
Dataflow Programming and Processing for Artists and Beyond
Serguei A. Mokhov

Concordia University, Montreal, Canada

Montreal, Canada

mokhov@cse.concordia.ca

Miao Song

Concordia University, Montreal, Canada

Montreal, Canada

m_song@cse.concordia.ca

Sudhir P. Mudur

Concordia University, Montreal, Canada

Montreal, Canada

mudur@cse.concordia.ca

Peter Grogono

Concordia University, Montreal, Canada

Montreal, Canada

grogono@cse.concordia.ca

Figure 1: Gray Zone and D3 Demo Day ISSv2 Productions using Jitter and Processing with Kinect and OpenGL

ABSTRACT
We complement the last three editions of the course at SIGGRAPH

Asia (2015, 2016, 2018) and SIGGRAPH (2017) to make it more of a

hands-on nature and include OpenISS. We explore a rapid prototyp-

ing of interactive graphical applications for stage and beyond using

Jitter/Max and Processing with OpenGL, shaders, and featuring con-

nectivity with various devices. Such rapid prototyping environment

is ideal for entertainment computing, as well as for artists and live

performances using real-time interactive graphics. We share the

expertise we developed in connecting the real-time graphics with

on-stage performance with the Illimitable Space System (ISS) v2 and

its OpenISS core framework for creative near-realtime broadcasting,

and the use of AI and HCI techniques in art.

CCS CONCEPTS
• Computing methodologies → Computer vision; • Human-
centered computing → Graphics input devices; • Informa-
tion systems→Multimedia content creation; •Applied com-
puting → Sound and music computing;

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6941-1/19/11.

https://doi.org/10.1145/3355047.3359423

KEYWORDS
Jitter/MAX, Processing, Illimitable Space System (ISS), OpenISS,

OpenGL, real-time, human-computer interfaces, interaction, com-

puter graphics education, RGBD cameras

ACM Reference format:
Serguei A. Mokhov, Miao Song, Sudhir P. Mudur, and Peter Grogono. 2019.

Dataflow Programming and Processing for Artists and Beyond. In Pro-
ceedings of SA’19 Courses, Brisbane, QLD, Australia, November 17-20, 2019,
33 pages.

