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From the course proposal:

Mathematics is recognized as common basis for CG technology, but sometimes used as a black box in
a CG software tool. We expect better understanding of maths will conduce to not only better CG
tools, but also innovative ideas for a future production pipeline. The goal of this course is to pull the
trigger for the graphics people to know more about usefulness and fun of the maths behind the
scenes.

We therefore select a few typical CG topics ranging from elementary to standard levels, so that the
course attendees can easily access the course content. We don’t assume that the attendees have
familiarity with highly advanced mathematics. Elements of linear algebra and calculus at
undergraduate level would be enough.

More specifically, we start with homogeneous coordinates, affine transformations and quaternions.
These are common and basic mathematical concepts for CG. Matrix exponential and logarithm are
then discussed for curve/surface editing, deformation and animation of geometric objects.
Eigenvalues and eigenvectors are also well known mathematical concepts, yet appear with different
faces in various graphics applications. In this course we intend to give a unified mathematical scope of
these concepts. The corresponding graphics topics then include principal curvatures in geometry, PCA
and Bayesian Inference in statistical approaches for animation, and

Spherical Harmonics for image-based rendering. As an advanced topic, we briefly describe the
mathematical concept called duality. Dual quaternion and theory of distribution will then be explained
as mathematical basis of interpolation techniques for computer animation.

A unique feature of this course is that we demonstrate most of the mathematical concepts without
rigorous formulation, while first showing their graphics applications. We expect this makes it easy to
understand the mathematics mentioned above and to open the door for more advanced
mathematical approaches.
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Homogeneous Coordinates 3D axis rotation and quaternions
Y1 b\ (%1 an ap aiz by (x .
»| A br||x| |an an an b||lx Rx = (cos O)x + (sinf)(u X X) + (1 —cos&)(u - x)u
yi| by||x3| ~|as1 axn as bi||xs
1 0 0 0 1J)\1 0 0 0 1/\1

sin(1 —¢ sin £
(. i 0+ — ¢41
sin ¢ sin ¢

slerp(qo,qi1,1) :=

BACKGROUND

* Mathematics plays a key role in various CG fields

* However maths is sometimes in the black box of the CG tools
Used implicitly
Not sure what maths is actually utilized

Why so useful?
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BACKGROUND

Geometry Animation (Example-based) Rendering (Image-based)

Curvature Covariance Matrix Spherical Harmonics
n-1 ¢
A Cx = (X -ux)X _ﬂX)T> Leny(') ~ Z Z L'g"yE”(w')
H= T Al 0 =0 m=—C
i A2
K= 0"Cx0 = AV = Ay
0 A Ao = —€(£+1).

|Eigenvalue “A” everywhere in CG!

AIM AND SCOPE

Topics focused on

» Basic geometry and algebra - affine transform, rotation and quaternions

» CG application of eigenvalues, eigenvectors and eigenfunctions

Goal of this course

¢ Clarify which maths is used in practice
* Explain why so useful

* Guide to more advanced topics
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Affine transformation and
Homogeneous coordinates

* Affine transformation is a composition of a linear transformation and a
translation. In 3D, it is natural to use a vector with three components and a
matrix of size three.

* However, in this picture we have to deal a linear transformation and a
translation separately. If we introduce one-size-more, that is, a vector with
four components and a matrix of size four, we can integrate both a linear
transformation and a translation in a unified manner.

* This technique directly related with the concept of homogenous coordinates. |
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Inhomogeneous coordinate plane

X x+a
H
y y+b

X x+a
vl |y+b
1 1
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* A translation on a plane is expressed by matrix.
* Trick is to 'add one extra dimension'.

* 3D matrix multiplication restricted on a plane z = 1.
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Relation between homogeneous and inhomogeneous coordinates

X a

y|=t|B

Z 1
a:f,B:X
Z Z

« [x:y:z]: homogeneous coordinates

* (a,f) :inhomogeneous coordinates




Rigid motion in 3D

Matrix expression of rigid motion in homogeneous coordinates

Matrix expression of rigid motion in inhomogeneous coordinates

8
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Example: Use of homogeneous coordinates in description of 3D rigid motion

e R : 3D rotation matrix

|
)

a
b ) X
¢/ : translation vector®

&

Y] : 3D vector, inhomongeneous coordinates (= usual expression)
%

: 3D vector, homogenous coordinates

|
{
|

=N 8

a

¢.¥* In the course notes, we sometimes denote a column vector\ . /by (a, b, )T
1]
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Affine transformation in 3D

Matrix expression of affine transformation
in homogeneous coordinates

7))+ ()

Matrix expression of rigid motion
in inhomogeneous coordinates

/
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Example: Use of homogeneous coordinates for 3D affine transformation

« A :3D regular matrix, i.e., det A # 0

a
b .
c) : translation vector

: 3D vector, homogeneous coordinates

L ]
RS SNSI
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Example: A Homogeneous Coordinate in Pose Space Deformation

v1,...,05 € R3 : points

fi,..., fx €R  :positive

Want to define the average of v1,..., v

Method 1 : inhomogenous coordinates

fi K
Wi = . :weight, such that w; =1
Zf:l fk e ; Z
K K
The average : = Zwkvk _ M
k=1 Zk:l T

Pose Space Deformation

Method 2 : homogenous coordinates

AGES
) linear combination

h (1}11) +-+ fx (v{(> € R*! : The average in homog coord

<f1111 + o+ fKUK) c R3+!

