an icon name and

6 # the dimensions of the window

7 myWindow = cmds.window(title="Long Name", iconName='Short Name', widthHeight=(150, 100))

8

9 # columnLayot allows us to align window contents

10 cmds.columnLayout(adjustableColumn=True)

11

12 # Create a button

13 # Display "Click me"

14 cmds.button(label='Click Me')

15

16 # Create an EXIT button with a command to delete the UI

17 cmds.button(label='EXIT', command=('cmds.deleteUI(\"' + myWindow + '\", window=True)'))

18

19 # Set its parent to the Maya window (denoted by '..')

20 cmds.setParent('..')

21

22 # Display the window myWindow)

23 cmds.showWindow(myWindow)

Listing 4.5: Using Python functions to create a simple GUI (4.6_simpleGUI.py)

Adding buttons to a UI is just a matter of using the cmds.button() function.

1 cmds.button(label = "Create a Cube", command = ('cmds.polyCube()'))

Listing 4.6: Capturing input from the user

Listing 4.8 populates the UI with buttons to create shapes.

26 ann mcnamara

1 import maya.cmds as cmds

2

3 def createSphere(*args):

4 cmds.polySphere()

5

6 def createCube(*args):

7 cmds.polyCube()

8

9 def deleteCubes(*args):

10 allCubes = cmds.ls("pCube*")

11 if(len(allCubes)>0):

12 cmds.delete(allCubes)

13

14 # define a function to create the window

15 def createUIwithButtons():

16 # As we dont want multiple copies of the window

17 # we first check if the window exists and if it does

18 # we need to delete it

19 if cmds.window('myWindow', exists=True):

20 cmds.deleteUI('myWindow')

21

22 # create a new window with the title My First Window,

23 # with a width of 200 and a height of 150

24 # Assign the window to a variable myWindow

25 window = cmds.window("myWindow", title="My First Window", iconName='Show me on Icon',widthHeight=(200, 150))

26

27

28 # Before adding elements we must provide a layout

29 # This is a single column layout so elements are

30 # added vertically

31 cmds.columnLayout()

32

33 # now we can add some text in the form of a label

34 # Whatever appears between the " " will appear in the window

35 cmds.text(label="My Window, Hello...")

36

37 #now we can add buttons

38 #cmds.button(label = "Create a Cube", command = ('cmds.polyCube()'))

39

40 # it might be better to wrap the command in a function

41 cmds.button(label = "Create a Sphere", command = createSphere)

42 cmds.button(label = "Create a Cube", command = createCube)

43 # we can also add an option to delete the cubes

44 cmds.button(label = "Delete Cubes", command = deleteCubes)

45

46 # deleting the spheres is left as an exercise.

47

48 # finally we must show the window

49 cmds.showWindow(window)

50

51 # Call the function to create the UI

52 createUIwithButtons()

Listing 4.7: Using UI to create shapes at the touch of a button (4.7_addButtonsFunctions.py)

Listing 4.8 creates a stack of spheres or cubes. The number and size of the objects is dictacted by the
values entered in the fields.

1 import maya.cmds as cmds

2

3 global shapeCountField

4 global shapeSizeField

using python scripting to enhance workflow in autodesk maya: coures notes 27

5

6 def showUI():

7 global shapeCountField

8 global shapeSizeField

9 myWin = cmds.window(title="Make Shapes", widthHeight=(300,200))

10 cmds.columnLayout()

11 shapeCountField = cmds.intField(minValue=1)

12 shapeSizeField = cmds.floatField(minValue=0.5)

13 cmds.button(label="Stack Spheres", command=makeSpheres)

14 cmds.button(label="Stack Cubes", command=makeCubes)

15

16 cmds.showWindow(myWin)

17

18 def makeSpheres(*args):

19 global shapeCountField

20 global shapeSizeField

21 count = cmds.intField(shapeCountField, query=True, value=True)

22 rad = cmds.floatField(shapeSizeField, query=True, value=True)

23

24 for i in range(count):

25 cmds.polySphere(radius=rad)

26 cmds.move(0,(i * rad * 1.5), 0)

27

28 def makeCubes(*args):

29 global shapeCountField

30 global shapeSizeField

31 count = cmds.intField(shapeCountField, query=True, value=True)

32 size = cmds.floatField(shapeSizeField, query=True, value=True)

33

34 for i in range(count):

35 cmds.polyCube(depth=size, height=size, width=size)

36 cmds.move(0,(i * size * 1.5), 0)

37

38

39 showUI()

Listing 4.8: Using UI to create stacks of spheres or cubes (4.8_getinput.py)

Instead of a field we can use a slider using intSlider as shown in Listing 4.10

1 import maya.cmds as cmds

2

3 global numberOfCubesInput

4 global sizeSlider

5

6 def CreateUIwithInput():

