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ABSTRACT
In the development of novel algorithms and techniques in virtual
and augmented reality (VR/AR), it is crucial to take human visual
perception into account. For example, when hardware resources are
a restraining factor, the limitations of the human visual system can
be exploited in the creation and evaluation of new effective tech-
niques. Over the last decades, visual perception evaluation studies
have become a vital part of the design, development, and evalu-
ation of immersive computer graphics applications. This course
aims at introducing the attendees to the basic concepts of visual
perception applied to computer graphics and it offers an overview
of recent perceptual evaluation studies that have been conducted
with head-mounted displays (HMDs) in the context of VR and AR
applications. During this course, we call attention to the latest
published courses and surveys on visual perception applied to com-
puter graphics and interaction techniques. Through an extensive
search in the literature, we have identified six main areas in which
recent visual perceptual evaluation studies have been focused on:
distance perception, avatar perception, image quality, interaction,
motion perception, and cybersickness. Trends, main results, and
open challenges are discussed for each area and accompanied with
relevant references offering the attendees a wide introduction and
perspective on the topic.
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1 INTRODUCTION
With the increased adoption of virtual reality (VR) and augmented
reality (AR) technologies in several industry areas, e.g. gaming,
healthcare, industrial prototyping and training, especially using
head-mounted displays (HMDs), it is significantly critical to ensure
immersion and high-quality experiences for users of these systems.
Using VR HMDs, the user is entirely immersed in the virtual en-
vironment (VE), and an important requirement is for the observer
to perceive the virtual interaction as a natural experience. Hence,
it is vital that the device and applications provide a high visual
quality result. AR headsets allow the user to see both the real and
digital world simultaneously, adding virtual objects to the view and
displaying information on top of what the user is seeing. Hence, it
is crucial how virtual objects are perceived regarding spatial loca-
tion, visual appearance, and visual coherence. With HMDs come
challenges regarding maintaining a high visual quality result for
the observer. In the last few decades, research in computer graph-
ics has increasingly incorporated knowledge about human visual
perception in the design, development, and evaluation of novel
technical systems and techniques.

In addition to quantitative metrics, perceptual evaluation studies
using human observers are essential to assess the ultimate per-
ceived experience, immersion, and quality. Over the last decades,
the development of novel VR and AR technologies, has led to more
user experiences which require to be assessed by human observers.

The course provides an overview of recent research literature in
the area of VR and AR, focusing on visual perceptual evaluations
that have been carried out using HMDs in the last years. For the
analysed papers, the research questions and main results are de-
scribed together with future research directions. Key trends are also
highlighted and discussed. The main research areas identified were
classified in six categories: distance perception, avatar perception,
image quality, interaction, motion perception, and cybersickness.

2 FORMAT AND INTENDED AUDIENCE
Format: Half-day course (3h45m).
Audience: This course is relevant for everyone interested in learn-
ing about visual perception studies in VR and AR and who wants
an update on recent trends and open challenges in the area. In
particular, it could benefit beginners and trained VR/AR designers
and developers, as well as graphics and interactions researchers.
Prerequisites: This course has no hard prerequisites. Familiar-
ity with concepts of virtual reality, augmented reality, and head
mounted devices will be an advantage.
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3 COURSE RATIONALE
The aim of this course is to give an overview of how different
aspects of human visual perception have recently been studied and
applied in immersive virtual and augmented reality applications.
Through an extensive search in recent computer graphics literature,
we have identified six main research areas of growing interest:
distance perception, avatar perception, image quality, interaction,
motion perception, and cybersickness. Throughout the course we
highlight the main contributions and key trends for each area, the
focus and main results of these studies, and discuss some open
challenges. The intention of the course is to offer it to a broad
attendee base. Researchers interesting in approaching this field as
well as VR/AR developers, at all levels of expertise, will learn the
recent research questions in the area and their purpose/relevance
for the design of high-quality VR/AR immersive applications. In the
first part of the course, we introduce the topic of visual perception in
graphics and present the main basic theoretical concepts of visual
perception and the human visual system needed to understand
the remaining part of the course. The second part consists in an
outline of previous courses and state-of-the-art publications in
the computer graphics community on the topic. This will offer
the attendees a convenient summary of useful sources that can
be examined for further reading. With the third and fourth parts,
we go deeper into detail and describe the findings and the open
questions of each identified area.

4 COURSE SYLLABUS
(1) Introduction and Welcome (Garro) (10 min)

- Who Are We
- Course Aim
- Course Outline

(2) Part I: Basic Concepts of Visual Perception (Sundstedt) (30min)
(3) Part II: Overview of Literature in Perceptually Adaptive

Graphics (Sundstedt) (30 min)
(4) Part III: Recent Trends and Challenges in Distance Percep-

tion, Avatar Perception, and Image Quality (Garro) (60 min)
- Distance Perception
- Avatar Perception
- Image Quality

(5) BREAK (15 min)
(6) Part IV: Recent Trends and Challenges in Interaction, Motion

Perception, Cybersickness (Navarro) (60 min)
- Interaction
- Motion Perception
- Cybersickness

(7) Conclusion (Garro) (5 min)
(8) Discussion and Q&A (All) (15 min)

5 COURSE OUTLINE
Throughout the course, around 100 references will be cited pre-
senting the main trends and research focuses. The course will start
with an introductory session describing the aim of the course and
the learning outcomes. The outline of the course will be also pre-
sented. Moreover, we will introduce the six main areas that we have
identified through a literature review: distance perception, avatar

perception, image quality, interaction, motion perception, and cy-
bersickness. The adopted selection strategy will be also described.

5.1 Part I: Basic Concepts of Visual Perception
Since the course is designed as introductory level, the first part
of the course aims at providing a common ground of terminology
and basic concepts related to visual perception, e.g. a description of
the human visual system, the concept of visual cues and 3D visual
perception.

5.2 Part II: Overview of Literature in
Perceptually Adaptive Graphics

In this part, the course offers a set of key references summarising the
previous courses and surveys regarding visual perception studies
and their applications in computer graphics in general as well as
specifically in VR and AR domains.

5.3 Part III: Recent Trends and Challenges in
Distance Perception, Avatar Perception,
and Image Quality

With Part III, we describe more in detail what recently have been
studied in the first three areas: distance perception, avatar percep-
tion, and image quality.

Distance Perception.We introduce the concept of egocentric
distance underestimation [44] in VR environments analysing sev-
eral aspects which influence this phenomenon. The recent availabil-
ity of consumer HMDs has led to several works which compared
technical factors of different type of devices, e.g. weight, field of
view (FOV), and resolution [8, 20, 57]. Other aspects that have
been recently studied are the effect of visual stimulation in the far
peripheral region of the FOV [16, 29, 30], the influence of the pres-
ence of avatars, [5, 6, 12, 17, 18, 31] and the impact of interaction
in the virtual environment, e.g. walking or reaching interaction
[19, 21, 22, 25, 45]. Distance perception plays a crucial role also
in AR, where virtual objects appear in the same space of physical
objects. The location of virtual objects in the real world should be
perceived accurately to guarantee an effective experience for the
observer. We will discuss some of the works which analysed the
impact of different visual effects [10, 26, 42, 47].

Avatar Perception. Several recent studies investigated the im-
pact of the presence and different visual characteristics of 3D virtual
characters, in particular, self-avatars, on the user experience in VR
and AR applications (mostly VR), both in case of synchronous track-
ing and in case of visuomotor conflicts. Examples of topics that
will be discussed for this area are: the influence of the presence of
avatars[5], the level of visibility of avatar (e.g. partial avatar, full
body avatar) [34, 48], the personalisation of avatar [18, 52], and the
level of realism [4, 28, 32], on the following aspects of the immersive
experience: spatial perception, body ownership, sense of agency,
and sense of presence.

Image Quality.With the integration of eye tracking in HMDs,
it has become possible to exploit information from the user in the
design of novel algorithms and techniques, e.g. foveated render-
ing. Different aspects of the rendering pipeline have been modified
to incorporate gaze information in HMDs to provide speedups
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while maintaining a high or improved perceptual quality result, e.g.
[41, 46, 53, 54]. Other rendering techniques exploiting the human
visual system are based on contrast enhancement [59] and binoc-
ular disparity [13]. Other studies in the area of image quality and
foveated rendering have focused on computational optics [37], as
well as rendering of pre-corrected images [56].

Recently, research interest has also been growing on quality
assessment of model-based virtual environments both in VR [39, 58]
and AR [1, 2].

5.4 Part IV: Recent Trends and Challenges in
Interaction, Motion Perception, and
Cybersickness

With Part IV, we continue the detailed description of themain recent
works in the other identified areas: interaction, motion perception,
and cybersickness.