Ja Sk eoo gk Iz % x/t
,,,,,,,,,,,, - y y/t
[ cmessemsesmameamassese in homog coord M 2/t
Sk kv ¢ 1
Zkkzl fk G R3+1
1
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Rotation, Quaternion,
Lie groups and Lie algebra

3D rotation often arises in CG.
Quaternion is used for description of 3D rotations.
The totality of rotations is a typical example of a Lie group.

Lie algebra and the exponential map is a powerful device to deal
with a Lie group.
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3D ROTATION: AXIS-ANGLE

* There are several ways to describe 3D rotation.

3D rotation can be specified by the rotation axis (= normal vector to
rotation plane) and the rotation angle.

* The number of essential parameters is three.
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3D ROTATION: AXIS-ANGLE

R(x) = (u-x)u+ (sinf)(x — (u-x)u) + (cos)(u x x)

* We can take an orthonormal basis on the rotation plane.
* We have an explicit 2D-like expression with these basis.

* This is one version of Rodrigues formula.
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Quaternion and 4D/3D rotation

q — pqr
4D Rotation qeH

p,r € H*

q~ pgp”’
3D Rotation q € ImH

p € H*

q :rotated vector

P, T :rotator

Quaternion can express the 4D rotation as well as 3D rotation.

+ 3D rotation is a special form of 4D rotation
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Both points and rotations are complex numbers

eK0+¢) 6K0+¢)

. Aformula €’e" = ") of complex numbers has three geometric interpretation.
- Rotate a point € by ¥ degree.
* Rotate a point ¢ by § degree.

+ The composition of the rotation by € and that by ¥ .
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NON-COMMUTATIVITY OF 3D ROTATIONS

®
4

o

* While a composition of 2D rotations does not depend on the order, a
composition of 3D rotations depends on the order.

¢ Non-commutative

* We here consider the composition of the rotation with respect to
x-axis and that to y-axis.
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NON-COMMUTATIVITY OF 3D ROTATIONS

Ry (Q)Ry (¢) # Ry(‘P)Rm (0)

@
L 4

* This is a main differences in 2D and 3D rotations.
* This non-commutativity causes complication theoretically and computationally.

* This non-commutativity makes our life interesting. &
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EXPONENTIAL : TAYLOR EXPANSION

I
e’ = T+ -z —T
2”6

* Taylor series expansion of exponential function uses
- power,
- scalar multiple,
- summation, and

- convergence of infinite series

* These for operations are valid for matrix;
Taylor expansion is the definition of matrix exponential.
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EXPONENTIAL : TAYLOR EXPANSION

MATRIX EXPONENTIAL

1 1
exp(A) = I+A+§A2+—A3+-.-

6

EXPONENTIAL : ROTATION

(0 —0) 1— 502+ 50 — -
exp =
6 0 9_%93_‘_%95_...

—0 + 36% — 165 + -
1— 262+ L6*—--.
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EXPONENTIAL : ROTATION

EXPONENTIAL : ROTATION

_9) cos) —sind

0
exp =
(9 0 sin 6 cos 6

» For a matrix with imaginary eigenvalues,

matrix exponential is reduced to Taylor series of trigonometric function

* A rotation matrix can be regarded as an example of matrix exponential.

» Exponential law shows the additivity of angle variables.

-20-



LIE ALGEBRA

* A manifold is a fancy name of curved space

* A matrix group is a curved space with a group structure: it's called a Lie group.
* Atangent space is a linear approximation of a curved space

* A tangent space of Lie group is called Lie algebra.

* It is significant that the Lie algebra exactly has all the structure of Lie groups
locally; there is no loss by a linear approximation.

< v For more details, refer to the [Anjyo17]
11
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Summery: 3D rigid motion

« homogeneous coordinates P> treat both rotation and translation simultaneously.

* Lie group P the totality of rotations has group structure.
* Lie algebra P the linear approximation extra-ordinarily efficient.
* exponential map P its many properties helps both theoretically

and computationally.

MEMO
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What and why linear?

Linear structure is strong enough.

A linear interpolation can make a small number of data into a huge
number of data.

An eigenvalue and eigenvector can analyze a large number of data N2
by using a very small number of data, and find a feature of shape,
phenomena, and control.

We will see these by example later.
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FIELD OF BLENDING

* Alinear interpolation is one of most used and simple method.
For example, this is a background in keyframe animation.

* Alinear interpolation is natural, fast, and efficient in most cases.

* Alinear interpolation depends on the linear structure of the ambient
space, the set of data.
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FIELD OF BLENDING

* In most cases, naive values of position of points, velocity, density,
RGB, etc. are used in interpolation.
However, sometimes these parameters are not so appropriate for
interpolation.

* Artifact: for a curved space, a linear interpolation of two objects is
located outside of a space.
For example, a linear interpolation of two rotations is not a
rotation; it is not of determinant one.
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FIELD OF BLENDING

* Alinear interpolation is one of most used and simple method.

* Artifact: for a curved space, an linear interpolation of two objects is located
outside of a space.

