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3D imaging

3
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Laser range scanning
Bayon Digital Archive Project

Ikeuchi lab., UTokyo

3D modeling methods
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Multiview stereo
[Furukawa 10]

Reconstruction                 Ground truth

3D modeling methods
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Geometric approach Photometric approach

Gross shape

Detailed shape

Geometric vs. photometric approaches
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How can machine understand the shape from image intensities ?

Shape from image intensity
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Photometric 3D modeling
3D Scanning the President of the United States

P. Debevec et al., USC, 2014
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GelSight Microstructure 3D Scanner

E. Adelson et al., MIT, 2011

Photometric 3D modeling



Preparation 1: Surface normal
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A surface normal 𝒏 to a surface is 
a vector that is perpendicular to 
the tangent plane to that surface.

𝒏

𝒏 ∈ 𝒮2 ⊂ ℝ3, 𝒏 2 = 1

𝒏 =

𝑛𝑥
𝑛𝑦
𝑛𝑧
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• Amount of reflected light 
proportional to 𝒍𝑇𝒏 (= cos𝜃)

• Apparent brightness does not 
depend on the viewing angle.

−𝒍𝒍

𝒍 ∈ 𝒮2 ⊂ ℝ3, 𝒍 2 = 1

𝒏

𝜃

𝒍 =

𝑙𝑥
𝑙𝑦
𝑙𝑧

Preparation 2: Lambertian reflectance



Lambertian image formation model
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𝑚 ∝ 𝑒𝜌𝒍𝑇𝒏 = 𝑒𝜌 𝑙𝑥 𝑙𝑦 𝑙𝑧

𝑛𝑥
𝑛𝑦
𝑛𝑧

𝑚 ∈ ℝ+: Measured intensity for a pixel
𝑒 ∈ ℝ+: Light source intensity (or radiant intensity)
𝜌 ∈ ℝ+: Lambertian diffuse reflectance (or albedo)
𝒍 : 3-D unit light source vector
𝒏: 3-D unit surface normal vector

𝒏

𝒍

𝑚

𝑒

𝜌



Simplified Lambertian image formation model
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𝑚 ∝ 𝑒𝜌𝒍𝑇𝒏 = 𝑒𝜌 𝑙𝑥 𝑙𝑦 𝑙𝑧

𝑛𝑥
𝑛𝑦
𝑛𝑧

𝑚 = 𝜌𝒍𝑇𝒏



Photometric stereo
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Assuming 𝜌 = 1

j-th image under 
j-th lightings 𝑙𝑗, 

In total f images

𝐼 1, 𝐼 2, ⋯ , 𝐼 𝑓 = [𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧]

𝑙1𝑥 𝑙2𝑥
𝑙1𝑦 𝑙2𝑦 ⋯

𝑙1𝑧 𝑙2𝑧

𝑙𝑓𝑥
𝑙𝑓𝑦
𝑙𝑓𝑧

𝐼 1 = 𝒏 ∙ 𝒍1
𝐼 2 = 𝒏 ∙ 𝒍2

⋯
𝐼 𝑓 = 𝒏 ∙ 𝒍𝑓

For a pixel with
normal direction n

[Woodham 80]



Photometric stereo
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Matrix form

𝑝

𝑓

𝑰 =
𝑝

3

𝑵
𝑓

3𝑳

𝑰 = 𝑵𝑳

𝑵 = 𝑰𝑳+Least squares solution :

𝑝: Number of pixels

𝑓: Number of images



Photometric stereo: An example
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𝑰 = 𝑵 𝑳

Calibrated

To estimate

…

𝑵 = 𝑰𝑳+

Normal map

Captured



Degenerate case
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• Light sources locate on a plane (co-planar)

𝒏

𝑰 = 𝑵 𝑳

Not invertible



Diffuse albedo
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• We have ignored diffuse albedo so far

• 𝑰 = 𝑵𝑳
• Normalizing the surface normal 𝒏 to 1, we obtain 

diffuse albedo (magnitude of 𝒏)
• 𝜌 = |𝒏|

• Diffuse albedo is a relative value



So far, limited to…
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• Lambertian reflectance

• Known, distant lighting



Generalization of photometric stereo
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• Lambertian reflectance

Outliers beyond Lambertian

General BRDF

• Known, distant lighting

Unknown distant lighting

Unknown general lighting

V L

?