Interaction. The interaction section presents a set of works that
have analysed how 3D object manipulation can be carried out in VE.
The section explains how the visual perception system can be used
to improve the interactive experience, and how perception studies
differ from those in the area of human-computer interaction (HCI).
The section divides the works into two clusters: haptics analyses
techniques to explore the VE through a simulated tactile techniques
[11, 33, 50], while efficiency studies evaluated the accuracy and
overall functionality of the proposed interaction techniques [14, 24].

Motion Perception. The studies included in the motion section
analysed how the visual perception system was used in different
techniques to navigate through VE, focusing on variables like per-
ceived speed, position and direction. Two major clusters were used
to classify the works exposed in the motion section: Locomotion re-
views the techniques used to aid the process of navigation through
the VE [7, 15, 27, 35], and spatial awareness evaluated the sense of
orientation participants had of the real world, while immersed in
the VE [9, 40, 49, 55].

Cybersickness. The cybersickness section reviews studies that
explored the undesired motion sickness condition that is perceived
when experiencing self-movement in VE. The section introduces
the symptoms, potential causes, and some of the mitigation ap-
proaches that have been proposed to address cybersickenss. There
were two clusters used to categorise the works in the area of cyber-
sickness: diagnosis included works that focused on identifying and
assessing cybersickness in participants [23, 36, 43], while stimuli
categorisation exposes studies that evaluated the effects of different
visualisation techniques in inducing cybersickness [3, 36, 38, 51].

5.5 Conclusion
To conclude the course, before the discussion, we will offer a brief
wrap-up session to summarise the content of the course.

5.6 Discussion
The final part of the course is a Discussion and Q&A session in
which we plan to have the attendees to participate in the discussion
with interactive tools to acquire real-time feedback. The informa-
tion collected during the Discussion session will be aggregated and
reported in a web page that we are planning to create as to support
this course.

6 LECTURERS
The course will be delivered by the following lecturers:

Valeria Garro: Associate Senior Lecturer at the Department
of Computer Science at Blekinge Institute of Technology working
on the ViaTecH Synergy research project “Human-centered com-
puting for novel visual and interactive applications”. Previously,
she worked as research fellow at Visual Computing Lab (ISTI-CNR,
Italy) and as a postdoc at University of Verona, Italy, focusing on
3D reconstruction and 3D shape analysis. She obtained her Ph.D.
degree in Computer Science in 2013 at the University of Verona
specialising in computer vision. Her current research interests are
human-centred computing, visual perception applied to 3D shape
analysis and computer vision.

Veronica Sundstedt: Associate Professor and Head of Depart-
ment of Computer Science at Blekinge Institute of Technology.
Her research focuses on visual and interactive computing, partic-
ularly on computer graphics, novel human-computer interaction
techniques and visual perception. She has a M.Sc. in Media Tech-
nology, University of Linköping, and a Ph.D. in Computer Science
(Computer Graphics) from the University of Bristol. She has been a
Lecturer at Trinity College Dublin and as postdoc at the University
of Bristol and the University of Bath. She is currently the project
owner for the ViaTecH Synergy research project.

Diego Navarro: Ph.D. student in Computer Science, associated
with the ViaTecH Synergy research project “Human-centered com-
puting for novel visual and interactive applications”, at Blekinge In-
stitute of Technology. Diego’s research interests are human-computer
interaction, emerging interaction technologies, virtual reality, arti-
ficial intelligence and psychophysiological feedback. Diego holds a
Bachelor degree on Multimedia Engineering from Nueva Granada
Military University (2009), and a Master of Science degree on De-
sign, Interaction and Game Technologies from Blekinge Institute
of Technology (2014).
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Who Are We
Valeria Garro
Associate Senior Lecturer at Blekinge Institute of Technology (BTH), Sweden
Interests: human-centered computing, visual perception, 3D shape analysis,
computer vision, VR, and AR.

Veronica Sundstedt
Associate Professor at Blekinge Institute of Technology (BTH), Sweden
Head of Department of Computer Science at BTH
Interests: computer graphics, novel human-computer interaction techniques, and 
visual perception. 

Diego Navarro
PhD student at Blekinge Institute of Technology (BTH), Sweden
Interests: human-computer interaction, emerging interaction technologies, virtual 
reality, artificial intelligence, and psychophysiological feedback. 

Course Aim

oIntroduction to human visual perception.

oHow have different visual perception aspects been studied
and applied in VR and AR?

oSummary of recent literature on the topic.

oMain research trends, challenges and open questions in six
different areas.



Visual Perception in VR and AR

oVisual perception is a 
broad topic.

oSeveral characteristics 
and parameters have 
been investigated and 
applied on different 
areas.

Fig. 2-I. Image by Free-Photos from Pixabay. Pixabay License. 
https://pixabay.com/photos/milky-way-universe-person-stars-1023340/

Literature Selection Strategy

~ 400 Papers

e

-

ubjective

Search on Scopus.
Time limit: Publication Year > 2012

(sound, haptic have been excluded).
Posters and short papers excluded.

Focus on the impact of visual 
perception properties and visual 
elements on VR/AR HMD 
applications. 

OROR

OR

AND
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Course Structure
Introduction & Welcome (Garro) (10 min)

Part I: Basic Concepts of Visual Perception (Sundstedt) (30min)

Part II: Overview of Literature in Perceptually Adaptive Graphics (Sundstedt) (30 min)

Part III: Recent Trends and Challenges in Distance Perception, Avatar Perception, and Image Quality 
(Garro) (60 min)

Distance Perception
Avatar Perception
Image Quality

BREAK (15 min)

Part IV: Recent Trends and Challenges in Interaction, Motion Perception, and Cybersickness (Navarro) (60 
min) 

Interaction
Motion Perception
Cybersickness

Conclusion (Garro) (5 min)

Discussion and Q&A (All) (15 min)

PART I

BASIC CONCEPTS OF VISUAL 
PERCEPTION

Veronica Sundstedt
Blekinge Institute of Technology



Perception and our Senses

Vision

Hearing

Touch

Smell

Taste

There are also other 
examples...

What is Visual Perception?

Our ability to acquire and 
interpret information from the 
environment by processing light 
in the visible spectrum through 
the eye

Fig. 1-PI. Image by Peggy und Marco Lachmann-Anke from Pixabay. Pixabay License.
https://pixabay.com/illustrations/binoculars-search-see-to-find-1026423/

Fig. 1-PI.



Visible Light Spectrum

Fig. 2-PI. User: Tatoute / Creative Commons Attribution-Share Alike 3.0 Unported license.
(https://commons.wikimedia.org/wiki/File:Spectre_visible_light.svg).

The Human Eye

Fig. 3-PI. Image by Rhcastilhos. And Jmarchn. Creative Commons Attribution-Share Alike 3.0 Unported license.
https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg

Cornea
Pupil
Lens
Retina
Fovea
Optic nerve



Human Visual System

Fig. 4-PI. Mads00 / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)
https://commons.wikimedia.org/wiki/File:Neural_pathway_diagram.svg

The eyes
The optic nerves
The brain

Photoreceptors (Rods and Cones)

Fig. 5-PI. Image by https://www.scientificanimations.com/wiki-images/. Creative Commons -SA (Attribution-ShareAlike



Visual Acuity and Photoreceptor Distribution

Fig. 6-PI. Author: Cmglee. Creative Commons Attribution-Share Alike 3.0 
Unported license. https://commons.wikimedia.org/wiki/File:Human_photoreceptor_distribution.svg

Visual acuity is the resolution 
limit of the eye and our 
ability to see fine details 
(Snowden et al. 2006)
Uneven distribution of cells in 
the retina
Foveal vision has the highest 
visual acuity (area of about 
2°)
Eye movements to move the 
image to this area

Visual Acuity Test

"Visual angle of thumb's width is 
about 2 deg" (O'Shea 1991)
Highest visual acuity maps to a 
visual angle of about twice as 
large as the thumb when the 
arm is stretched out (Thompson 
et al. 2011)

Fig. 7-PI. Image by Peggy und Marco Lachmann-Anke from Pixabay. Pixabay
License.
https://pixabay.com/illustrations/thumbs-up-gut-thumb-high-finger-1026395/



Central and Peripheral Vision 

Field of view (Thompson et al. 2011)
200° horizontal, 135° vertical
Overlap 120°

Fig. 8-PI. Author: Zyxwv99. Creative Commons Attribution-Share Alike 4.0 
International license. https://commons.wikimedia.org/wiki/File:Peripheral_vision.svg

Colour Perception

Young-Helmholz theory -
Trichromatic theory
Three kinds of cones sensitive 
to red, green, and blue

Fig. 9-PI. Image by PublicDomainPictures from Pixabay. Pixabay License.
https://pixabay.com/photos/abstract-red-green-blue-primary-19141/



Spectral Absorption Curves

Fig. 10-PI. Image by BenRG. Creative Commons Public Domain. https://commons.wikimedia.org/wiki/File:Cone-fundamentals-with-srgb-spectrum.svg