* If we can linearlize a curved space, we can use a linear interpolation for an
interpolation in a curved space.

* Matrix exponential and its inverse (called matrix logarithm) give a linearization
of a Lie group (curved space) into a Lie algebra (flat space).
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SLERP

5S0(3) 53 Im H

linear

interpolation

SO(3) s3 Im H

Diagram explanation of slerp

* slerp is the middle vertical arrow.
This map is the composition of three arrows; log, linear-interpolation,
and exp.
In other words, if we sandwich slerp by log and exp, then it is
reduced to linear interpolation, which is as simple as possible.

* slerp lives in the quaternion world.
We can move to the rotation by the arrow from the middle to the
left.
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SLERP

* This diagram simply shows that
Slerp = exp o (linear interpolation) o log

* It also explains the following formula:

sin((1 — £)0) N sin(16)

for unit quaternions slerp(qo, 1, 1) = Sno ot —=—
do.q1 € S
because we have: slerp(qo, q1,1) = slerp(1, qlqal, Nqo

slerp (1, exp(6u),t) = exp(tfu)

* The formula in the last line shows that slerp is considered to be a linear
interpolation tfu inside the exponential function.

* The second last formula shows another property of slerp: equvariance.
* If we move two given points simultaneously by some rotation,

then the interpolated point also moves by exactly the same rotation.
This reduces the slerp map from two input into one input.
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Lie group and Lie algebra

* It is not realistic to draw a picture of a group, however,
geometrically, a group is considered to be a smooth curved space,
like a sphere. (The correct terminology in math is manifold.)

In general, a curved space is approximated by a linear space, called
a tangent space.

* Dual number is convenient for computation of Lie algebra.
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Interpolation on a curved space

* Matrix exponential and its inverse (called a matrix logarithm) give
a linearization of a Lie group (curved space) into a Lie algebra
(flat space, vector space).

* In other words, the exponential map gives a parametrization of a
curved space by a linear space, and this parametrization enables
us to interpolate linearly.

This simple idea widely spreads to an extension of interpolation.

It is efficient that:

* Use the linear structure of data.
Find a good linear structure for a curved space.

* Note that a natural linear structure may not reflect a good linear
structure.
For example, a linear structure of a matrix space is not appropriate
for a linear structure on rotation matrices.
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Eigenvalues, Eigenvectors
and Eigenfunctions

* Where do eigenvalues appear in CG?

» Eigenvalues and eigenvectors in statistical data analysis and
differential geometry.

» Eigenfunctions in Image-based rendering.
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What are "eigenvalue” and "eigenvector”??

Let’s start with the definition for a matrix case:

Assume that, for a given square matrix A, there exist non-zero vector u; and a (real or complex)
number A; which satisfy the following equation:

Aui = )\iui, for 1 SIS m

Then we refer to A; as an eigenvalue of Aand u; as eigenvector.

L - The definition is very clear! But hard to imagine what it actually means...
¢~ - Let’s consider a bit deeper mathematical aspect of eigenvalue and eigenvector.
- Of course let’s see what they act in our graphics applications!!

EIGENVALUES AND EIGENVECTORS IN STATISTICAL APPROACHES

Covariance matrix:

Bayesian Inference

Cx = (X — ux)X = ux)")

Gaussian distribution: Direct manipulation blendshapes with prior data

Making variations with PCA

209 = (=) T e { -3 x )05 - )}

A 0
A

UTcxU =

From left: 2D drawings (input); high dim space of the drawings; Reducing the dim to 2D.
See Baxter and Anjyo “Latent Doodle Space” , EUROGRAPHICS 2006.
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BASICS IN PROBABILISTIC/STATISTICAL APPROACHES

We assume that the probability P(A) for an event A in the whole space Q to occur is assigned,

where p satisfies the following properties, for any A and Bin Q (An B = ¢),

0 < p(4) < 1and p(@) =1,
p(AUB) =p(4) +p(B).
We then note that p(A°) =1 — p(A), where AC = Q \ A denotes the complement of A in Q.

Let X be a stochastic variable. We define the probability distribution function Px(z):R— [0,1] by

Px(z) =p(X < z).

If Px(z)is differentiable, we then have:
__dPx . Px(zx+Ax)—Px(z) _ .. Plx<X <2+ Ax)
px(e) = = = lim, Az = dim, As ~

+oo
px (x)is referred to as the probability density function of X :  px(x) =0 and / px(x)dz =1.

— 00

p(z1 < X < ) =/ IPX (1) de.

1 d'I,'

Muti-dimensional stochastic variable

Similarly to the stochastic variable X, we can consider a multi-dimensional stochastic variable

X= X1, X2, ... Xm)T and its probability density function:

Jointly probability distribution function of X Px(I1,$2, ce ;xm) = p(X1 <z,X2 <z, , Xin < 33m)
0™ Px
Probability density function of X. pX(xla 2 PR ;-Tm) = —<x17 L2y axm).
0x10xs - - - 0T,

Let g(X) be a (scalar/vector-valued) function of X. The mean value of g(X), denoted by (g(X)) is defined as:

(9(X)) 1:/ g(x1, 22, Tm)px(z1, T2, -+, Ty )dT1dT2 - - - dTry
If we put g(X)= X for example, we get the mean value of X denoted by i as:
= (0) = ([ adx, [ aapyix,o [ anpx)in)T

where we put x = (21,29, ,Zy,) and dx = dxidz; - - - dz,y, for convenience.
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Covariance matrix

For a given X = (X1,...,X»)", we define the covariance matrix:
Cx = (X — px) (X — px)T)

The covariance matrix Cxis an m X m real-valued square matrix, which is symmetric and positive semi-definite,

i.e., all the eigenvalues of Cx are non-negative real numbers.