Generalization of photometric stereo
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General-1: Uncalibrated General-2: Robust General-3: General material

Specularity

Shadow

General-4:  General lighting

[CVPR 10]                                                   [ACCV 10]

[3DV 14, CVPR 18] [CVPR 19, ICCV 19]

Benchmark dataset

[CVPR 16, TPAMI19]

[CVPR 12, ECCV 12, TPAMI 14, 

ICCV 17, TIP 19, TPAMI19]

General-5: Uncalibrated + general material



Photometric Stereo Taxonomy
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Photometric stereo taxonomy
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• Reflectance model
• Lambert’s model

• Robust methods

• Analytic model

• General properties of BRDF

L

R

A

G

(Lambert’s model + outliers) 



Photometric stereo taxonomy
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• Reflectance model
• Lambert’s model

• Robust methods

• Analytic model

• General properties of BRDF

L

R

A

G

(Lambert’s model + outliers) 

Simplest
Most widely used

Lighting

L
V

BASELINE



Photometric stereo taxonomy

• Reflectance model
• Lambert’s model

• Robust methods

• Analytic model

• General properties of BRDF

L

R

A

G

(Lambert’s model + outliers) 

Outlier rejection:

Early four-lights method
[Solomon 96]
[Barsky 03]

RANSAC
[Mukaigawa 07]
Median approach
[Miyazaki 10]

Rank minimization
[Wu 10]
[Ikehata 12]

Shadow

+ 𝐄Sparse outliers

Specularity

𝐈 = 𝐍𝐋 + 𝐄

WG10

IW12
25



Non-Lambertian outliers
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Attached 
shadow

Cast 
shadow

Specularity



Non-Lambertian photometric stereo
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• Robust approach
• More than 3 images for removing non-Lambertian effects as outliers

𝑵 = 𝑰𝑳−1𝑵 = 𝑰𝑳−1

[Coleman 82, Barsky 03]



Robust PCA approach
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• Traditional solution method

• Least-squares solution

•𝑫 = 𝑵𝑳 ෡𝑵 = 𝑫𝑳+

• Observation matrix 𝑫 ∈ ℝ𝑝×𝑓 (p pixels, f images)
• Normal matrix 𝑵 ∈ ℝ𝑝×3

• Light matrix 𝑳 ∈ ℝ3×𝑓

𝑫 has a low-rank structure

[Wu 10]



Robust PCA approach
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• Low-rank matrix structure
• 𝑫 = 𝑵𝑳

• Rank of 𝑫 should be at most 3, irrespective to 𝑝 and 𝑓

• Modeling corruptions as sparse errors
• Shadows, specularities breaks the low-rank structure

• Model these corruptions as 𝑬

• 𝑫 = 𝑵𝑳 + 𝑬 (= 𝑨 + 𝑬)



Robust PCA approach
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• Formulation
• min

𝑨,𝑬
rank 𝑨 + 𝛾 𝑬 0 s.t. 𝑫 = 𝑨 + 𝑬

• Solution via convex programming
• min

𝑨,𝑬
𝑨 ∗ + 𝛾 𝑬 1 s.t. 𝑫 = 𝑨 + 𝑬



Robust PCA approach
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Photometric stereo taxonomy

• Reflectance model
• Lambert’s model

• Robust methods

• Analytic model

• General properties of BRDF

L

R

A

G

(Lambert’s model + outliers) 
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Torrance-Sparrow model
[Georghiades 03]

Ward model
[Chung 08]

Mixture of Ward lobes
[Goldman 10] GC10



Photometric stereo taxonomy

• Reflectance model
• Lambert’s model

• Robust methods

• Analytic model

• General properties of BRDF

L

R

A

G

(Lambert’s model + outliers) 
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Isotropy
[Alldrin 07]
[Tan 11]
[Chandraker 13]

Monotonicity
[Higo 10]
[Shi 12]

Bi-variate model
[Alldrin 08]
[Shi 14]
[Ikehata 14]

AZ08

HM10

ST12

ST14

IA14



General material reflectance modeling
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Bidirectional Reflectance Distribution 
Function: BRDF