Short (S)
Medium (M)
Long (L)

Colour Blindness

1/12 men (8%), 1/200 women (0.5%) 
(https://www.colourblindawareness.org/colour-blindness/)
Total or partial (most common red/green, blue/yellow)

Normal vision Protanopia 
(red blind)

Deuteranopia 
(green blind)

Tritanopia 
(blue blind)



Distribution of Cone Cells in the Fovea

Fig. 11-PI. Attribution: Mark Fairchild. Creative Commons Attribute-Share Alike 3.0 Unported
License. https://commons.wikimedia.org/wiki/File:ConeMosaics.jpg

Normal vision Protanopia 
(red blind)

Contrast Sensitivity

Fig. 13-PI. Author: Cmglee. Creative Commons Attribution-Share Alike 4.0 
International license. https://commons.wikimedia.org/w/index.php?curid=90524055

Fig. 12-PI. Author: Aleksey463. Creative Commons. Public Domain.
https://commons.wikimedia.org/wiki/File:SinVibr.png



Brightness Perception

Mach Band effect

Eye Movements

Eyes move 3-4 times / sec (Snowden et al. 2006)
Different types (Duchowski 2017, Duchowski
2018)

Fixations (tremors, drifts, microsaccades)
Saccades (fast)
Smooth pursuits
Vergence (accommodation)
Vestibulo-ocular reflex

Scan paths
Sequence of fixations forming a path



Human Visual Attention

Visual attention helps us select relevant 
information
Bottom-up processing (Itti et al. 1998)

Attracts our attention automatically (saliency)
Movement, orientation, intensity, colour

Top-down processing (Yarbus 1967)
Task-driven (driving a car, playing a game)

Saliency (Bottom-Up)

Low-level features attracting 
attention (orientation, size, colour, 
intensity, motion, etc.)

Orientation Size Colour



Selective Attention

Inattentional blindness - if you focus actively 
on a thing you might fail to notice other 
things (Mack and Rock, 1998)

Simons and Chabris (1999) - Invisible gorilla 
test, count basketball passes, ca 50% failed to 
notice it

Change blindness when you fail to notice a 
change (https://www.youtube.com/watch?v=VkrrVozZR2c)

?
1.) 2.)

?
3.)

Eye Tracking

Eye tracking is technology (and 
software) allows you to record an 
observer's eye movements (needs 
calibration)

Video-based, mechanical, electronic
Portable device, screen, laptop, 
glasses
Recently incorporated in head-
mounted displays (HMDs)

Gaze analysis in VR
Gaze interaction in VR

What is visually important?

Example data: fixations, saccades, blinks, etc. 
For more information see (Duchowski 2020).



Scan Path and Heat Map Visualisation

Depth Perception (Monocular or Binocular)

3D View-Master (binocular depth perception).



Depth Perception (Non-Pictorial Cues)

Accomodation (focus) Vergence (div./conv.)

Binocular disparity (stereopsis)
- Different views from each eye

Depth Perception (Pictorial Cues)

Linear perspective

Overlap/occlusion/
interposition

Relative height in
visual field

Texture gradient

Relative size/
familiar size

Other cues: shadows, 
atmosphere, motion, etc.

Fig. 14-PI. Image by Mabel Amber from Pixabay. Pixabay License.
https://pixabay.com/photos/pavement-paving-sidewalk-tile-3147099/

Fig. 14-PI.



Vergence and Accommodation Conflict

Vergence distance

Focal distance

Real world

Vergence distance

Focal distance

Headset

Screen

Adapted from: https://agilitypr.news/AR,-VR,-MR,-What-Can-Be-Improved-9444

Gestalt Psychology - Gestalt Laws

Proximity Similarity Closure



Gestalt Psychology - Gestalt Laws

Symmetry Continuity Figure and Ground

Fig. 15-PI. Author: Bryan Derksen.
Creative Commons Attribution-Share Alike 3.0 Unported license.
https://commons.wikimedia.org/wiki/File:Cup_or_faces_paradox.svg

Gestalt Psychology - Gestalt Laws

Common Region Common Faith Connection



Visual Perception in Graphics (AR/VR)

Gaze-based interaction
Attention-based level of detail
Foveated rendering (selective 
rendering)
Artificial intelligence in games
Attentive displays / intelligent user 
interfaces
Redirected walking locomotion Fig. 16-PI. Image by Gerd Altmann from Pixabay. Pixabay License.

https://pixabay.com/illustrations/head-wireframe-face-lines-web-663997/
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PART II

OVERVIEW OF LITERATURE 
IN PERCEPTUALLY ADAPTIVE 

GRAPHICS

Veronica Sundstedt
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Timeline of Visual Perception 
Courses and Survey Presented in 

the CG Community 



o Visual perception in computer graphics, the 
early years.

o How to run user studies?

o Perception in AR

o Perception in computer graphics and 
visualization

o Perception applied to rendering

o Eye tracking and VR

o Interaction in VR

o Perception of virtual characters

Siggraph/EG Campfire on perceptually adaptive graphics
McNamara et al. (2001)

EG STAR on perceptually adaptive graphics

o Interdisciplinary meeting
o Discuss how to exploit human visual perception in computer graphics
o Areas: interactive graphics, image fidelity, distance and scale in computer 

graphics, scene perception, visualisation, and applications in computer graphics. 

o Areas: interactive graphics, image fidelity, animation and virtual environments 
(VEs), and visualisation and non-photorealistic rendering (NPR).

Early Years



o VR
o Rendering and animation
o Visualisation
o Fundamental of psychophysics

Siggraph course on exploiting perception in high-fidelity VEs
Glencross et al. (2006)

o What to consider when creating high-fidelity virtual environments?
o How can human visual perception be exploited to achieve realism?
o Perceptually-driven real-time rendering.
o Physically-based simulations.
o Intuitive interactions.

EG STAR on the role of perception for CG
Bartz et al. (2008)

Siggraph course on psychophysics 101: how to run perception 
experiment in CG

Ferwerda (2008)

Siggraph course on the whys, how tos, and pitfalls of user 
studies on perceptually adaptive graphics

Sundstedt et al. (2009)

How to Run User Studies?

EG tutorial on understanding and designing perceptual experiments
Cunningham et al. (2013)



Siggraph course on visual perception of 3D shape
Fleming and Singh (2009)

ACM survey on perception of egocentric distances in VEs
Renner et al. (2013)

o Estimation of 3D shapes from 2D images.
o Improve phororealistic and non-photorealistic rendering leveraging on 

knowledge about human visual system.

o Review of recent user studies evaluating the topic.
o Underestimation of egocentric distances in VR.

EG STAR on perceptual metrics for static and dynamic triangle meshes
Corsini et al. (2013)

o Perception-correlated metrics for comparing 3D meshes.

IEEE ISMAR survey paper on perceptual issues in AR
Kruijff et al. (2010)

o Classification of perceptual issues in AR in five categories:

o Environment: e.g. structure, colors, env. conditions
o Capturing: e.g. lens issues, color correctness
o Augmentation: e.g. occlusion, layer interferences
o Display device: e.g. stereoscopy, latency, field of view
o Individual user differences: e.g. depth perception cues, accomodation

Perception in AR



Siggraph course on perceptually-motivated graphics, visualization, and 3D 
displays

McNamara et al. (2010)

Perception in Graphics and Visualization

Siggraph Asia course on perception in graphics, visualization, VEs, and 
animation

McNamara et al. (2011)

o Optimise rendering.
o Improve design and presentation in 3D stereoscopic display media.
o Create improved large data visualisations. 

o Visual attention and visual memory.
o Highlight previous work done in perceptually motivated rendering, interactive graphics, 

animation, and VEs.

Perception in Rendering

Siggraph course on attention-aware rendering, mobile graphics and games
McNamara et al. (2014)

o How visual attention models can be applied in mobile rendering and games
for optimisation purposes.

o Visual saliency
o Level of Detail

EG STAR on perception-driven accelerated rendering
Weier and Singh (2017)

o Optimisation applying visual attention models.
o Possibilities of eye-tracking technology.



Perception in Rendering

SIGGRAPH course on applications of visual perception to VR rendering
Patney et al. (2017)

SIGGRAPH course on applications of vision science to VR and AR
Patney et al. (2018)

o Fundamentals of visual perception Possibilities of eye-tracking technology.
o Case Studies:

o Redirected walking locomotion techniques.
o ChromaBlur rendering to improve accommodation and realism.
o Accommodation-invariant computational near-eye displays. 

Eye-Tracking and VR
Siggraph Asia course on possibilities and challenges with 
eye-tracking in video games and VR applications

Sundstedt et al. (2016)

o Review of eye-tracking in video games and VR applications.
o Possibilities and challenges with gaze-based interaction.
o Lessons learned from developing a video game application using eye-tracking.

Siggraph Asia course on eye tracking and virtual reality
McNamara and Jain (2019)

o Eye-tracking to improve user experiences and usability in VR.