Putting A= C’X for a moment, we have:

Au; = \u;, for 1 <:<m

where \; > 0 is an eigenvalue with its eigenvector U; such that <11j, uy) = jk for 1<4,k<m.
A 0
A2
[t then follows that AU = U . ,where U = (ujug - - up) -
O Alﬂ A] 0

wmPp 14U = UTAU =

1]
=

Gaussian distribution

Definition X = (Xi,...,X,,)” is called Gaussian, if its probability density function is given by:

w0 = (52) e { x5 x|

where the covariance matrix Cx positive definite, i.e., all the eigenvalues \; are positive.

Proposition Assume that Xis Gaussian. If we change the stochastic variable from X to

by Z = U"(X — pux), the probability density function of Z is:

0 Am
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APPLICATION: DIRECT MANIPULATION BLENDSHAPES (DMB)

Blendshape facial animation is known as a standard practice in digital production workplace.

Our blendshape model will be described with: f = Bw + f
- f is a 3n dimensional vector containing the components of each of the n vertices or control points
on the face vectorized in some arbitrary order such as xyzxyzxyz... and ( is the neutral shape in
similarly vectorized form.
- B € R3"*P contains the p blendshape targets f; so that the i-th column of B, b;, is given by
b, =f; —fy for 1 <i<p,ie, B=(b; by --- b,).
- W € R? are the blendshape weights.

Neutral face f; (leftmost) and target face examples

The position-constraint problem in DMB

To reduce the task of tuning the weight (vector) parameter W, we introduce the drag-and-drop operations
for artists to edit the face geometry and then automatically estimate the weight that prescribes the edited

face geometry.

More specifically, our edit process is described as follows:

1. Let Wy, be the weight vector of the current facef;,
(before edit): f, = Bw,, + f.
2. Let foq be the edited face: foq := d + fy, which is

obtained from a “drag & drop"” operation.
3. [position-constraint problem)]
Find W4the weight for the edited face geometry:
f, = Bw, + £y . This is done by minimizing:
[fa — feall = [Bwa — dJ|

where f denotes a vector consisting of the position-

constrained vertices of £, which are specified in step 2.
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Solving the position-constraint problem - (1) Statistical analysis of the prior data

- We have lots of prior data of motion capture or animation archives.

- We want to accelerate the edit process by “learning” the prior data.

\

Let X = {fi}?le be the prior data (expressed by blendshapes), where ny means the number of frames.
Consider the covariance matrix C¥, its eigenvalues {A;}and eigenvectors { U, }:

A\ 0

A
UT Oyl = 2 . and U= (u;uy - us,),

0 A3
where we have A\; > Xy > -+ > A3, > 0. Then we may assume:

Aj>0(1<j<k.) and Ay =0 for any k > k,, where k, := rank(Cx).

Solving the position-constraint problem - (2) PCA-like solver

Solve the problem by regularization (adding user-specified regularization parameter «):

min [[Bw — d||* + of|w]*

v

We find the solution in the form: Bw + fo = Uyc + € , where ¢ = (c1,¢a,+++ , )T € R? and
U;=(uguy --- ug) for 1<q<k,.
Note that the coefficient vector ¢ = (¢, ¢z, -+, ¢;)T behaves as g-dim Gaussian:
1) 1 1 & }
¢)=— ] ———exp{—=clA~lc
#=(7) i
The position-constraint problem is reduced to: *

q 2
. o _ C
min [Tye = JJ2 + Bllcl}, , where llela, = \| 3 1
k=1

We then have W from ¢ (or vice versa) via:
w= (BTB)"'BT(U,c + ey — fo),
c =UI'(Bw +f) — e).
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Solving the position-constraint problem - (3) Result

Direct manipulation edit around the left side of mouth:
Estimating correlation between facial muscles (Left: asymmetric behavior around lips.
Right: symmetric behavior by considering the covariance matrix of the training data.

* See more details from Anjyo, Todo and Lewis: “A Practical Approach to Direct Manipulation Blendshapes”, Journal of Graphics Tools 2012.