https://doi.org/10.1145/3355047.3359423

Courses

https://doi.org/10.1145/3355047.3359423
https://doi.org/10.1145/3355047.3359423

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Contents

Abstract . 1

Contents . 2

List of Figures . 2

1 Syllabus . 2

2 Bios . 2

2.1 Serguei A. Mokhov . 2

2.2 Miao Song . 3

2.3 Sudhir P. Mudur . 3

2.4 Peter Grogono . 3

3 Introduction . 4

3.1 Course Rationale . 4

3.2 Tentative Length and Level of Difficulty 4

3.3 Intended Audience . 4

3.4 Course Prerequisites . 4

3.5 Pedagogic Intentions and Methods 4

3.6 Special Presentation Requirements 4

3.7 Summary . 4

4 Production History with ISS and Demos 5

4.1 ISS Overview . 5

4.2 ISSv2 Production History 5

4.3 ISSv2 Components . 6

4.4 Production Using ISSv2 and Visual Modes 7

4.5 Difficulties Encountered During Production . . 7

4.6 Image Mapping and Calibration 8

4.7 Ongoing Work (ISSv2) . 8

5 Course Coverage . 8

5.1 Introduction to Max/MSP/Jitter 8

5.2 OpenGL in Jitter . 8

5.3 Kinect, OpenGL, and Jitter 9

5.4 Wii and Jitter . 9

5.5 iDevice Touch, Video, and Jitter 9

5.6 Tracking . 9

5.7 Shaders in Jitter . 9

5.8 Depth cameras and VFX in Processing 9

5.9 Putting it all Together . 9

5.10 OpenISS . 9

5.10.1 SOAP API. 10

5.10.2 REST API. 10

5.10.3 Requirements Specification 10

5.10.4 Dependencies . 12

References . 32

List of Figures

1 Gray Zone and D3 Demo Day ISSv2 Productions using

Jitter and Processing with Kinect and OpenGL 1

2 Ascension Dance Using ISSv1 . 5

3 Like Shadows Theatre Production in Beijing Using ISSv1

in 2014 . 5

4 Gray Zone Dance Using ISSv2 . 6

5 Distric 3 Demo Day Using ISSv2 in 2015 6

6 Conceptual Design of an Interactive Performance

Installation . 6

7 ISSv2 Components Diagram . 7

8 Line tunnel musical visualization . 7

9 Glowing shadows . 7

10 Multi-colored shadows . 7

11 Outline shadows . 8

12 SOAP Architecture . 10

14 Sample OpenISS Output Rendered in a Browser 12

13 Use Case Diagram of OpenISS OpenCV and Depth

Camera APIs . 13

1 SYLLABUS
The tentative outline of the course is below based on the previ-

ous editions of the course in 2015 and 2016 held at SIGGRAPH

Asia [Song et al. 2015, 2016]. Nearly each item in the syllabus has

a hands-on exercise to try things out. The code in the slides and

related web resources is provided as a teaching medium. The addi-

tional course resources can be found at this URL:

http://mdreams-stage.com/courses/sa2019

The course is customizable of various lengths. The described

option in this instance is for a half-day format.

The tentative schedule is below. We will adjust depending on

the audience aptitude and availability of newer equipment and

technologies by the time of the course.

• Introduction (105 minutes)
Presenters: Serguei Mokhov
– (20 min) General Introduction into Interactive Applica-

tions and Production Examples with the Illimitable Space

System

– (20 min) Introduction to Max, Sound, OpenGL in Jitter

– (20 min) Kinect, OpenGL, and Jitter

– (20 min) Wii and Jitter

– (25 min) iDevices and Jitter

• Break / hands-on exercises (15 minutes)

• Advanced Interaction (105 minutes)
– (15 min) Tracking

– (15 min) Shaders in Jitter

– (25 min) Processing, its VFX, Pipeline/Workflow

– (25 min) Putting it all Together

– (25 min) Hands-on exercises

2 BIOS
2.1 Serguei A. Mokhov
Serguei Mokhov had obtained his PhD from Concordia University,

Montreal, Quebec, Canada, where he completed his bachelor’s and

master’s degrees in Computer Science and Information Systems Se-

curity. Mokhov’s diverse research interests include intensional pro-

gramming, distributed and autonomic computing, digital forensics,

information systems security, AI, software engineering, computer

graphics and HCI, Linux, and computer networks. His PhD disser-

tation had to do with Intensional Cyberforensics. He also teaches

at Concordia and Champlain College of Vermont various subjects

in those disciplines. Mokhov taught CG courses to undergraduate

http://mdreams-stage.com/courses/sa2019

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

students at Concordia. He originally proposed the OpenGL slides

framework for simple hair animation project in 2003.

Song and Mokhov jointly did the stereo 3D software implemen-

tation plug-in for Maya in 2008 [Song et al. 2009]. Mokhov later

joined Song to work on the ISS as a technical lead at mDreams

Stage.

Mokhov is a Co-founder and Executive Vice Director of CCIFF

and in particular was involved in co-organizing and chairing its

Entertainment Technology (ET) Summit and Exhibition (http://

cciff.ca/en/festival/ets/) in 2016 and leading its 2017 edition as a

conference with publications.

2.2 Miao Song
Miao Song completed her first Bachelor’s degree in Performance

Arts and Direction in China. While in China, she worked in the

China Central Television Station (CCTV) as a TV director and jour-

nalist. She obtained her second Bachelor’s degree in Computer

Science, Concordia University, Montreal, Canada, and her Master’s

of Computer Science degree, also at Concordia, focusing on inter-

active real-time softbody simulation. Song completed the SIP PhD

program with research involving a mix of interactive environments,

cinema and documentaries, 3D computer graphics and realistic

physical based simulation, and haptic responsive environments.

Song has been awarded with various scholarships and grants for

her research work. Her film project has been screened at national

and international film festivals. Song taught HCI Design and Real-

time Video courses in Computer Science and Software Engineering

as well as Computation Arts departments.

Song produced realtime physical-based softbody simulation sys-

tem and an interactive documentary prototype remake in OpenGL

of her short documentary film followed by the Illimitable Space
System (ISS) prototype in her doctorate thesis [Song 2012].

Song established mDreams Stage Research Creation group (http:

//mdreams-stage.com) at Concordia as a part of the Concordia 3D

Graphics group and led many related events involving the ISS.

Song is a Founder and Executive Director of the Canada China

International Film Festival (CCIFF), http://cciff.ca, held in Montreal,

Canada, September 16–19, 2016 and the 2nd edition is upcoming in

September 2017.