7 # use the key word global here or

8 # we would create a local variable with

9 # the same name

10 global numberOfCubesInput

11 global sizeSlider

12 # As we dont want multiple copies of the window

13 # we first check if the window exists and if it does

14 # we need to delete it

15 if cmds.window('myWindow', exists=True):

16 cmds.deleteUI('myWindow')

17

18 # create a new window with the title My First Window,

19 # with a width of 200 and a height of 150

20 # Assign the window to a variable myWindow

21 window = cmds.window("myWindow", title="Create A Stack of Cubes Window", iconName='Show me on Icon',widthHeight

=(200, 150))

28 ann mcnamara

22

23 # Before adding elements we must provide a layout

24 # This is a single column layout so elements are

25 # added vertically

26 cmds.columnLayout()

27

28 # now we can add some text in the form of a label

29 # Whatever appears between the " " will appear in the window

30 cmds.text(label="Create Cubes")

31

32 #now we can add some input and some buttons

33 cmds.text(label = "Number of Cubes")

34 numberOfCubesInput = cmds.intField("noCubes", minValue = 0, maxValue = 10, value= 1, step = 1)

35 cmds.text(label = "Cube Size")

36 sizeSlider = cmds.intSlider(min = 1, max = 100, value = 1, step = 1)

37

38 cmds.button(label = "Create a Stack of Cubes", command = createCubes)

39

40 # finally we must show the window

41 cmds.showWindow(window)

42

43 def createCubes(*args):

44 # use the key word global here or

45 # we would create a local variable with

46 # the same name

47 global numberOfCubesInput

48 global sizeSlider

49

50 # retrieve the values in the UI fields

51 numberOfCubes = cmds.intField(numberOfCubesInput, query = True, value = True)

52 cubeSize = cmds.intSlider(sizeSlider, query = True, value = True)

53

54

55 for cube in range(numberOfCubes):

56 cmds.polyCube(width = cubeSize, height = cubeSize, depth = cubeSize)

57 cmds.move(0, cube * cubeSize, 0)

58

59

60 cmds.select(clear = True)

61

62 # Call the function to create the UI

63

64 cmds.file(f=True, new=True)

65 CreateUIwithInput()

Listing 4.9: Using UI to create stacks of spheres or cubes (4.9_slider.py)

4.6 Using Classes

Rather than use global variables, we can use classes to maintain state. This is illustrated in Listing ?? The
TorusClass encapsulates the attributes of the torus so we can initialize and create the shape using classes.
The output is shown in Figure 4.1

1 import maya.cmds as cmds

2

3 class TorusClass:

4 def __init__(self):

5 # Define an id string for the window first

6 winID = 'windowID'

using python scripting to enhance workflow in autodesk maya: coures notes 29

7

8 # Test to make sure that the UI isn't already active

9 if cmds.window(winID, exists=True):

10 cmds.deleteUI(winID)

11 self.win = cmds.window(winID,title="Stack of Donuts", widthHeight=(300,200))

12 cmds.columnLayout()

13 self.numDonuts= cmds.intField(minValue=1)

14 cmds.button(label="Make Donuts", command=self.makeDonuts)

15 cmds.showWindow(self.win)

16

17 def makeDonuts(self, *args):

18 number = cmds.intField(self.numDonuts, query=True, value=True)

19 for donut in range(0,number):

20 cmds.polyTorus(name = 'DoNut#')

21 cmds.move(0, donut*2, 0)

22

23 stack = TorusClass()

Listing 4.10: Using UI to create stacks of spheres or cubes (4.10_Classes.py)

.

Figure 4.1:
A stack
of Torii
generated
using
a Tor-
usClass
class to
maintain
state
attributes

4.7 Summary

MAYA GUIs are straightforward to set up in Python. This can make automating repetitive tasks as simple
as pressing a button. In this course we just looked at some of the elements available to populate UIs.

5
Project 3: Programming MASH Networks

5.1 Introduction to MASH Networks

MASH can be used to create “versatile motion design animations with procedural node networks". Effects
can be quickly assembled in a custom manner, and can be chained to realize unique variations.

5.2 Creating Dynamics with MASH

Listing 5.1 is a script that creates a MASH network to generate some rectangular shapes of random length
and adds effects to them so when the user presses play dynamic simulation is invoked. Figures ?? and
?? illustrate the progression of the dynamic animation. The real benefit of such a network is experienced
through viewing the actual animation.