Bi-polynomial model for photometric stereo
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[Shi 12, 14]

High-frequency reflectance

*h is the bisector of lighting direction l and viewing direction v

𝜌𝑠
4𝜋𝛼2

1

𝐧𝑇𝐥 𝐧𝑇𝐯
𝑒
1
𝛼2

1−
1

𝐧𝑇𝐡

Low-frequency reflectance

• Conventional approach: Lambertian

• Proposed approach: Bi-polynomial
- Simplest but inaccurate

- Simple equation with general modeling ability

- 𝜌 is a constant

- 𝐴2 𝐧𝑇𝐡 2 + 𝐴1 𝐧𝑇𝐡 + 𝐴0 𝐵2 𝐥𝑇𝐡 2 + 𝐵1 𝐥𝑇𝐡 + 𝐵0

Disregarded by 
thresholding



Accuracy on MERL BRDF dataset [Matusik 03]
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AVG. 100 Bicubic Biquadratic Bilinear Lafortune C.-Torrance Lambert

Ang. Err. 1.25 1.12 1.37 4.07 2.13 2.14



Photometric stereo results on real objects
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* Data courtesy of N. Alldrin

Image (input/reference)        Biquadratic (normal/surface)         Lambert (all) (normal/surface)



Photometric stereo taxonomy

• Reflectance model
• Lambert’s model

• Robust methods

• Analytic model

• General properties of BRDF

L

R

A

G

(Lambert’s model + outliers) 
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Cont.

Manifold embedding
[Sato 07]
[Okabe 09]
[Lu 13]

Example-based
[Hertzmann 05]
[Johnson 11]

LM13



Non-Lambertian methods

39



Photometric stereo taxonomy

40

• Lighting calibration
• Calibrated

• Uncalibrated

C

U



Photometric stereo taxonomy
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• Lighting calibration
• Calibrated

• Uncalibrated

C

U

Using a mirror sphere

Accurate but tedious
Most methods are calibrated



Photometric stereo taxonomy
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• Lighting calibration
• Calibrated

• Uncalibrated

C

U

Unknown lighting condition

Factorization based
Resolving RGB
[Alldrin 07]
[Shi 10]
[Wu 13]
[Papadhimitri 14]

SH lighting model
[Basri 07]
[Shi 14]

Manifold embedding based methods

AM07

SM10

WT13

PF14



Uncalibrated photometric stereo
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• Photometric stereo with unknown directional lighting

•Given three or more images 𝑰, estimate 𝑵 and 𝑳

𝑝

𝑓

𝑰 =
𝑝

3

𝑵
𝑓

3𝑳

𝑝: Number of pixels

𝑓: Number of images
?

Unknown

Unknown



SVD approach
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𝑰 𝑼

[𝑝 × 𝑓] [𝑝 × 𝑝]

𝜮

𝑽𝑇

[𝑝 × 𝑓]

[𝑓 × 𝑓]= = 𝑵 𝑳

[𝑝 × 3]

[3 × 𝑓]

𝑼′ 𝜮′ 𝑽𝑇′

𝑰′ = 𝑼′𝜮′𝑽𝑇′Rank-3 approximation:

[Hayakawa 94]
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• Rank-3 approximation: 𝑰′ = 𝑼′𝜮′𝑽𝑇′

Surface normal   ෡𝑵 = 𝑼′ 𝚺′
𝟏

𝟐

Light source         ෠𝑳 = 𝚺′
𝟏

𝟐𝑽′

Is this solution unique?

No, there are ambiguities.

SVD approach
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•For any 𝑨 ∈ 𝐺𝐿(3), 𝑵∗ = ෡𝑵𝑨 is also a solution, 
because 𝑰′ = ෡𝑵෠𝑳 = ෡𝑵𝑨 𝑨−𝟏 ෠𝑳 = 𝑵∗𝑳∗

 =

Pseudo-normal         Ambiguity

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

Correct solution

Ambiguities in SVD-based solution



[Belhumeur 97, Yuille 99]
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• In general, the pseudo-normal field 𝑵∗ does not have a corresponding 
surface
• Subset of the solutions satisfies integrability constraint (𝑍𝑥𝑦 = 𝑍𝑦𝑥)