As Affiliates at Concordia, Song and Mokhov continue to collab-

orate on interactive graphics and new media projects together with

Drs. Sudhir Mudur and Peter Grogono. Our joint work included

Haptic Jellyfish at the CHI’14 WIP section [Song et al. 2014b] as

well as Kinect-based installations featured on stage in a Chinese

New Year Gala show on January 2014 [Song and Mokhov 2014]

and a theatre production at the Central Academy of Drama in Bei-

jing in April 2014 [Song et al. 2014a]. The corresponding video

excerpts can be found at http://vimeo.com/channels/153466 and

related publications appeared in [Song et al. 2014a,b]. We also lead

ISSv2 in Jitter/Max with Processing with four students that was

first deployed on February 14, 2015 for the Gray Zone dance at the
Chinese New Year Gala 2015 [Song et al. 2015b]. That followed

by the District 3 Demo days in Montreal in 2015 and 2016, and a

presentation with the live dance at the CG in Asia section at SIG-

GRAPH 2015 [Song et al. 2015b,a] a BoF for CCIFF (http://cciff.ca) at

SIGGRAPH 2016 and CCIFF’s pre-launches in Montreal and Beijing.

Song and Mokhov are leading a parallel development of the ISSv3

using Unity3D, Vuforia, and Kinect SDK for a mobile app and an im-

mersive installation. The app has been featured at SIGGRAPH 2015

Appy Hour [Zhang et al. 2015] and its AR/VR extension at the

SIGGRAPH Asia 2016 workshop [Bardakjian et al. 2016].

2.3 Sudhir P. Mudur
Sudhir Mudur obtained his Bachelor of Technology (honours) in

1970 from IIT Bombay and his PhD in 1976 from the Tata Institute of

Fundamental Research in Mumbai, India. His interest in computer

graphics started with his undergraduate thesis project. Since then

he has been actively researching the field of computer graphics,

particularly the areas 3D modelling, global illumination, virtual en-

vironments and applications in CAD/CAM and entertainment. Over

this period of more than 3 decades, he has published papers in top

computer graphics venues and supervised a large number of doc-

toral and graduate students, many of whom are well established in

the field. His work in the areas of robust geometric computing using

interval arithmetic and in global illumination models is well cited.

He has extensive experience in working with engineers, artists,

animators and designers on projects in areas including aerospace

systems, animation, games, immersive environments, arts exhibits,

textile arts, font design and Chinese opera.

Mudur is currently a professor and chair of the department of

computer science and software engineering at Concordia University.

He has been teaching computer graphics and related courses at the

undergraduate and graduate level for over 30 years. With his long

experience in curriculum development, he has developed a number

of new courses in computer graphics and games. He has served as

a member of the Editorial Board of a number of computer graphics

journals.

Mudur is a senior member of IEEE, member of ACM, member of

Eurographics and a member of SIGGRAPH Pioneer Group.

2.4 Peter Grogono
After obtaining B.A. and M.A. degrees in mathematics from Cam-

bridge University, Peter Grogonoworked in various fields, including

pattern recognition, civil engineering, operating systems and elec-

tronic music. In the late 1960s, while at Electronic Music Studios in

Putney, England, he designed and implemented MUSYS, a software

system for music synthesis that ran on DEC PDP/8 computers.

Grogono moved to Montréal, Québec, in 1973. He acted as a

consultant for several years, working on projects as diverse as rail-

road ticketing and business accounting, before joining Concordia

University to advise professors with their computing projects. He

obtained a masters degree in 1980 and a Ph.D. in 1984, both in

Computer Science, before joining the Department of Computer Sci-

ence and Software Engineering at Concordia. He contributed to the

department’s teaching by extensively revising the undergraduate

Computer Science program and introducing Software Engineer-

ing programs for undergraduate and masters students. Grogono

was awarded the first Engineering and Computer Science Faculty

Award in 1998 and the first President’s Award for excellence in

teaching in 2007. In 2001, he helped students to organize the first

Canadian University Software Engineering Conference (CUSEC).

http://cciff.ca/en/festival/ets/
http://cciff.ca/en/festival/ets/
http://mdreams-stage.com
http://mdreams-stage.com
http://cciff.ca
http://vimeo.com/channels/153466
http://cciff.ca

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

The conference has been held annually since then and Grogono is

recognized as its “founding father”.

Grogono’s research areas include programming languages, ex-

pert systems, graphics, and software engineering. He has published

seven books and more than one hundred research articles. He is

now Professor Emeritus, having retired from Concordia University

in 2014. He now pursues his hobbies, which include photography

and music, while continuing to conduct research into programming

languages and graphics.