MEMO
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APPLICATION: MAKING DOODLE VARIATIONS FROM EXAMPLE

Problem definition:

o Only treat black-and-white line drawings

» Given N similar exemplar drawings (doodles)

 Construct more doodles that resemble the exemplars
«Basic Technique

» PCA + RBF interpolation

Example result:

See more from Baxter and Anjyo “Latent Doodle Space”, EUROGRAPHICS 2006. https://vimeo.com/3235882

MEMO
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CURVATURES AND EIGENVALUES

In Differential Geometry we consider a surface in the continuous world:

S ={p(u,v) = (x(u,v), y(u, v), z(u, v))T € R3|(u, v) € D}

Here we assume that, for any (u,v) € D, aéf;—y;i) is always of rank 2, where /I\R3
or Oz
o) _ (o o °
% = % % (Jacobian matrix).
u v
(u, U) P .‘p(u,v)
ou  Ov 3

Principal curvatures ), and ), are the eigenvalues of Weingarten matrix V-
wo[E F LM
\F G M N
where E = PusPu)s F ={pusPv); G =Py, Pv)
L ={pu-n); M ={p,,n); N=(p,,n)

MEMO
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The 1st fundamental form - Definition

Consider the following “symbolic” formula of the first fundamental form of the surface S:

I:=F dudu + 2F dudv + G dvdv

Or we have the matrix form: /I\R3

[_[EF 2
=\F G

E={pu,pu); F ={pu,pv); G=(py,py)

where we recall:

Note that E, F and G are determined with the 1st derivatives of p(u,v).

The 1st fundamental form - For what?

The first fundamental form I is used for:
- Measuring the curve length [ of a curve on S that comes from the curve c(t) = (u(t),v(t)) € D (a<t<b)

b b
= / \/Eu% + 2Fuvy + Gugdt = / \/(ut, ve)L(ug, ve)Tdt J\R3
a a

- Measuring the surface area A of S forany Uc D : S

A= [[ VEG T = [[ Ve opl)

where we recall the role of D, which defines .

S = {p(u,v) = (x(u,v), y(u, v), z(u, v)) € R3|(u,v) € D}

Note that det(I)# O, since S is regular (non-degenerate).

-40-




The 2nd fundamental form - Definition

The “symbolic” formula of the second fundamental form of surface S

II:=Ldudu + 2M dudv + N dvdv

Or we have the matrix form: _— L M
“\M N)
where we recall: L ={(Pyu,n); M =(pyy,n); N =(Dy,n)

Note that L, M and N are determined by the 2nd derivatives of p(u, v) and the normal vector at P.

Since (P, n) = (p,,n) = 0, we also have:

L= _<pu7nu> 5 M= _<pu7n'u> = _<pmnu> 0 N = _<pv7n'u>

The 2nd fundamental form - For what?
The second fundamental form II describes local behavior of surface S. For example” we know:

- If Il is positive definite at point p, then S is concave around ( p, in the figure).

- If Il is negative definite at point P, then S is convex around (p, in the figure).

(The above two cases are LN - M2>0).

- If Il is indefinite , i.e, LN - M2 <0, at pointP, then S is saddle-shaped ( p; in the figure).
n

T

P, I

?n
p,

* Learn more with S. Kobayashi “Differential Geometry for Curves and Surfaces”, Springer 2019.

-41-




Curvature

1. The curvature of a planar curve:  v(s) = (z(s),y(s))T € R?
where s denotes arc-length parameter.
As usual, denoting L by / (prime), we have 1 = |22|2 = (y/,~/),
which leads to (v",~) = 0.
We set n:= (—y'(s),2'(s))” , which is the vector perpendicular
to the tangent v/ and ||[n| =1 . So we have:
7'(s) = k(s)n

We refer to the coefficient #(s) = (7”(s),n) as the normal curvature at § .

2. The curvature of a curve v(s) = p(u(s),v(s))on S:

v"(s) = kg + kin,

where geodesic curvature vector kg lies on the tangent plane at p ;
normal curvature vector |Kn = fﬂn(S) n;
n : unit surface normal at p.

The coefficient kK, (s) = (v"(s),n) is referred to as

the normal curvature of 7 .

R3

RZ

Normal curvature of a surface

- Ky is calculated with the 2nd fundamental form 1I:
fin = (7'(8),m) = (7 (8), ') = —(p, v’ + p,v', nut’ + my0')
= L(u')? + 2Mu'v' + N (v')?
(Recall L=—(py,nu); M=—(p,,m); N=—(p,,n)).
- Consider a curve (u(s),v(s)) in D whose initial velocity
is given: (u’(0),2'(0)) = (r cos#,rsin#). Then the normal

curvature at p = p(ug, vo) = p(u(0),v(0)) is given by:

) — L cos#? 4+ 2M cosfsin @ + N sin §?
n\P) = E cos 62 + 2F cos 0 sin§ + G sin 62
_ La? +2Map + Nj?
T Ea?+2FaB+GB2°
where (a,8) # (0,0) € R? and 8 = atan.

( Recalling the following eq., the proof is easy:

(w0, v0) = (u(0),v(0))

1= Eu'(0)* + 2F4'(0)'(0) + G2/ (0)?
=r?(E cos® 6 + 2F cos sin 0 + G sin® §) ).
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Principal curvature as eigenvalues

At a point P on S, the normal curvature £, (p) can then be considered as a function of a and 3. So

we refer to it as A(a, B) for convenience. Now let’s find minimun and maximun of &y (p) = A(a, 8) over

(a,8) # 0 € R2

Proposition The minimum and maximun values of k,(p) over (o, 8) # 0 € R? are given by the

eigenvalues of the Weingarten matrix:

WﬁEF_lLM
“\r ¢ M N)°

where we note that the eigenvalues are real numbers, since W is a real-valued symmetric matrix.