Siggraph course on human-centered design for VR interactions
Jerald and Marks (2016)

Interaction in VR

o Intuitive interactions in VR environments, games.
o Avoid use s discomfort and side effects e.g. tiredness, sickness.

o 3DUIs design.
o Selection and manipulation of 3D objects.
o How to spatially navigate these interfaces.

SIGGRAPH course on 3D user interfaces for VR and games: 3D selection, 
manipulation, and spatial navigation

Riecke et al. (2018)

Siggraph course on perception of virtual characters
Zell et al. (2019)

Perception of Virtual Character

o Overview of perceptual studies on virtual characters.
o Low-level cues (e.g. facial proportions, shading, level of detail)
o High-level cues (e.g. behavior or artistic stylization)
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Distance Perception in VR

Fig. 1-P3 Adapted from image by Peggy und Marco Lachmann-Anke from Pixabay. Pixabay License.
https://pixabay.com/illustrations/males-3d-model-isolated-3d-model-2506815/

Fig. 1-P3

o Do we perceive distance differently in virtual environments (VEs) ? 

o Egocentric distance underestimation in VR, of about 74% of the actual distances
(Renner et al. 2013)

oWhat might be the factors contributing to this phenomenon? 

o (Renner et al. 2013) 4 groups:

o Technical factors
o Compositional factors
oHuman factors
oMeasurement methods

Egocentric Distance Underestimation



o Technical factors:
o Hardware: e.g. HMD weight + restricted FOV
o Lack or distortion of non-pictorial depth cues ( e.g. 

vergence-accommodation conflict, binocular disparity)
o
o Geometric distortions

o Compositional factors:
o Nature of the virtual environment => pictorial depth cues
o Presence of self-avatars and objects with familiar size

Technical and Compositional Factors
(Renner et al. 2013)

oHuman factors:
o Inter-individual difference between users.
o Adaptation through feedback interaction.

oMeasurements methods:
o How we measure the distance estimation might also influence the findings.
o Different tasks have been used, e.g. 

o action-based tasks: blind walking, blind reaching 

o perceptual matching tasks

o verbal estimates task

Human Factors and Measurements
(Renner et al. 2013)

3m !



Comparing different generations of HMDs with different hardware characteristics (FOV, 
weight, and resolution).
For example, Young et al. (2014), Kelly et al. (2017), and Buck et al. (2018).

o Better estimations when using more recent HMDs:
o Oculus Rift DK1 compared to NVIS nVisor SX60 (Young et al. 2014). 
o HTC Vive compared to existing data from previous experiments using nVisors SX111 

and ST50 (Kelly et al. 2017)
o Oculus Rift DK1 and 2 modified versions (heavier and with restricted FOV), nVisors

SX60 and SX111 (Exp. 1 of Buck et al. 2018).

o Exp. 2 of Buck et al. 2018: Better performance of Oculus Rift CV1 compared to HTC Vive, 
Oculus Rift DK2.

Technical Factors: Recent Focus

Comparing different generations of HMDs with different hardware characteristics (FOV, 
weight, and resolution).
For example, Young et al. (2014), Kelly et al. (2017), and Buck et al. (2018).

o Inertia and mass factors showed significant impact on distance perception.

o Limited FOV might impact as well.
In contrast with previous works. Different experimental designs can be the reason of the 
different results. 

Technical Factors: Recent Focus



Technical Factors: Recent Focus
Impact of visual stimulation in the FOV far periphery (Jones et al. 2016) (Li et al. 2016, 2018)

The following factors resulted to impact positively the distance estimation:

Impact of visual stimulation in the FOV far periphery (Jones et al. 2016) (Li et al. 2016, 2018)

The following factors resulted to impact positively the distance estimation:

Technical Factors: Recent Focus

o Extending vertically the FOV 
(Jones et al. 2016)



Technical Factors: Recent Focus

o Extending vertically the FOV 
(Jones et al. 2016)

o Adding a white frame in the far 
periphery (Jones et al. 2016)

Impact of visual stimulation in the FOV far periphery (Jones et al. 2016) (Li et al. 2016, 2018)

The following factors resulted to impact positively the distance estimation:

Technical Factors: Recent Focus

o Extending vertically the FOV 
(Jones et al. 2016)

o Adding a white frame in the far 
periphery (Jones et al. 2016)

o Different brightness level of the frame 
(Li et al. 2018)
Significant improvement of distance 
perception adding 15% luminance value 
relative to the maximum brightness of 
the frames displayed. 

Impact of visual stimulation in the FOV far periphery (Jones et al. 2016) (Li et al. 2016, 2018)

The following factors resulted to impact positively the distance estimation:



Other technical factors recently investigated:

o Eye height manipulation (Leyrer et al. 2015)
o Proved to affect distance perception, both in VEs with sparse and rich visual cues.
o Adapting eye height individually, i.e. lowering the eye height, can be used to reduce 

underestimation.

Technical Factors: Recent Focus

Fig. 2-P3 Adapted from image by Peggy und Marco Lachmann-Anke from Pixabay. Pixabay License.
https://pixabay.com/illustrations/archer-target-archery-bogensport-5443951/

Presence of the self-avatar

(Lin et al. 2015)
Positive impact of a matched-size full self-
avatar on affordance tasks. 

(Asjad et al. 2018) 
Investigated the presence of partial avatar 
(virtual feet) and open or closed VE on 
distance estimation when climbing stairs.
Positive impact of partial avatar and open VE.

Compositional Factors: Recent Focus



Level of visibility of the avatar 
(Ebrahimi et al. 2018)
3 conditions: 
- end-effectors
- body joint positions
- high-fidelity avatar
High-fidelity avatar induced the best
results of near-field distance estimation but 
still not comparable to the results obtained in 
real-world condition.

Compositional Factors: Recent Focus

Avatar Fidelity

Personalisation of the avatar (Jung et al. 2018)
With a personalised hand model the participants achieved a better accuracy on the size
estimation task compared to a generic 3D model of a hand in VR

Distance Estimation Accuracy

Compositional Factors: Recent Focus
Different types of self-avatar (Banakou et al. 2013)
Participants were embodied into an avatar of a child, and an avatar as 
tall as the child but with the body proportion of an adult.
Overestimation of size with both avatars, significantly higher with the 
child avatar. Results linked to body ownership.

Size of a partial self-avatar (Jun et al. 2015)
Tested different sizes of virtual feet.
Changing the size of the virtual feet influence size estimation during
affordance judgements of gap crossing and gap-width estimates.
Participants exploited their self-avatar, even if partial, to scale the VE.

Fig. 3-P3. Adapted from image by Barroa_Artworks from Pixabay. Pixabay License. https://pixabay.com/illustrations/chibi-doll-anime-child-manga-3230107/
Fig. 4-P3. Image by CharacterDesign3D from Pixabay. Pixabay License. https://pixabay.com/illustrations/boy-man-people-guy-person-male-4731631/

Fig. 3-P3 Fig. 4-P3



Self-avatar with visuomotor conflicts (Kokkinara et al. 2015)
Spatiotemporal distortions (increased velocity) and spatial distortions (angular 
offset) of self-avatar arm movements affect size estimation.
- Targeting task with visible avatar.
- Size estimation task without avatar.

Increased overestimation of size with more amplified distortions (both spatial and 
spatiotemporal). 

Compositional Factors: Recent Focus

Nature of VEs (indoor vs outdoor) (Kelly et al. 2017)
o No significant difference for the blind walking 

task.
o Better performance in the indoor VE for the size 

judgement task, similar trends but not significant 
for the verbal judgement task.

Compositional Factors: Recent Focus

vs

Availability of visual cues (Loyola 2018)
o Verbal judgement task while sitting in 3 virtual rooms (low, medium, and high visual 

cues).
o Accuracy influenced by the level of availability of the visual cues, high availability 

showed better performance.



Visual-motor feedback interaction: 
Can interaction in the VE (e.g. walking through VE) improve 
distance perception?

Human Factors: Recent Focus

Yes, but there is still open debate about how.
Two main theories:

o Interaction causes only visual-motor recalibration (Kunz et al. 2015)

o Interaction causes also rescaling of the perceived space (Kelly et al. 2013)

o Results by Siegel and Kelly (2017) support the rescaling theory and that distance
estimation improves also in space extended beyond the one used for the interaction.

Visual-motor feedback interaction: 
Can interaction in the VE (e.g. walking through VE) improve 
distance perception?

Human Factors: Recent Focus

(Kelly et al. 2014) 
o Interaction to near objects (1 m and 2 m) caused a recalibration of perceived scale 

only in the same range of distances.
o Interaction to far objects (4 m and 5 m) induced a recalibration over both near and 

far range of distances.

(Kelly et al. 2017) HTC Vive
o Blind-walking and size judgments were affected by walking interaction.
o Verbal judgments were not affected by walking interaction.