1 import MASH.api as mapi

2 import maya.cmds as cmds

3

4 #new file

5 cmds.file(force=True, new=True)

6

7 #sphereToDistributeOn = cmds.polySphere(r=12)

8 originalCube = cmds.polyCube()

9

10 # create a new MASH network

11 mashNetwork = mapi.Network()

12 mashNetwork.createNetwork(name="Cubes")

13

14 # When you create a MASH network it creates

15 # some default nodes

16 # print out the default node names

17 print (mashNetwork.waiter)

18 print (mashNetwork.distribute)

19 print (mashNetwork.instancer)

20

21 cmds.setAttr(mashNetwork.distribute+'.arrangement', 3)

22 cmds.setAttr(mashNetwork.distribute+'.pointCount', 75)

23

24 # We can change the distribution

25 # each is represeneted by a number

26 # 1 = linear, 2 = radial, 3 = spherical, 4 = mesh, 5 = inPositionPP, 6 = Grid,

27 # 7 = Initial State 8 = Paint Effects 9 = volume

28 print (mashNetwork.distribute+'arrangement')

29 cmds.setAttr(mashNetwork.distribute+'.arrangement', 6)

using python scripting to enhance workflow in autodesk maya: coures notes 31

30 cmds.setAttr(mashNetwork.distribute+'.gridx', 5)

31 cmds.setAttr(mashNetwork.distribute+'.gridy', 5)

32 cmds.setAttr(mashNetwork.distribute+'.gridz', 5)

33

34 node = mashNetwork.addNode("MASH_Dynamics")

35

36 cmds.setAttr(mashNetwork.waiter+'_BulletSolverShape.groundPlanePositionY', -10)

37

38 cmds.setAttr(node.name+'.bounce', 1)

39

40 randomNode = mashNetwork.addNode("MASH_Random")

41 print (randomNode)

42 cmds.setAttr(mashNetwork.waiter+'_Random.scaleX', 1)

43 cmds.setAttr(mashNetwork.waiter+'_Random.scaleY', 10)

44 cmds.setAttr(mashNetwork.waiter+'_Random.scaleZ', .5)

45

46 # There are bunch of nodes we can add.

47 # another is SIGNAL NODE

48 # it basically adds random noise - lets add one

49 # add a Signal node

50 node = mashNetwork.addNode("MASH_Signal")

51 # set the signal node to have some scale noise

52 cmds.setAttr(node.name+".scaleX", 10)

53 # There are different types of noise

54 print (node.name)

Listing 5.1: Using Using MASH to create some dynamics (5.1_MASH.py)

Figure 5.1:
A ran-
dom
collection
of rect-
angular
shapes
generated
using a
MASH
network

32 ann mcnamara

Figure 5.2:
The dy-
namic
sim-
ulation
applied to
random
collection
of rect-
angular
shapes
generated
using a
MASH
network

5.3 MASH with FallOff Element

Figure 5.3 shows the result of introducing a falloff element in our MASH network. The falloff element
influences the attributes of the network elements it encloses. The code to generate this is listed in Listing 5.2.
The real benefit of such a network is experienced through viewing the animation.

1

2 ###########

3 import MASH.api as mapi

4 import maya.cmds as cmds

5 #new file

6 cmds.file(force=True, new=True)

7 sphereToDistributeOn = cmds.polySphere(r=15)

8 cmds.polyCube()

9

10 # create a new MASH network

11 mashNetwork = mapi.Network()

12 mashNetwork.createNetwork(name="Cubes")

13 # print out the default node names

14 print (mashNetwork.waiter)

15 print (mashNetwork.distribute)

16 print (mashNetwork.instancer)

17 # add a Signal node

18 node = mashNetwork.addNode("MASH_Signal")

19 # set the signal node to have some scale noise

20 cmds.setAttr(node.name+".scaleX", 10)

21 # print out the name of the signal node

22 print (node.name)

23 # add a Falloff to the Signal node

24 falloff = node.addFalloff()

25 # move the falloff

26 falloffParent = cmds.listRelatives(falloff, p=True)[0]

27 cmds.setAttr(falloffParent+".translateY", 8)

using python scripting to enhance workflow in autodesk maya: coures notes 33

Figure 5.3:
We can
move
(animate)
the offset
through
the
MASH
network
to quickly
generate
inter-
esting
effects

28 # make it so the network distributes onto the surface of a mesh

29 mashNetwork.meshDistribute(sphereToDistributeOn[0])

30 # set the point count of the network

31 mashNetwork.setPointCount(1000)

32 # print all the nodes in the network

33 nodes = mashNetwork.getAllNodesInNetwork()

34 print ("All nodes in network: ")

35 print (nodes)

36 # find all the falloffs in the network

37 for node in nodes:

38 mashNode = mapi.Node(node)

39 falloffs = mashNode.getFalloffs()

40 if falloffs:

41 print (node+" has the following falloffs: " + str(falloffs))

Listing 5.2: Using Using MASH to create some dynamics (5.2_MASH_FallOff.py)

5.4 Summary

MASH networks are a powerful tool to quickly generate repeating elements, dynamic processes and stochas-
tic simulations. You can even embed Python scripts to inject more autonomy into your MASH networks.