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

1 0 0
0 1 0
𝜇 𝜈 𝜆

Linear ambiguity GBR ambiguity

Generalized Bas-Relief ambiguity



Resolving the GBR ambiguity
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• Pixels with the same albedo but different surface normals should satisfy

• 4 unknowns: can be resolved if at least 4 pixels are selected

(𝐬𝒊= 𝑎𝐧𝒊)

where

[Shi 10]



• K-means clustering of pixels

• Surface normal grouping using intensity profiles

•Albedo grouping using chromaticity     

Resolving the GBR ambiguity

49



Results: resolving the ambiguity
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Sheep scene 

12 images

Angular error (degree)

mean 7.30

std. dev. 3.02

Calibrated Uncalibrated

N
o

rm
al

D
ep

th



Uncalibrated methods
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Photometric stereo taxonomy

52

• Lighting model
• Directional lighting

• Point lighting

• General (environment) lighting

D

P

G



Photometric stereo taxonomy
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• Lighting model
• Directional lighting

• Point lighting

• General (environment) lighting

D

P

G

Simplest lighting model
Most works



Photometric stereo taxonomy
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• Lighting model
• Directional lighting

• Point lighting

• General (environment) lighting

D

P

G

More realistic 
Spatially-varying direction
Intensity fall-off
[Iwahori 90]
[Clark 92]
[Higo 09]



Photometric stereo taxonomy
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• Lighting model
• Directional lighting

• Point lighting

• General (environment) lighting

D

P

G

Most general
Sum of directional lighting 
[Yu 13]

Spherical harmonics model
[Basri 07]
[Shen 09]
[Shi 14]



Photometric stereo taxonomy
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• Number of images
• Small (10-20)

• Medium (50-100)

• Large (500+)

S

L

M



Photometric stereo taxonomy
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• Number of images
• Small (10-20)

• Medium (50-100)

• Large (500+)

S

L

M

Four/five lights for robustness
General lighting (1st/2nd order SH)
Fitting analytic BRDF
Near point lighting methods
Most uncalibrated methods



Outlier rejection
Handing general isotropic BRDFs
Multi-view for Lambertian surface

Photometric stereo taxonomy
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• Number of images
• Small (10-20)

• Medium (50-100)

• Large (500+)

S

L

M



Outdoor scenario
Manifold embedding
Handle anisotropic BRDF
Multi-view for non-Lambertian surfaces 

Photometric stereo taxonomy
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• Number of images
• Small (10-20)

• Medium (50-100)

• Large (500+)

S

L

M



• Additional features

• Perspective Camera

• Non-Linear camera

• Color Lighting

• Depth Prior

• Multi-View setup

• Object Motion

PC

NL

CL

DP

OM

MV

Photometric stereo taxonomy

60



• E.g., conventional photometric stereo [Woodham 80]

• Lambertian, calibrated, directional lighting, a small number of (3) images

Label the category of each work

61

DL C S



Benchmark Datasets and Evaluation

62



“DiLiGenT” photometric stereo datasets

Directional Lighting, General reflectance, with ground “Truth” shape

[Shi 16, 19] https://sites.google.com/site/photometricstereodata

63



“DiLiGenT” photometric stereo datasets
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[Shi 16, 19] https://sites.google.com/site/photometricstereodata

Directional Lighting, General reflectance, with ground “Truth” shape



Data capture

• Point Grey Grasshopper + 50mm lens

• Resolution: 2448 x 2048

• Object size: 20cm

• Object to camera distance: 1.5m 

• 96 white LED in an 8 x 12 grid

65



Lighting calibration

• Intensity
• Macbeth white balance board

• Direction
• From 3D positions of LED 

bulbs for higher accuracy

𝒍𝑗

𝑹෡𝑺𝑗 + 𝑻

𝑃𝑗

𝑝𝑗

𝐶

𝒏𝑃𝑗

𝑲−1𝑝𝑗

Light frame (transformed by (R, T))

Mirror sphere (3D)

Captured image

66



“Ground truth” shapes

• 3D shape
• Scanner: Rexcan CS+ (res. 0.01mm)