Visual-motor feedback interaction: 
Can interaction in the VE (e.g. walking through VE) improve 
distance perception?

Human Factors: Recent Focus

(Kelly et al. 2018)
o Compared the influence of walking interaction to the influence of having a visual 

preview of the VE.
o The effect of walking interaction is broader than visual preview, walking interaction 

might be a more valid method for improving distance perception in VR. 

Depth distortion is also common in AR applications with HMDs. (Kruijff et al. 2010)

Different perceptual issues are related to distance distortion, e.g. 

- monotony of the VE.

- Exposure problems, noise, and low contrast when capturing the environment.

- Depth cues: occlusion problems, limited number of depth cues.

- Vergence-accommodation conflict.  

Distance Perception in AR



Positive effect of auxiliary augmentations in - (Kytö et al. 2013)
o In addition to the main virtual object, they displayed auxiliary objects.
o Occlusion and similarity cues exploited. 

Study of depth perception at reaching distance (Swan et al. 2015)
o Perceptual matching and blind reaching tasks.
o Overestimation up to 4 cm, possibly due to the collimating optics of the AR see-

through display.

Distance Perception in AR: Recent Focus

Impact of different visual effects applied to augmented objects (Diaz et al. 2017)

Distance Perception in AR: Recent Focus

o Perceptual matching task
o Distance range tested: 2.5 and 6 meters
o Visual effects tested: 

- Aerial perspective
- Drop shadows and cast shadows
- Lambertian, Blinn and Phong shading models
- Billboarding effect
- Object dimensionality (2D vs 3D)
- Textures

o Results: 
- Systematic underestimation of distances.
- Presence of shadows improved distance judgements.



Distance judgment evaluated with locomotion-based affordance tasks 
(Pointon et al. 2018)
o Comparisons between real world and AR
o Passing through 2 poles
o Egocentric distance of the poles
o Gap-crossing

o Results:
- Similar judgments for passing through and 

perceived distance to the aperture.
- Underestimated distance for gap-crossing in AR. 

Distance Perception in AR

SUMMING UP...
o Hot topic in the research community, more studies in VR than AR, still 

many open questions and further investigation required.

o Modern HMDs provide better distance estimation accuracy.

o How might we actively improve the user spatial perception?

o Visual stimulation in the FOV far periphery 
o Eye height manipulation
o Presence of avatars, high-quality, personalised
o Interaction, but how?
o Using specific visual cues
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AVATAR PERCEPTION



How can self-avatar or virtual characters 
influence the experience in immersive VR?

Avatar Influence

VISUAL CHARACTERISTICS:

o Presence or absence of avatar
o Level of visibility of avatar
o Personalisation of avatar
o Level of realism
o Visuomotor conflicts
o ...

ASPECTS of the EXPERIENCE:

o Spatial perception
o Body ownership 
o Sense of agency
o Presence
o ... 

Fig. 5-P3 Image by Wolfgang Eckert from Pixabay. Pixabay License
https://pixabay.com/illustrations/man-jump-sport-run-fashion-casual-3107153/

Aspects Recently Studied 
Spatial Perception: 

o Compositional factor. (Renner et al. 2013)

Body Ownership:
o Self-attribution of a body, (Kilteni et al. 

2012, Gallagher 2000)
Sense of Agency:

o Present in active movements, sense of controlling the action, one who is 
generating an action . (Kilteni et al. 2012, Gallagher 2000)

Sense of Presence:
o

Levels of body ownership, sense of agency and presence are measured via 
subjective measurements based on questionnaires.



Aspects Recently Studied

Spatial 
Perception

Body 
Ownership

Sense of 
Agency

Presence

Banakou et al. 2013
visuomotor conflicts

X X

Asjad et al. 2018 Presence of partial avatar X X

Kokkinara et al. 2015 Presence of avatar with visuomotor 
conflicts

X X X

Jun et al. 2015 Size of partial avatar X X X X

Lin et al. 2019 Size of partial avatar X X

Argelaguet et al. 
2016

Level of realism of avatar X X

Latoschik et al. 2017 Level of realism of avatar X

Lougiakis et al. 2020 Level of realism of avatar X X

Tran et al. 2017 Level of visibility of avatar X X

Lugrin et al. 2018 Level of visibility of avatar X

Waltemate et al. 2018 Personalisation of avatar X X

Jung et al. 2018 Personalisation of partial avatar X X X

Aspects Recently Studied

Spatial 
Perception

Body 
Ownership

Sense of 
Agency

Presence

Banakou et al. 2013
visuomotor conflicts

X X

Asjad et al. 2018 Presence of partial avatar X X

Kokkinara et al. 2015 Presence of avatar with visuomotor 
conflicts

X X X

Jun et al. 2015 Size of partial avatar X X X X

Lin et al. 2019 Size of partial avatar X X

Argelaguet et al. 
2016

Level of realism of avatar X X

Latoschik et al. 2017 Level of realism of avatar X

Lougiakis et al. 2020 Level of realism of avatar X X

Tran et al. 2017 Level of visibility of avatar X X

Lugrin et al. 2018 Level of visibility of avatar X

Waltemate et al. 2018 Personalisation of avatar X X

Jung et al. 2018 Personalisation of partial avatar X X X



We have already discussed avatar as compositional factor influencing
distance estimation. 
Some works focused specifically on distance perception estimation:
o Presence (Lin et al. 2015) and fidelity of avatar (Ebrahimi et al. 2018)

Other works investigated the influence of avatars on spatial perception and other factors, 
i.e. body ownership, sense of agency, and sense of presence (Banakou et al. 2013) (Jun et 
al. 2015) (Asjad et al. 2018) (Jung et al. 2018) (Kokkinara et al. 2015)

Size and Spatial Perception

Fig. 6-P3 Adapted from image by Peggy und Marco Lachmann-Anke from Pixabay. 
https://pixabay.com/illustrations/males-3d-model-isolated-3d-model-2506815/

Size and Spatial Perception

Fig. 7-P3 Fig. 8-P3

Different types of avatar and correlation with body ownership
(Banakou et al. 2013)

Participants were embodied into an avatar of a child, and an avatar as 
tall as the child but with the body proportion of an adult.

Overestimation of size with both avatars, significantly higher with the 
child avatar.

They applied visuomotor conflicts (different movements) to lower the 
body ownership illusion.
Overestimation differences between avatars disappeared.

Influence of the body type on spatial perception is correlated to the body 
ownership illusion

Fig. 7-P3. Adapted from image by Barroa_Artworks from Pixabay. Pixabay License. https://pixabay.com/illustrations/chibi-doll-anime-child-manga-3230107/
Fig. 8-P3. Image by CharacterDesign3D from Pixabay. Pixabay License. https://pixabay.com/illustrations/boy-man-people-guy-person-male-4731631/



Aspects Recently Studied

Spatial 
Perception

Body 
Ownership

Sense of 
Agency

Presence

Banakou et al. 2013
visuomotor conflicts

X X

Asjad et al. 2018 Presence of partial avatar X X

Kokkinara et al. 2015 Presence of avatar with visuomotor 
conflicts

X X X

Jun et al. 2015 Size of partial avatar X X X X

Lin et al. 2019 Size of partial avatar X X

Argelaguet et al. 
2016

Level of realism of avatar X X

Latoschik et al. 2017 Level of realism of avatar X

Lougiakis et al. 2020 Level of realism of avatar X X

Tran et al. 2017 Level of visibility of avatar X X

Lugrin et al. 2018 Level of visibility of avatar X

Waltemate et al. 2018 Personalisation of avatar X X

Jung et al. 2018 Personalisation of partial avatar X X X

Impact

Banakou et al. 2013 visuomotor conflicts Visuomotor conflicts: avatar making different movements.

Kokkinara et al. 2015 Presence of avatar with 
visuomotor conflicts

Both spatial and spatiotemporal manipulations did not affect body ownership 
perception. 

Jun et al. 2015 Size of partial avatar Small and large foot size conditions.

Lin et al. 2019 Size of partial avatar Small, fit, and large hand size conditions.

Argelaguet et al. 2016 Level of realism of partial 
avatar

3 conditions: sphere, robotic hand (limited animation), realistic human hand (fully 
animated). The realistic hand condition achieved higher sense of body ownership.

Latoschik et al. 2017 Level of realism of avatar 2 conditions: wooden mannequin and high-fidelity avatar. 
Higher level of body ownership with increasing level of fidelity of self-avatar.

Lougiakis et al. 2020 Level of realism of partial 
avatar

3 conditions: sphere, controller, realistic human hand.
No finger tracking (participants used a controller in all condition).

Tran et al. 2017 Level of visibility of avatar 3 conditions: hand only, hand + forearm, and whole arm.

Lugrin et al. 2018 Level of visibility of avatar 3 conditions: controller, hand + forearm, upper body (limited tracking).