6
Project 4: Creating basic Joint Chains

6.1 Introduction

In this chapter we will introduce two simple scripts one to create a simple joint chain and a second to
generate a generic hand skeleton.

6.2 Creating a simple joint chain

This simple chains is shown in Figure ??. We provide the number of joints we want and the script will
generate them. As can be seen in Listing 6.1 Its important to orient the joints. Here we orient the bones as
travelling down the x-axis, and the y-axis is up. You can use any orientation you desire.

1 import maya.cmds as cmds

2

3 # create a skeleton based on the joints paramter

4 def createSkeleton(joints):

5

6 # clear the selection

7 cmds.select(clear=True)

8

9 # Create an empty list to hold the bones

10 bones = []

11 # set the position to the origin

12 pos = [0, 0, 0]

13

14

15 # for each joint we need to create a joint

16 # and append it to our bones list

17 for i in range(0, joints):

18 pos[1]= i * 5

19 bones.append(cmds.joint(p = pos))

20

21 # set the selection back to the first bone

22 cmds.select(bones[0], replace = True)

23

24 # call our functions with different numbers of joints

25 createSkeleton(5)

26 createSkeleton(3)

Listing 6.1: Using Python functions to create a simple GUI (6.1_singleChain.py)

using python scripting to enhance workflow in autodesk maya: coures notes 35

Figure 6.1:
A simple
joint
chain
with five
joints

6.3 Creating a jointed hand

Listing 6.2 shows the python code to create a simple jointed hand.

1 import maya.cmds as cmds

2 # Now create the hand

3 def createHand(fingers, joints):

4 # Clear the selection

5 cmds.select(clear=True)

6

7 # create the base joint, name it wrist

8 # set the postion to the origin

9 baseJoint = cmds.joint(name = 'wrist', p = (0, 0, 0))

10

11 # set reasonable values for the space between fingers,

12 # palm length and joint length

13 fingerSpacing = 2

14 palmLength = 3

15 jointLength = 1.5

16

17 # now set up each finger

18 for i in range(0, fingers):

19 cmds.select(baseJoint, replace = True)

20 pos = [0, palmLength, 0]

21 pos[0] = (i * fingerSpacing) - ((fingers -1) * fingerSpacing)/2

22

23 # create a base joint

24 cmds.joint(name='finger{0}base'.format(i+1), p=pos)

25

26 # create a joint for the number of

27 # joints requested

28 for j in range(0, joints):

29 cmds.joint(name='finger{0}joint{1}'.format((i+1), (j+1)), relative=True, p=(0, jointLength, 0))

30

36 ann mcnamara

31 cmds.select(baseJoint, replace=True)

32

33 # Call our function

34 createHand(5, 3)

Listing 6.2: Using Python functions to create a simple GUI (6.2_createHand.py)

Figure 6.2:
A simple
jointed
hand

6.4 Summary

This chapter gave a quick overview of how to create joint chains using python in Maya. We can also use
scripts for more advance rigging processes, including setting up IK chains and generating entire bipedal rigs.
The examples provided here are just a very basic representation of what is possible with python scripting
for generating rigs.

7
Additional Resources Resources

7.1 Resource Links

1. Python in Maya, Autodesk

2. Using Python, Autodesk

3. Maya Python Commands Documentation, Autodesk

4. Maya Programming with Python Cookbook, Adrian Herbez

https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/Maya-Scripting/files/GUID-C0F27A50-3DD6-454C-A4D1-9E3C44B3C990-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2020/ENU/Maya-Scripting/files/GUID-55B63946-CDC9-42E5-9B6E-45EE45CFC7FC-htm.html
https://download.autodesk.com/us/maya/2009help/CommandsPython/index.html

	Introduction
	Motivation
	Focus Areas
	A note on code listings

	Setting Up Python & Autodesk Maya
	A Note on Maya.cmds
	Summary

	Project 1: Randomly Placing Objects in a Scene
	Introduction
	The Random Library
	Code
	Creating Multiple Objects
	Bundling Code into Functions
	Summary

	Project 2: Creating a Custom GUI
	Graphical User Interfaces in Maya
	Creating a Window
	Creating Buttons
	Linking Buttons to Actions
	Capturing Input from GUIs
	Using Classes
	Summary

	Project 3: Programming MASH Networks
	Introduction to MASH Networks
	Creating Dynamics with MASH
	MASH with FallOff Element
	Summary

	Project 4: Creating basic Joint Chains
	Introduction
	Creating a simple joint chain
	Creating a jointed hand
	Summary

	Additional Resources Resources
	Resource Links