Sketch of the proof:
. La? +2Maf + Nj? 2 . 02 Y o 02
Since A = Ao, 8) = B’ 1 2Faf G we have Lo+ 2Maf+ NB° — (Ea® 4+ 2FaB + GB*)A = 0.
(L= AE)a+ (M — \F)8 =0,

2 — 94 — 0, which :
o = op T Dy Wiidlmeans { (M = AF)a+ (N = AG)B = 0.

If A attains the minimum or maximun value at (o, 3) # 0, then we have
- " L M E F
This is equivalent to: (ﬂ/f 1\y> <§) =X (F‘ G) (g) . Since det(I) = det (? g) £0 , we get| W (;L;) - (3) )

Au; = \ju;, for 1 <i < 2.

The eigenvalues A and A: are called principal curvature.

Mean curvature, Gauss curvature and DDG

- Let A1 and A2 be the principal curvatures at p on S. Their (unit) eigenvectors are n
A
called principal directions.
= If Ay # Xg, their principal directions, denoted by v and +4 respectively,
are orthogonal to each other.
- Using the principal curvatures A\; and A, we define mean curvature H and 'fyé
Gauss curvature K as follows:
H:= — P
K = /\1/\2. S

- Discrete Differential Geometry (DDG) explores a new framework of describing
the “discrete” world (Differential Geometry deals with the continuous world).

- How to define a normal vector in DDG?

- Mean curvature, Gauss curvature, etc. are reformulated in DDG.

As for more about DDG, please refer to the books or previous SIGGRAPH or SIGGRAPH Asia course notes by Mathieu Desbrun and
his colleagues, such as De Goes, Desbrun, Tong “Vector Field Processing on Triangle Meshes” SIGGRAPH Asia 2015 Course Notes.
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EIGENFUNCTIONS IN IMAGE-BASED RENDERING

Spherical Harmonics
n-1 ¢
The rendering equation: L(X,w) = f Leny (0T (X, 0)dw' ~ Z Ly'T} (x)
s =0 m=—t

-1 ¢
Lo (@) Z D LY@

=0 m=—t
and

n-1 ¢
T(X,w') ~ Z Z T} (Y} (@)

=0 m=—-¢

where

ANyp=—te+ 1)y

/

Laplace-Beltrami operator Eigenvalue of A
on sphere $2

Eigenfunction (Spherical

harmonics) of A

Images courtesy of Kei Iwasaki

MEMO

-44-




FOURIER EXPANSION

We start with the classical result:
Fourier expansion theorem Suppose that f: [—m, 7] — R is a real-valued smooth function

satisfying f(—mn) = f(m). Then f is expressed in the following form:

ag = . -
f(z)= 5> + Zl(an cosnx + by, sin nx),

where we have the coefficients by
1

1 [7 T .
f(t)cosnt dt (n=0,1,2,---), bnf7r f@)sinnt dt (n=1,2,--+).

an = —
T J_x

As is well known, the above expression of f, called Fourier expansion, is derived from the following “orthogonal” property

i

of the trigonometric functions: .
/ cos’nt dt = / sin® nt dt = 7,

— —7

us
/ cosntcosmt dt = /

us
sinntsinmt dt =0, (m # n)

J—m

ks
/ cosntsinmt dt = 0.

—7

J—m

Fourier expansion is an eigenfunction expansion
2 d2
— 2 . g — _p2
COSNT = —N  COSNI; D) siInnr = —n
dx

sinnz.

We then note that:
dxz?
This means that cosnz or sinnz is a solution of the following linear differential equation:

d? — .2
(1x—2un = -—n"Up

—n?2, the above equation leads to a general form:

2
If we put A= j? and )\,

Au,, = \,u,

where A is a linear operator from vector (or typically function) space V' to itself
If u, # 0 in V, then u, is called an eigenfunction for the eigenvalue A,,.

In the Fourier expansion case, V is the function space consisting of smooth and periodic functions.
It's crucial that any element of V can then be expressed by the Fourier expansion, which gives an

eigenfunction expansion prescribed by the linear operator (1D Laplacian) A.
An element of V can be considered the function from S! (circle) to R. What if §2, instead of St ??
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The rendering equation needs integral computation on 2

Consider the PRT method (Precomputed Radiance Transfer) for diffuse reflection. Then we calculate

the following integral:
L(X, w) = f Len ()T (X, @')da,
SZ

where L., (w’) denotes the light intensity at X. that comes from the direction w’and T(x, @") is the

transfer function that describes how X.responds to the incoming light.

For efficient computation (in real-time!) to get high quality images, we should find a
good system of eigenfunctions that express the above integrants with fewer terms.

- Recall that we get the Fourier expansion case, where we consider 1D Laplacian to get the

eigenfunction system:{1, cos z, sinz, cos 2z, sin 2z, - - - }.
- For the $? case, we first consider 3D Laplacian and then restrict it on S2. This means that we want

to find eigenfunctions for the Laplace-Beltrami operator.

Laplace-Beltrami operator and Spherical Harmonics (SH) on $?