Waltemate et al. 2018 Personalisation of avatar 3 conditions: personalised avatar with 3D scan system, generic avatar 3D scan system 
and a modelled generic avatar.

Jung et al. 2018 Personalisation of partial 
avatar

Personalised hand vs generic hand model conditions

Body Ownership



Aspects Recently Studied

Spatial 
Perception

Body 
Ownership

Sense of 
Agency

Presence

Banakou et al. 2013
visuomotor conflicts

X X

Asjad et al. 2018 Presence of partial avatar X X

Kokkinara et al. 2015 Presence of avatar with visuomotor 
conflicts

X X X

Jun et al. 2015 Size of partial avatar X X X X

Lin et al. 2019 Size of partial avatar X X

Argelaguet et al. 
2016

Level of realism of avatar X X

Latoschik et al. 2017 Level of realism of avatar X

Lougiakis et al. 2020 Level of realism of avatar X X

Tran et al. 2017 Level of visibility of avatar X X

Lugrin et al. 2018 Level of visibility of avatar X

Waltemate et al. 2018 Personalisation of avatar X X

Jung et al. 2018 Personalisation of partial avatar X X X

Impact

Kokkinara et al. 
2015

Presence of avatar with 
visuomotor conflicts

Only spatiotemporal (velocity) manipulations affected the 
sense of agency. 

Jun et al. 2015 Size of partial avatar Small and large foot size conditions.

Lin et al. 2019 Size of partial avatar Small, fit, and large hand size conditions.

Argelaguet et al. 
2016

Level of realism of 
avatar

3 conditions: sphere, robotic hand (limited animation), 
realistic human hand (fully animated).
The realistic hand condition achieved low sense of agency, 
potentially due to limitations in finger tracking.

Lougiakis et al. 
2020

Level of realism of 
avatar

3 conditions: sphere, controller, and realistic human hand.
No finger tracking (participants used a controller in all 
condition).

Tran et al. 2017 Level of visibility of 
avatar

3 conditions: hand only, hand + forearm, and whole arm.

agency:

Sense of Agency



Aspects Recently Studied

Spatial 
Perception

Body 
Ownership

Sense of 
Agency

Presence

Banakou et al. 2013
visuomotor conflicts

X X

Asjad et al. 2018 Presence of partial avatar X X

Kokkinara et al. 2015 Presence of avatar with visuomotor 
conflicts

X X X

Jun et al. 2015 Size of partial avatar X X X X

Lin et al. 2019 Size of partial avatar X X

Argelaguet et al. 
2016

Level of realism of avatar X X

Latoschik et al. 2017 Level of realism of avatar X

Lougiakis et al. 2020 Level of realism of avatar X X

Tran et al. 2017 Level of visibility of avatar X X

Lugrin et al. 2018 Level of visibility of avatar X

Waltemate et al. 2018 Personalisation of avatar X X

Jung et al. 2018 Personalisation of partial avatar X X X

presence:

Sense of Presence

Impact

Asjad et al. 2018 Presence of partial 
avatar

Presence of avatar, even if partial, showed significantly 
higher level of sense of presence.

Jun et al. 2015 Size of partial avatar Small and large foot size conditions.

Waltemate et al. 
2018

Personalisation of avatar 3 conditions: personalised avatar with 3D scan system,
generic avatar 3D scan system and a modelled generic 
avatar.
Personalised avatar achieved higher sense of presence.

Jung et al. 2018 Personalisation of partial 
avatar

2 conditions: personalised hand and generic hand model.
Personalised hand achieved higher sense of presence.



(Steed et al. 2016)
Positive influence of the presence of an active avatar when 
performing cognitive tasks.
Set of cognitive tasks: 
- memorization of sequences of letters
- mental rotation of figures
- recollection of sequences of letters

Significant effect on cognitive performance when participants
viewed their avatar and were allowed to make gestures.

Cognitive Processes

We found also a limited number of studies about avatar in AR.

(Skola and Liarokapis 2016) 
Compared the effects on body ownership rubber hand illusion 
performed in VR, AR, and in the real world.
Still stronger sense of ownership for the real world condition 
but VR and AR are comparable.
Electroencephalography (EEG) measures correlated with 
subjective measures (questionnaire) for body ownership. 

Avatar in AR



(Kim et al. 2017) 
Influence on social presence and 
co-presence of spatial conflicts
between AR virtual characters and
the real world environment.

Results showed a lower sense of 
co-presence for the conflict
condition.

Avatar in AR

Spatial conflict No spatial conflict

Fig. 9-P3 Adapted from image by MagicDesk from Pixabay. Pixabay License
https://pixabay.com/photos/office-sitting-room-executive-730681/

SUMMING UP...
o The presence of an avatar and its visual characteristics (realism, fidelity ...) impact 

many different aspects of the immersive experience.

o These aspects are not independent, e.g. (Banakou et al. 2013).

o Body ownership and sense of presence are connected to presence of the avatar but 
also the level of realism and personalisation of the avatar.

o Sense of agency is more connected to the interaction than the visual characteristics 
of the avatar.

o Majority of the analysed works are in VR.

o In AR, spatial conflicts between virtual character and real object can affect the sense 
of co-presence.     
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oLimited computational power.

oVergence-accommodation conflicts.

oWearing glasses for optical correction 
is not always possible.

Some HMD Hardware Limitations

Higher resolutions and bigger FOVs demand:

o Low latency rendering

o High quality rendering

HMD Application Requirements



How can we exploit the characteristics of the human visual 
system (HVS) for improving quality perceived by the user and 
performance?  

Visual acuity and visual attention to reduce shading cost!

o Perceptual foveated rendering
o Perceptual rendering
o Visual saliency prediction
o ...

Subjective Quality and Performance

Foveated Rendering
Non-uniform quality of the rendered image. 
Highest level of detail in the area around the 
eye fixation.
Progressively lower quality distancing from the 
eye fixation area.

Exploiting visual acuity degradation, we can 
obtain rendering speedups while maintaining a 
perceptually high-quality result for the human 
observer. 

Not new idea! e.g. Gaze-directed Volume 
Rendering by Levoy and Whitaker (1990)

Fig. 10-P3 Adapted from image by Wolfgang Eckert from Pixabay. Pixabay License.
https://pixabay.com/photos/tower-rotunda-candlelight-candles-3362555/



(Patney et al. 2016) Oculus Rift DK2 + SMI eye tracker

1) User study to investigate the perceived quality on peripheral vision, defining a 
perceptual target image.

2) Design a real-time foveated renderer to match the target image (contrast 
enhancement and temporal antialiasing).

3) User study to verify the quality of the foveated renderer.

(Weier et al. 2016) Oculus Rift DK2 + SMI eye tracker

o Foveated rendering + reprojection rendering using previous frames.
o Resampling of perceptually critical areas and reprojection errors.

Foveated Rendering

(Stengel et al. 2016)
o Deferred rendering: simulation of acuity falloff + sampling scheme considering: 

o Acuity
o Eye motion 
o Contrast (geometry, material, and lighting properties)
o Brightness adaptation

(Swafford et al. 2016)
o Design of a perceptual foveated rendering quality metric 

based on HDR-VDP2 (Mantiuk et al. 2011) 

Foveated Rendering



(Arabadzhiyska et al. 2017) Oculus Rift DK2 + Pupil Labs eye tracker

o System latency causes a mismatch between the actual fixation point and the 
rendered foveated region.

o They propose a technique which predicts where the saccadic eye movement is 
likely to end up.

(Weier et al. 2018) Fove 0

o Exploiting visual acuity degradation and Depth-of-Field (DoF) effect. 
o Foveated renderer with gaze-contingent DoF filtering as post-processing step to 

hide visual artifacts and remove high-frequency signals on the periphery.
o DoF effect is scene dependent!

Foveated Rendering

(Zhong et al. 2019) HTC Vive

o Image contrast is linked to perceived quality: contrast-based depth induction and 
higher realism.

o How can we enhance contrast in VR/AR displays?
- High Dynamic Range HDR: flickering and higher power consumption.
- Local tone-mapping: artifacts, computational expensive.

o Proposed technique: exploit binocular fusion mechanisms of HVS to enhance 
perceived contrast using different tone curve for each eye.

o Trade-off between contrast enhancement and binocular rivalry.

o User study showed better perception of contrast and depth.

Contrast Enhancement



(Fink et al. 2019) HTC Vive

o How to improve rendering computational efficiency?
o Proposed technique exploits binocular disparities 

and the fact that they are more significant in the 
near field (Cutting and Vishton 1995)

o Stereoscopic rendering of objects only up to a fixed 
distance and monoscopic rendering for objects 
placed at higher distances.