• Registration: EzScan 7

• Hole filling: Autodesk Meshmixer 2.8

• Shape-image registration
• Mutual information method [Corsini 09]

• Meshlab + manual adjustment 

• Evaluation criteria
• Statistics of angular error (degree)

• Mean, median, min, max, 1st quartile, 3rd quartile

67



Evaluation for non-Lambertian methods
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Evaluation for non-Lambertian methods

• Sort each intensity profile in ascending order

• Only use the data ranked between (Tlow, Thigh)

70
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Evaluation for uncalibrated methods

Opt. A

Opt. G Fitting an optimal GBR transform after applying integrability constraint (pseudo-normal up to GBR)

72
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Photometric Stereo Meets Deep Learning

74



Photometric stereo + Deep learning

• [ICCV 17 Workshop] 
• Deep Photometric Stereo Network (DPSN)

• [ICML 18]
• Neural Inverse Rendering for General Reflectance Photometric Stereo (IRPS)

• [ECCV 18]
• PS-FCN: A Flexible Learning Framework for Photometric Stereo

• [ECCV 18]
• CNN-PS: CNN-based Photometric Stereo for General Non-Convex Surfaces

• [CVPR 19]
• Self-calibrating Deep Photometric Stereo Networks (SDPS)

• [CVPR 19]
• Learning to Minify Photometric Stereo (LMPS)

• [ICCV 19]
• SPLINE-Net: Sparse Photometric Stereo through Lighting Interpolation and Normal 

Estimation Networks

75



DPSN

PS-FCN

CNN-PS

SDPS

LMPS

SPLINE-Net

IRPS

Shadows

Features

BRDFs

Photometric stereo + Deep learning

Fixed Directions 
of Lights

Uncalibrated 
Lights

Small Number 
of Lights

Arbitrary Lights
Pixel-
wisely

Global

Optimal
Directions

Arbitrary
Directions

Unsupervised 
Learning

76



[ICCV 17 Workshop] 
Deep Photometric Stereo Network

77



Photometric Stereo

Research background

Normal mapMeasurements

𝑚1

𝑚2

𝑚3

𝑚4

= 𝑓

𝑳𝟏
𝑳𝟐
𝑳𝟑
𝑳𝟒

,

𝑛𝑥
𝑛𝑦
𝑛𝑧

Image formation

𝑓 : reflectance model
𝒎 : measurement vector
𝑳 : light source direction
𝒏 : normal vector

𝒎 = 𝑓(𝑳, 𝒏)

𝑳1

𝑳2

𝑳3

𝑳4

78



Parametric reflectance model

Motivations

Lambertian model
(Ideal diffuse reflection)

Metal rough surface
79

only accurate for a limited class of materials



Local illumination model

Motivations

Model direct illumination only

Global illumination effects cannot be modeled

Cast shadow

Parametric reflectance model

only accurate for a limited class of materials

Lambertian model
(Ideal diffuse reflection)

Metal rough surface
80



Local illumination modelParametric reflectance model

only accurate for a limited class of materials

Motivations

Lambertian model
(Ideal diffuse reflection)

Model direct illumination only

Metal rough surface

Case shadow

Global illumination effects cannot be modeled

• Model the mapping from measurements to surface normal directly using Deep Neural 
Network (DNN)

• DNN can express more flexible reflection phenomenon compared to existing models 
designed based on physical phenomenon

Normal mapMeasurements

Deep Neural Network

∙∙∙

81



・
・
・

Proposed method

Reflectance model with Deep Neural Network

• mappings from measurement (𝒎 = 𝑚1, 𝑚2, … ,𝑚𝐿
T) to surface normal (𝒏 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧

T
)

・
・
・

・
・
・

・・・

𝑛𝑥

𝑛𝑦

𝑛𝑧

Shadow layer Dense layers

𝑚1

𝑚2

𝑚3

𝑚4

𝑚𝐿

・
・
・

𝐿 images

82



・
・
・

Proposed method

Reflectance model with Deep Neural Network

• mappings from measurement (𝒎 = 𝑚1, 𝑚2, … ,𝑚𝐿
T) to surface normal (𝒏 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧

T
)