0? 02 0?
Consider 3D Laplacian: A := 57 + 8_y2 + =

By changing 3D coordinate with: x = (rsiné cos ¢, r sin @ sin p, r cos ) , we have:

0%f 20f cot@of 1 0%*f 1 0% 0*f 20f 1
=ZJ o022 Jy- 25, - 7 _TJ L 200 L Z A
Af Oor? + r Or r2 00 12002  r2sin?0 Op? Or? * r Or +r2 U

where we define Laplace-Beltrami operator:
o f 1 9%f

1 6 . of 1 02f af
=L 0 nedy L O g9 0T 97
A= G950 t e~ %0 T o T aeo2

The Laplace-Beltrami operator is applied to the functions defined on S2.
For agiven ¢ =0,1,2,---, we consider the following vector space:
H, := {f polynomial on R3| Af =0 and f(rz,ry,rz) = r*f(zx,y, ) for any z,y,z and r > 0}

When we consider f € H, as a function on S?, f is called an ¢-th order spherical harmonics.
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SH functions are the eigenfunctions of Laplace-Beltrami operator on 52

Consider H, := {f : 5% = R| f is ¢-th order spherical harmonics}.
(a) Then 77@ is a vector space with diHl?T[g =20+1

(b) Moreover we have L2(5?) = @?T(g(direct sum),where L*(S%):={f:5* >R |/ |f(w)Pdw < oo}.
S2
£=0 5
*The vector space L2(S?) is endowed with the inner product (f, g) := / f(w)g(w)dw.
SZ

It follows from (b) that we can calculate the approximation of the integral by SH expansions:
n—1

£
L(x, @) = fs Len(@)T(x. )’ ~ 3 > LIT}(X)

W=

n-1 ¢
La(@) = ) DL LIVA@) and T = Y > TP},

(=0 m=—{ =0 m=—¢ Aun = )\nun
where dw’ = sindfdé and { y]"(w)}—i<m<: is the orthogonal basis of H,. /

We also note that: /
S

@) (@)dw = b0 0mm s | A0, ) = —L(+ 1)y (0, 0) |

As for explicit description of the basis function v”(w) = y*(6,¢), please refer to the following paper, for instance: Sloan,
Krautz, Synyder “Precomputed radiance transfer for real-time dynamic low-frequency environments”, ACM TOG 2002.

Why are “eigenvalue” and “eigenvector”?

* We have understood that eigenvalue, eigenvector and eigenfunction
are very useful mathematical concepts!

- The concepts are not only for matrix, but also for (linear) differential operators.
- Many applications in statistics, geometry and rendering.

Au; = \ug, for 1 <7< m

* Let’s explore more graphics applications! v
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Duality in CG

MEMO
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The terminology 'dual’ appears in several situations:

(I) Alinear map from a vector space v to R is called a dual (vector) of v .
All the dual vectors of V is defined to be the dual vector space.
An example of a dual vector is the coordinate function.
A fancy example is a probability density function, which is regarded as the
dual of set of measurable sets.

As a natural generalization, Schwartz distribution, a class of generalized
function, is also regarded as a dual of some vector space, the space of test
functions. Schwartz distribution unifies the usual function and Dirac ‘e®
distribution. vy

(1) Another (very different) usage of 'dual’ is a dual number, typically as dual
quaternions.
Dual number is a generalization of usual numbers with introducing a fancy
virtual number € with the strange relation ¢2 — ¢ .
Note that € is not zero.

This number system is a purely algebraic object, so that any computation
can be extend to this new numbers.

Surprisingly, the dual number also has a geometric interpretation, a linear
approximation of curved object, like a surface, a curve.

This technique is used in automatic differentiation as well.
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DUAL 1: Dual Vector Space

V' :vector space
) dual

V™ . dual vector space

p €V :point )
&(p) : observation
feV+risalinearmap :V =R

§ is regarded as a “coordinate” onV.
l projection

- >R

DUAL 1: Application of Dual Vector Space

M : manifold (e.g. surface in R3)

vector field :
assign a tangent vector on each point € M

differential form (1form) : Idual
assign a cotangent vector on each point € M

™ = | ) T.M M "M = ) T;M
TeEM xeM

tangent bundle cotangent bundle

[
T OMM=T"M (1-form)

(I | ¢ exterior product
AZQIM = Q%M (2-form)
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DUAL 1 : Schwartz Distribution

Function »(x)
Example
Dirac delta

Example 1: A function ¢(z) is considered to be density. (Idea of probability)

53 pla) ———> T,(9)= [ pl@dp(@)doc R

. 3
test function R

T,(¢) lives in the dual of S

called Schwartz space

Example 2: Dirac Delta
d:83p(x)— ¢(0) eR

0 is also regarded as an element of dual of S.
Definition Schwartz distribution is an element of dual of S .

Remark
Since the dimension of S'is infinite, the rigorous definition requires some
continuity, regularity, related with the topology in the functions space.

1
%/ Itis a bit complicated, but don't be afraid; In an actual application, this continuity
Il often holds.
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DUAL 2: Dual Numbers

Dual number £: €2 =0

» Extend usual number by adding ¢ .

* Keep the computational law

(ab)e = a(be)

a(b+c) = ab+ ac : distributive

: associative

The role of €

several different applications

* Quaternion ——> Dual quaternion

* Manifold — Tangent space

* Function — Automatic differentiation

e.g. sin(x + ¢) = sin(x) + ¢ cos(z)
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DUAL QUATERNION

A quaternion number can express every 3D rotation.

A dual quaternion can express every 3D rigid motion.