Binocular Disparity

d

stereoscopic 
rendering 

monoscopic
rendering

z

(Celikcan et al. 2020) HTC Vive

Exploring visual saliency cues and saliency prediction methods applied on 
immersive dynamic VR content.
o Methods using 2D image features
o Methods using 2D image features + depth cue: RGB-D input

o With lower navigation speed the depth cue has lower impact on visual saliency.

o Better performance of saliency prediction methods based on boundary 
connectivity and surroundedness.

o Center bias (Sitzmann et al. 2018) confirmed also in this work, more significant 
in the VR view compared to the 2D monitor.

Saliency Prediction



(Padmanaban et al. 2017) Samsung Gear VR + SMI eye tracker

o Near-eye displays limitations, limited reproduction of focus changes.
o Adaptive focus display:

o Adapting to different user groups (younger vs older users).
o Handling user refractive errors.

(Xu and Li 2018) Oculus Rift DK2

o Rendering pre-corrected images to handle user refractive errors.

Handling Refractive Errors

(Pardo et al. 2018) Oculus Rift DK2
o Subjective assessment of level of realism of scanned 3D replicas of 

real objects, rendered with deferred or forward rendering in real-
time.

o Better realism achieved by the deferred rendering.
o Color fidelity and material texture, and definition of the 3D replicas 

are the main factors correlated to realism perception.

(Yu et al. 2018) HTC Vive
o Comparing subjective quality assessment on 2D monitor and HMD 

of 3D polygon meshes impaired with smooth and noise-like 
distortions.

o No significant differences between the two types of display.

Quality Assessment in VR

VS



(Alexiou et al. 2017) Occipital Bridge AR
o Subjective quality assessment of 3D points clouds with noise and 

octree-pruning (compression) distortions.
o Results showed high level of correlation between subjective 

assessments and objective metrics, e.g. point2point, point2plane, 
Peak-to-Signal Noise Ratio (PSRN) for noise distortions, not for 
compression-like distortion.

(Alexiou and Ebrahimi 2018) Occipital Bridge AR
o Investigated the correlation between subjective quality assessments

of distorted AR points clouds conducted using a 2D screen and an 
HMD. 

o Noise degradation: high correlation between the monitor and HMD.
o For compression-like distortion: different results based on the display 

techniques.

Quality Assessment in AR

VS

SUMMING UP...

o Foveated rendering is promising technique to improve the rendering performance and 
the perceived quality.

o Visual acuity is not the only visual perception property that can be exploited.

o No unique solution, the combination of different strategy can be explored.

o Perceptual rendering: exploiting the stereo characteristics of the HMD to enhance image 
appearance or improve the rendering performance.

o Handling refractive errors at software level.

o Quality assessment both in VR and AR of 3D models with distortion, results vary 
between VR/AR.
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PART IV

RECENT TRENDS AND CHALLENGES 
IN INTERACTION, MOTION 

PERCEPTION, AND CYBERSICKNESS



INTERACTION

Perception in Interaction Studies

Human-Computer Interaction (HCI):
Design and implementation of novel interaction techniques.
Performance evaluation of interaction techniques.

In Perception studies we have a slightly different focus.



Perception in Interaction Studies

Perceived quality of experience when using novel interaction 
techniques.

Exploit the human visual system to improve interaction 
perception.

Evaluation criteria:
Efficiency.
Consistency.
Usability.
Psychological affect.

Interaction Studies

2014 2016 2018

Lubos et al. Ebrahimi et al.

Vosinakis and Koutsabasis.
Gerig et al.
Krichenbauer et al.

2019

Frutos-Pascual et al.



Interaction Possibilities with VR
Majority of reported studies focus on tactile perception with 
virtual objects:

Selecting.
Grabbing.
Dropping.
Pushing, moving.

Technologies:

HMD + Controllers.
Joysticks, game pads.
Leap Motion.

Interaction Possibilities with AR

Two kinds of interaction (Frutos-Pascual et al., 2019):

Metamorphic mapped interaction (emulation of point and click).
Isomorphic mapped interaction (direct spatial interaction).

Technologies:

HoloLens.
Meta2.

Fig. 1-P4 Image by Azminsultana from Pixabay. Pixabay License.
https://pixabay.com/photos/hololens-holo-lens-virtual-reality-1330225/



Trends in Interaction Perception

The retrieved material highlighted two major trends in 
interaction perception studies:

Haptics

Efficiency

Interaction

Interaction: Haptics

Haptics: active exploration of the environment through tactile 
perception (Gibson, 1966).

The problem: Lack of haptic feedback in VE.
Affects immersion, and perceived efficiency and consistency of the 
interaction.

Hardware solution: Haptic gloves.
Haptx.
Manus VR.
SenseGlove.



Interaction: Haptics
Visual feedback: dynamic graphical attributes that react to the 
user proximity or touch.

Halos.
Color/textures changes.
Scaling.

Improve accuracy as much as visuo-haptic methods. Haptic 
tradeoff: accuracy is directly proportional to completion time 
(Ebrahimi et al. 2016).

Colored halos were reported as more usable among other visual 
feedback techniques (Vosinakis and Koutsabasis 2018).

Interaction: Efficiency

The problem: decrement of perceived accuracy and 
inappropriate functionality of interaction techniques.

Lack of feedback (visual, haptic) can contribute to this issue.

When and how do the accuracy errors occur? (Lubos et al. 
2014)

Viewing direction error > movement direction error.
Visual perception has a more predominant influence than 
movement in ed VE.



Interaction: Efficiency

Visual and visuo-haptic feedback can help improving the 
perceived efficiency of interaction techniques.

HMD vs Flat Screen (Gerig, 2018)
Tactile interaction in VE was more consistent and efficient when 
shown in HMDs.

AR vs VR (Krichenbauer et al. 2018)
In tactile interaction, AR seems superior than VR in terms of 
efficiency even with no visual feedback techniques.

Challenges with Interaction in Perception Studies

Interaction is usually evaluated from the HCI perspective.
Perception offers a refreshing perspective for analysing interaction.

Natural lack of haptic feedback in VR/AR.

Haptic tradeoff.

Predominant effect of visual perception in low efficiency:
Graphical properties and responsiveness of the VE.

Greater number of studies focusing on VR than AR.



MOTION 
PERCEPTION

Motion Perception

Motion: (Borst and Euler 2011) relative inference of speed, 
position and direction based on:

Vestibular state.
Proprioceptive inputs.
Visual stimuli.

Take advantage of the human vison system to present 
techniques that emulate or ease navigation through VE.



Motion Perception
Vection: Illusion of experiencing self-movement induced by a 
particular stimuli (Keshavarz et al. 2019)

Motion Perception Studies

2013 2016 2018

Bruder et al.
Nilsson et al.
McCullough et al.
Bolte and Lappe.

Boletsis et al.
Paris et al.
Langbehn et al.
Vasylevska and Kaufmann.

20202014 2015 2017

Hodgson and Bachmann
Bruder et al.

Nilsson et al.
Bruder and Steinicke.
Hodgson et al.

Wilson et al.
Kruijff et al.
Grechkin et al.

Coomer et al.
Wei ker et al.
Nilsson.
Langbehn et al.

Buttussi and Chittaro.
Caggianese et al.



Trends in Motion Perception

The retrieved material highlighted two major trends in 
motion perception studies:

Locomotion 
techniques

Spatial 
Awareness

Motion

Locomotion Techniques

Set of methodologies that grant the ability of moving from 
one place to another within a VE.

Locomotion techniques (Boletsis 2017):
Room scale-based.
Motion-based.
Controller based.
Teleportation based.



Locomotion Techniques

Room scale-based: 
Direct mapping of position and orientation between the real world 
and the VE (e.g. real walking)
Good for immersion.

Motion-based:
Physical moments activate locomotion while being stationary (e.g. 
walking in place).
Features many interaction options.

Locomotion Techniques

Controller-based: 
Movement is triggered through a controller device.
VR controller, joystick, etc.

Teleportation-based:
Instant displacement inside the VE between predefined locations.



Locomotion Techniques

The problem with locomotion techniques:
Performance between different locomotion technique.
Limitations space and functionality.

Locomotion Techniques

Motion-based techniques using alternative technology:
Myo accelerometer band: 

Arm swing: performs better that some controllers and matches 
room scale-based performance (McCullough et al. 2015).
Walking in place was not as effective (Wilson et al. 2016).
Arm cycling: performs better than controller-based and 
teleportation-based techniques (Coomer et al. 2018).

Leap Motion:
Hand gesture-based motion (Caggianese et al. 2020).



Locomotion Techniques

Motion-based techniques using alternative technology:

Eye tracking:
Visual suppression techniques.
Gaze pointing motion (Caggianese et al. 2020).

Locomotion Techniques

Re-Directed Walking (RDW) (Nilsson et al. 2018):
Reduces the size needed for motion.
Users walk on a curved path, thinking they are walking straight.
Rotations are imperceptible to viewers.
Algorithms used (Hodgson and Bachmann 2013-2014):

Steer-to-center.
Steer-to-orbit.
Steer-to-multiple targets.
Steer-to-multiple+center.