・
・
・

・
・
・

・・・

𝑛𝑥

𝑛𝑦

𝑛𝑧

Shadow layer Dense layers

Dropout

𝑚1

𝑚2

𝑚3

𝑚4

𝑚𝐿

・
・
・Simulating cast shadow

𝐿 images

83



・
・
・

Proposed method

Reflectance model with Deep Neural Network

• mappings from measurement (𝒎 = 𝑚1, 𝑚2, … ,𝑚𝐿
T) to surface normal (𝒏 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧

T
)

・
・
・

・
・
・

・・・

𝑛𝑥

𝑛𝑦

𝑛𝑧

Shadow layer Dense layers

Dropout

𝑚1

𝑚2

𝑚3

𝑚4

𝑚𝐿

・
・
・

Loss function : 𝒏 − ෝ𝒏 2
2

𝐿 images

How to prepare training data 84



Training data
Rendering synthetic images

• Rendering with database (MERL BRDF database), which stores reflectance functions of 100 
different real-world materials [Matusik 03]

85



Training data
Rendering synthetic images

• Rendering with database (MERL BRDF database), which stores reflectance functions of 100 
different real-world materials [Matusik’03].

Given normal map
86



Effectiveness of the shadow layer

0 [deg.]

-32 (better)

32 (worse) 

harvestgobletball pot2

The difference map of error map between “Proposed” and “Proposed W/ SL”
Blue pixels：The estimation accuracy is improved by shadow layer
Red pixels ：The estimation accuracy is NOT improved by shadow layer

The accuracy is improving.

87



ball cat pot1 bear buddha cow goblet harvest pot2 reading AVG.

Proposed 3.44 7.21 7.90 7.20 13.30 8.49 12.35 16.81 8.80 17.47 10.30 

Proposed W/ SL 2.02 6.54 7.05 6.31 12.68 8.01 11.28 16.86 7.86 15.51 9.41

ST14 (Shi+, PAMI, 2014) 1.74 6.12 6.51 6.12 10.60 13.93 10.09 25.44 8.78 13.63 10.30 

IA14 (Ikehata+, CVPR, 2014) 3.34 6.74 6.64 7.11 10.47 13.05 9.71 25.95 8.77 14.19 10.60 

WG10 (Wu+, ACCV, 2010) 2.06 6.73 7.18 6.50 10.91 25.89 15.70 30.01 13.12 15.39 13.35 

AZ08 (Alldrin+, CVPR, 2008) 2.71 6.53 7.23 5.96 12.54 21.48 13.93 30.50 11.03 14.17 12.61 

HM10 (Higo+, CVPR, 2010) 3.55 8.40 10.85 11.48 13.05 14.95 14.89 21.79 16.37 16.82 13.22 

IW12 (Ikehata+, CVPR, 2012) 2.54 7.21 7.74 7.32 11.11 25.70 16.25 29.26 14.09 16.17 13.74 

ST12 (Shi+, ECCV, 2012) 13.58 12.34 10.37 19.44 18.37 7.62 17.80 19.30 9.84 17.17 14.58 

GC10 (Goldman+, PAMI, 2010) 3.21 8.22 8.53 6.62 14.85 9.55 14.22 27.84 7.90 19.07 12.00 

BASELINE (L2) 4.10 8.41 8.89 8.39 14.92 25.60 18.50 30.62 14.65 19.80 15.39 

Benchmark results using “DiLiGenT”
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[ICML 18]
Neural Inverse Rendering for General Reflectance Photometric Stereo
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Challenges

• Complex unknown non-linearity: Real objects have various reflectance 
properties (BRDFs) that are complex and unknown

• Lack of training data: Deeply learning complex relations of surface 
normal and BRDFs is promising, but accurately measuring ground truth 
of surface normal and BRDFs is difficult

• Permutation invariance: Permuting input images should not change the 
resulting surface normals
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Key ideas

• Inverse rendering 

• Reconstruction loss

• Unsupervised
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Network architecture
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Network architecture
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Benchmark results using “DiLiGenT”
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[ECCV 18]
PS-FCN: A Flexible Learning Framework for Photometric Stereo
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Overview of PS-FCN

, 𝑙𝜃1 , 𝑙𝜃2
, 𝑙𝜃𝑛… PS-FCN

Given an arbitrary number of images and their associated light directions as input, 
PS-FCN estimates a normal map of the object in a fast feed-forward pass.