* An advanced topic: don’t worry (and see [Anjyo17] for details).
* A unit dual quaternion can express Screw motion in 3D.

* It is a eight-dimensional real vector, with six free parameters.

* Dual number: a fancy but simple law of computation

* We have a reasonable extension of functions such as polynomials,
exponential, trigonometric, for dual variables.
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Dual quaternion

We introduce the dual quaternion space: H(¢)

p,g€H
* Element: p+qe € Hfe) { 2_0 ¢ asimbol
addition, multiplication 2 operations
o H(é‘) : algebra associative, distributive Compute as usual
Non-computative multiplication = Compute as quaternion

* Conjugate: p+qe=p —qe
+

* Norm: \P+q€|2=(P qs)(p + qe)

* Hife) is the algebra, with two operations, addition and multiplication.

* This algebra has the standard properties: associative and distributive,
so that we can do the computations as usual numbers.

* However, the multiplication is non-commutative; this is like a quaternion
number.

* Note that € is commutative with arbitrary dual quaternions.
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Example of computation of dual quaternion

p+ael” = (p+aqe)(p+ae)
= (Ppt+as)p—ae
(7 7)( 7) ., ) distributive
= PP +9qPe — pge — qqe ) ,
_ _ _ e“=0
= pp+(dp — pQg)e
= |p|° - 2Im(pq)e

Computation Rule: £ commutes with everything; this is a rule of H(e)

* A dual quaternion with norm 1 is called unit dual quaternion.
Ip+ael=1
<~ |p|=1 and Im(pq) =0

* Unit dual quaternion has 8-2=6 parameters
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Unit dual quaternion action as 3D rigid motion

(P+ae)(1+re)(p+qe)

= (p+(a+pr)e)(P—ae)
=pp+ ((a+pr)p - pa)e
=Pp+ (prP + (aP — pd))e

I 3D rotation 3D translation
1 —

T 3D rigid motion

Unit Dual Quaternion

. relm) =R’ 53D point

* p+a: unit dual quaternion

* pP=1: by the assumption
» prp: 3D rotation

e (gp —pq)e = 2Im(pq)e : 3D translation
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Exponential function: for several classes of numbers

1 1
exp(m):1+$+5m2+§x3+---

Key
often has a closed expression using exp, sin, cos,...(not infinite series)

ex -
real number —=X2_  positive real

a+ be (a,beR) iL» e"(L+be)=x+ye (z>0,yecR)

pure imaginary complex number __€XP__,  unit complex number ¢ = cosf + isin6

2| =1
ImH —SXP__, unit quaternion
elmH —=E & 1+clmH

H(s) —=E— invertible dual quaternion

All these exponential map is surjective, so that every numbers in
the right-hand side can be expressed as an exponential of the
left-hand side. It may not be unique, however.
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Exponential law in dual quaternion

exp(s(p + qe)) exp(t(p + qe)) = exp((s +t)(p + q¢))

p + qe € H(e)
s,teR

The key of the interpolation, behind

* Dual quaternion is non-commutative,
so the exponential law does not hold in general;
exp(p + qe) exp(r + s¢) z exp(p + qe +r + sg)

* However, the exponential law in the above form holds, because dual
quaternions in this form are commutative !

* This enables us to interpolation in dual quaternion
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Analogy between DUAL QUATERNION and COMPLEX NUMBERS

Hi(e)
d:cosé—l—é smé
2 2

~en(39)

O=0y+¢c0. cRE)=R+Re
: real dual number

§ =89 +¢es. € Im(H(e)) = ImH + (ImH)e

: unit imaginary unit quaternion

Analogy

{

C

0
x+yi:cos§+isin—

2
ool

feR : real number

i € Im C = {R : unit imaginary complex number

¢ The right column, complex numbers, can be regarded as a 'toy model' of the

left column, dual quaternion.

* Unit dual quaternion expresses all 3D rigid motion, 6 parameters, while unit
complex number expresses all 2D rotations, 2 parameters.

* In both pictures, unit imaginary number is the source of magic, which makes
the exponential function into the trigonometric function, sine and cosine.
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DUAL QUATERNION

A A

. 0 .
q—cos§+ssm§

* Dual quaternion expression of rigid motion well fits into screw theory:

- Pitch is 6., which is the epsilon part of dual real number 6 .
- Rotation angle along the rotation axis is 6y, which is the neutral part of 0.

- It is significant that the combination § = ¢, + ¢ 6. does arise in dual
quaternion expression as above .
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Further References

The original references of CG techniques and mathematics discussed in this course can
also be found in:

A [Anjyo17] Anjyo and Ochiai:
_BOOK Mathematical Basics of Motion and Deformation
in Computer Graphics: Second Edition, o

Second Edition

Mathematical
Basics of Motion

Synthesis Lectures on Computer Graphics and Animation,
Morgan & Claypool Publishers 2017

MATHEMATICAL BASICS FOR COMPUTER GRAPHICS

° https://youtu.be/I12Y-pJYmu9A

R
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QUESTIONS ? — Feel free to ask us :)

Hiroyuki Ochiai Ken Anjyo
email: ochiai@imi.kyushu-u.ac.jp email: anjyo@acm.org
https://researchmap.jp/read01628297?lang=en http://anjyo.org
MEMO
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