RWD results are VE dependent.



Locomotion Techniques

With larger curves, it was easier for viewers to spot visual 
anomalies (Bruder et al. 2015).

Detection of curvatures thresholds in RDW:
(Grechkin et al. 2016).

Curvature gains based on conscious eye blinking (Langbehn et al. 2017-
2018).

Saccadic suppression of Image displacement (SSID)
Detect threshold based on user fixations and saccadic movements (Bolte 
and Lappe 2015).

Spatial Awareness

Refers to the ability to understand, establish, and remember 
relationships between objects, space and oneself. 

The problem with spatial awareness:
How different techniques affect self-motion perception.
Inconsistencies between mental models from the real world 
(location, speed) and the VE.



Spatial Awareness

A higher level of spatial awareness is achieved with room-
based than motion-based techniques, due to the coherence 
between the real world and the VE (Paris et al. 2017).

Arm cycling reported better spatial awareness than 
controller-based and teleportation-based techniques 
(Commer et al. 2018).

Controller-based and teleportation-based techniques do not 
seem to offer different results between one another (Wei ker 
et al. 2018).

Spatial Awareness

RDW and VE layout:
Curved corridors tend to increase the distance perceived (Vasylevska
and Kaufmann 2017a).
Participants made larger lateral movements when performing an 
additional cognitive task (Bruder et al. 2015).

Scene Manipulation:
Self-overlapping virtual environments (Vasylevska and Kaufmman
2017b).



Spatial Awareness

Perception of motion speed (Nilsson et al. 2014):
Do not seem vary significantly between motion-based techniques.
FOV and GFOV size in inversely proportional to the degree of 
underestimation of virtual speed (Nilsson et al. 2015).

Room scale-based techniques tend to induce an 
underestimation on distance (large), and speed (small) 
(Bruder and Steinicke 2014).

Visuo-haptic cues in VE, together with head bobbing 
simulation, benefits motion perception without affecting 
cybersickness (Kruijff et al. 2016).

From Motion Perception Studies

Walking in place seems to be preferred by users and offer 
overall good results.
Visual suppression mechanism are interesting methods to 
compensate for the drawbacks in room scale-based and 
motion-based locomotion.
Combination of different techniques to further improve 
results (e.g. RDW+SSID).
Teleportation-based techniques generates less nausea and 
tend to perform better than controller-based techniques. 
(Buttussi and Chittaro 2020).



Challenges with Motion in Perception Studies

Movement within VE is still complex (hardware setup, physical space, spatial awareness).

For room scale-based: Tradeoff between room scale and tracking accuracy, and visuo-vestibular 
distorting.

Mixed results between walking in place vs real walking.

Overcompensation of covered distances when experiencing motion in VE.

Real walking in VE: Great underestimation of distance and lesser on speed in VR.

Real walking in AR: minor underestimation of user speed due to the similarity of real-world 
scenarios (Bruder et al. 2013).

Challenges with Motion in Perception Studies

They way VE are presented affects the quality of motion (higher motion speeds in 
AR).

In RDW, when the rotation is too big, visual anomalies are more noticeable.

Detection of RDW threshold to improve motion perception.

RDW seems to have a higher cognitive impact in users*.

Not many studies focused on AR.

Linear and angular speeds thresholds for motion techniques.



CYBERSICKNESS

Cybersickness

Undesired Visually-induced motion sickness experience caused by 
virtual environment stimuli (Rebenitsch and Owen 2016).

Manifest as a conflict or disassociation between the visual and 
vestibular system (Adhanom et al. 2020).

Type of motion sickness specific to the VR/AR domain.

Many terms to describe same/similar symptoms: 
Virtual simulation sickness
Visual induces motion sickness (VIMS)
Simulator sickness.



Cybersickness in VR / AR

20172016 2018

Palmissano et al.
Munafo et al.Rebenitsch and Owen

Arcioni et al.
Kim et al.
Vovk et al.

2019

Hu et al.
Balasubrananian and Soundararajan

2020

Adhanom et al.
Guo et al.

Trends in Cybersickness

The retrieved material highlighted two major trends in 
studies related to cybersickness:

Diagnosis

Stimuli 
Categorization

Cybersickness



Diagnosis

Refers to the identification of nature and symptoms of 
cybersickness.

The problem with Diagnosis:
How to identify, measure, and prevent cybersickness?

Diagnosis

Symptoms (Rebenitsch and Owen 2016): 
Nausea
Pale skin
Cold sweats
Vomiting
Dizziness
Headache
Increased salivation
Fatigue
Eyestrain
Difficulty focusing.



Assessing cybersickness:

Subjective measures:
Simulator sickness questionnaire (SSQ) (Kennedy et al. 1993)

Objective measures:
Postural instability theory (Riccio and Stoffregen 1991).
Physiological measurements:

Electrodermographic Analysis (EDA).
Electrocardiogram (ECG).
Blood pressure.
Facial temperature.

Diagnosis

Some of the most common theories explaining the nature of 
cybersickness: 

Sensory mismatch: Visual, vestibular and proprioceptive (Palmisano et al.
2017).
Postural instability: low sense of balance and righting reflexes (Munafo et al. 
2017, Arcioni et al. 2018).
Rapid eye movements: the vagal nerve can be triggered by rapid involuntary 
eye movements induced by optical flow or visual patterns (Adhanom et al.
2020).

In the exploration of cybersickness, there is another issue relevant for a 
discussion in visual perception: Visual fatigue.

Diagnosis



Visual fatigue:
Vergence-Accommodation conflict featured in the eyes, induced by long exposures to 
screens.
(Guo et al. 2020) investigated visual discomfort in long-term VE immersion sessions 
(8 hours) compare to real physical environment (standard monitor)

Measuring Visual fatigue:
Subjective measures:

Visual Fatigue Scale (Kuze and Ukai 2008).

Objective measures:
Physiological measures:
Pupil diameter, accommodation response, and eye blink rate. (Guo et al. 2020).

Diagnosis

Diagnosis
How to predict cybersickness?

VR sickness predictor: framework for cybersickness metrics (Kim et al. 2018).
Camera Trajectories: system evaluates the impact of camera movements 
based on the path and the speed the camera moves (Hu et al. 2019, 
Balasubrananian and Soundararajan 2019).

These approaches are still on an early stage.



Preventing Cybersickness:

Reducing optical flow exposure, e.g. teleportation (CONS: reduced sense of 
presence and spatial awareness)
Reducing the FOV (Adhanom et al. 2020). It can, however, induce more 
cybersicknes in eccentric gaze behavior.
Foveated FOV restrictors: No significantly different results from previous FOV 
techniques but offered a better gaze dispersion, granting a wider FOV to 
users (Adhanom et al. 2020).
Optimizing camera path-defined movements, based on variations of 
accelaration, rotation velocity (Hu et al. 2019, Balasubrananian and 
Soundararajan 2019).
Presenting a stationary setup for participants when possible (sitting and still 
VE).

Diagnosis

Stimuli Categorization

Evaluate the role of different type of applications and 
visualization techniques in cybersickness.

The problem with Stimuli:
Identify the type of stimuli that can induce cybersickness.



It seems there is an inverse relationship between vection and 
cybersickness, when head movements are analysed (Palmisano et al.
2017):

Vection increases when the application compensates head movements.
Cybersickness increases in inversely compensated head movements.

Postural stability test through balancing trials in VR (Munafo et al. 2017):
First-person perspective is propense to induce cybersickness.
Females report a higher incidence of cybersickness.
Correlation between postural sway and cybersickness (Arcioni et al. 
2018).

Stimuli Categorization

AR, using see-through HMDs report (Vovk et al. 2018):
Low rates of cybersickness.
Oculomotor distress as the most common symptom.

Stimuli Categorization



From Cybersickness Studies

Heavily focused in the area of VR.

Effects of that may induce cybersickness:
Rendering options (monoscopic, stereoscopic).
FOV.
Body sway and postural instability.
Camera trajectories.
The graphical properties of the application itself.

From Cybersickness Studies

Postural instability theory: general postural control correlates with 
tendency of perceiving cybersickness in games (Munafo et al. 2017)
and controlled environments (Arcioni et al. 2018).

Biological sex may also be a factor for cybersickness (Munafo et al. 
2017).

The development of frameworks to estimate cybersickness may aid in 
the scalability of the research done in the area (Kim et al. 2018).

See-through HMDs seem to reduce the perception of cybersickness 
(Vovk et al. 2018).



Challenges in Cybersickness Studies

Many factors may affect the perception of Cybersickness:
Body sway, posture, biological sex, application, exposure time.

Lack of unified or standard methods to measure 
cybersickness.

A combination of physiological and subjective evaluations.

Cybersickness has not been broadly explored in AR.
See through HMDs report low impact on generating cybersickness.
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