Advantages:
• Does not depend on a pre-defined set of light directions
• Can handle input images in an order-agnostic manner 96
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Conv7
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Fusion Layer

• A Shared-weight Feature Extractor 

PS-FCN consists of three components:

• A Fusion Layer
• A Normal Regression Network

Network architecture

97
𝐿𝑛𝑜𝑟𝑚𝑎𝑙 =

1

𝐻𝑊
σ𝑖,𝑗(1 − 𝑁𝑖𝑗 ⋅ ෩𝑁𝑖𝑗)

Loss function:



Max-pooing for multi-feature fusion 

98

• Order-agnostic operation (compared with RNNs)
• Can fused an arbitrary number of features into a single feature
• Can extract the most salient information from all the features
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Max-pooling is well-suited for this task:
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Fusion Layer

?

What is encoded in the fused feature?
99

Feature visualization



• Different regions with similar normal directions are fired in different channels
• Each channel can be interpreted as the probability of the normal belonging to a 

certain direction 100

Visualization for the fused features



• 100 BRDFs from MERL dataset [Matusik 03]

• Rendered with the physically based raytracer Mitsuba
• Trained only on the synthetic data, PS-FCN generalizes well on real data

101

Two synthetic training datasets
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Benchmark results using “DiLiGenT”



[ECCV 18]
CNN-PS: CNN-based Photometric Stereo for General Non-Convex Surfaces
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Observation map (per-pixel)

• Find an easy-to-learn representation

Definition of an observation map (𝛼 is normalizing factor, L is light intensity)  
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Training dataset

• Cycles renderer in Blender

• A a set of 3-D model, BSDF 
parameter maps (Disney’s 
Principled BSDS model), and 
lighting configuration

• Generate observation map 
pixelwisely
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Disney’s principled BSDS model

• Intuitive rather than physical 
parameters should be used 

• As few parameters as possible

• Parameters should be zero to one 
over their plausible range

• Parameters should be allowed to 
be pushed beyond their plausible 
range where it makes sense

• All combinations of parameters 
should be as robust and plausible 
as possible
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Normal prediction

Observation map
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Benchmark results using “DiLiGenT”
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Results: CyclePS test dataset
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[CVPR 19]
Self-calibrating Deep Photometric Stereo Networks
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Motivation

111

• Recent learning based methods for PS often assume known light directions 
• DPSN

• IRPS

• CNN-PS

• PS-FCN

• The performance of the existing learning based method for UPS is far from satisfactory
• PS-FCN + uncalibrated setting

Single-stage 
method

UPS-FCN

GT Ours111



• Directional lightings are much easier to estimate than surface normals

• Take advantage of the intermediate supervision (more interpretable)

• The estimated lightings can be utilized by existing calibrated methods

Stage1

Two-stage method:Single-stage method:

Model

Input Images Normal Input Images NormalLightings

Advantages of the proposed two-stage method:

Stage2

Main idea of SDPS-Net

112



• Stage 1: Lighting Calibration Network (LCNet) for lighting estimation

SDPS-Net consists of two stages:

• Stage 2: Normal Estimation Network (NENet) for normal estimation

The proposed two-stage framework



Loss function: 

• : azimuth classification loss
• : elevation classification loss
• : light intensity classification loss

z
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φ
✓

y

zz

xx

Discretization of 
lighting space:

Stage 1: Lighting calibration network



Loss function:

• Cosine similarity loss

• Our framework can handle an arbitrary number of images in an order agnostic manner.

Stage 2: Normal estimation network



Synthetic training dataset [Chen 18] 

• Cast-shadow and inter-reflection are considered using Mitsuba.  

• 100 measured BRDFs from MERL dataset
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Benchmark results using “DiLiGenT”

• Our method achieves state-of-the-art results (value the lower the better)
• The proposed LCNet can be integrated with the previous calibrated methods 117



Qualitative results on light stage data gallery
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[CVPR 19]
Learning to Minify Photometric Stereo
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Main IdeaMain idea
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• Cast-shadows are consistent patterns with a 
relatively sharp and straight boundary

• Randomly select two sides of the map, and 
randomly picks a point on each side

Occlusion layer

Main idea
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• Select the most relevant 
illuminant directions at input

• Fixed after training

Sparse connection table Loss functions

Main idea
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Effectiveness of occlusion layer

• Compared with random zeroing in DPSN
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*10 selected lights

Light-Config Proposed PS-FCN CNN-PS IW12 LS

Random 
(10 trials)

10.51 14.34 16.37 17.31

Selected by 
Proposed 
method

11.35 13.02 15.83 17.12

Optimal 
[Drbohlav 05]

8.73 13.35 15.50 16.57

10.02

Benchmark results using “DiLiGenT”
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[ICCV 19]
SPLINE-Net: Sparse Photometric Stereo through Lighting 
Interpolation and Normal Estimation Networks
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Key idea

126

• Sparse photometric 
stereo
• Fixed number of inputs 

with arbitrary lightings

• Basic idea
• Spatial continuity: 

dense interpolation

• Isotropy of BRDFs: 
physics constraint

Random positions of valid 
pixels in observation maps

Inputs Surface normals

Lighting interpolation 
guides normal estimation

Inputs Surface normals

Symmetric pattern in 
observation maps

Inputs Surface normals



Isotropic BRDFs in observation maps

127

• 𝜌 𝐧T𝐥, 𝐧T𝐯, 𝐯T𝐥

Loss functions of symmetric

𝑟(∙) is a mirror function



Global illumination effects in observation maps

128

• Inter-reflections

• Cast shadows

Loss functions of asymmetric

𝑝(∙) is a max pooling operation



Framework

Conv. layers (stride=1,2) Instance Norm. Deconv. layer (stride=2) ReLU SigmoidDropout Avg. Pooling FlattenDense Normalize

𝐧𝑔𝑡
𝐯

…

Down-sampling Residual

Block

Up-sampling

Lighting Interpolation Network Reconstruction Loss

Symmetric Loss

and

Asymmetric Loss

𝐒 𝐃 𝐃𝑔𝑡
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Framework

…

Dense Block 

Down-sampling Residual

Block

Up-sampling

Normal Estimation Network

𝐧

Conv. layers (stride=1,2) Instance Norm. Deconv. layer (stride=2) ReLU SigmoidDropout Avg. Pooling FlattenDense Normalize

Reconstruction Loss

Symmetric Loss

and

Asymmetric Loss

𝐧𝑔𝑡

𝐒 𝐃 𝐃𝑔𝑡

Dense Block 

𝐯 𝐯
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Framework

…

Dense Block 

Down-sampling Residual

Block

Up-sampling

Lighting Interpolation Network

Normal Estimation Network

𝐧

Conv. layers (stride=1,2) Instance Norm. Deconv. layer (stride=2) ReLU SigmoidDropout Avg. Pooling FlattenDense Normalize

Reconstruction Loss

Reconstruction Loss

Symmetric Loss

and

Asymmetric Loss

𝐧𝑔𝑡

𝐒 𝐃 𝐃𝑔𝑡

Dense Block 

𝐯 𝐯

131



Noise in sparse observation maps (inputs)

1.42° 8.14° 26.59° 48.31°1 42 3

Input

Ground 

truth

1

4

2

3

Normal map

• More brighter pixels, less shadows
• More ‘valid’ pixels, more accurate results
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Generated dense observation maps

Inputs              Nets w/o loss       Nets with ℒ𝑠 SPLINE-Net         Ground truth

• Symmetric loss and asymmetric loss help generate more accurate dense 
observation maps
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Benchmark results using Cycle-PS dataset
*10 selected lights, 100 random trials
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Benchmark results using “DiLiGenT” 
*10 selected lights, 100 random trials
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Open problems for data-driven methods

• When input light becomes sparse, data-driven methods does 
not outperform baseline (L2) for diffuse datasets 
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Open problems for dataset

• For more delicate structures, a 
scanned shape to too “blurred” to 
evaluate photometric stereo
• Integrating scanned shapes and 

photometric stereo for very high quality 
3D modeling

Image                   Scanned     Photometric stereo

• “DiLiGenT” only provides the “ground 
truth” of scanned shape
• How to measure the true surface normal 

precisely 
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