3 INTRODUCTION
We begin with the introduction to the interactive media and gradu-

ally progress into technology specific details.

3.1 Course Rationale
It is founded in a studio-based course in the creation and real-time

processing of moving textures and video with OpenGL. This course

is particularly applied to installation and performance arts practice.

It provides an introduction to interaction approaches for the real-

time processing of 2D and higher-dimensional arrays, image and

video filters, motion segmentation, and tracking blobs, optical flow,

faces, and shapes.

3.2 Tentative Length and Level of Difficulty
• Half Day Course

• Beginner/Intermediate

3.3 Intended Audience
Interaction design artists, OpenGL enthusiasts and developers; com-

puter graphics students (undergraduate and introductory graduate

and intermediate-advanced) and student volunteers.

3.4 Course Prerequisites
Some familiarity with graphics concepts, OpenGL, transformations,

and programming in general, but no advanced level is required.

Software requirements:

• Clone OpenISS from GitHub

• Download 30-day trial version of Max from http://cycling74.

com [Cycling ’74 2015]. Relatively modern OS X orWindows

laptop for hands-on materials for those who want to try if

no computer lab is available. We will bring the interaction

devices, such as Kinects and Wii controllers.

• Download Processing 2.x [Fry and Reas 2015] (it comes with

built-in JDK 7). Its installation is as simple as unpacking it

where it was downloaded and running it once.

• Additional libraries will need to installed for both Max and

Processing; we will provide a bundle for download.

3.5 Pedagogic Intentions and Methods
This is intended to be a very practical course as in learning by doing,

even for the non-hands-on participants. The hands-on approach

is the best way to follow this course. The use of Jitter/Max and

Processing makes it easier to grasp the concepts due to their artist-

friendly setup.

3.6 Special Presentation Requirements
For willing participants to do the hands-on work as a minimal

requirement, a computer equipment with OpenGL, Processing 2,

Java SDK 7, Max 6 (32-bit) installed to be able to run the examples

on OS X or Windows 7 is needed. Additional open source libraries

will be required to be installed to work with Kinect and other

devices. We prepared a prepackaged set of libraries to download.

Unfortunately we cannot supply Kinects and Wiis for all, but many

participants may have their smart phones and tablets where some

interaction would work directly; if time permits, the participants

can try interactivity at the instructor’s place after the course and

our demo or use their depth cameras.

The participants may also simply listen through, take notes, and

do their trials on their own devices. Traditional paper style notes

are provided as PDF. The participants are encouraged to install and

explore the mentioned software tools prior coming to the course

if they prefer to use their own laptops. Notes and the sample code

will be made available to the participants where the code would

contain the extra comments and practice material.

3.7 Summary
We first use Cycling 74’s Max, MSP, and Jitter (commonly known

together as simplyMax) that have documentation that includes fan-

tastic tutorials [Elsea 2013] on all aspects of the software. However,

we focus on specifics of integrated multi-device interaction using

sensors/controllers such as Kinect, Wii, and iDevices connected

to OpenGL for processing in a fast prototyping manner for digital

media production.

The attendees will need a 30-day trial version of Max 6.x [Cycling

’74 2015]; other libraries and programs such as plug-ins, externals,

and Processing [Fry and Reas 2015] are free and/or open-source.

This setup does not require extensive programming knowledge and

the course is structured along Max’s visual dataflow programming

language. (A FOSS alternative to Jitter/Max, PureData [Puckette

and PD Community 2014] may be introduced if time permits, but

the course currently is centered around Jitter/Max and Processing.)

The second environment is Processing [Fry and Reas 2015], a

Java-based IDE that is easy to start working with in OpenGL and

develop graphical and interactive applications. Instead of patchers
as in Max, it has a notion of sketches, which are also easier to grasp

for artistic-minded than traditional programming in imperative

languages like pure Java, C++, or C#.

Processing and Max are then made to communicate with each

other via Syphon (OS X) [Butterworth and Marini 2013; Colubri

2014] or Spout (Windows) [Joris and The Resolume Team 2014] to

share video frame data as well as UDP-based OSC [Schlegel 2011]

protocol to share coordinates and other data structures between

the two applications.

The proposed environment is very affordable to most practicing

digital media artists, VFX designers, and programmers to compose

interactive graphical applications for stage.

All the sample patchers and sketches demonstrated in class will

be available from the course instructors. A useful list of externals

and resources will also be maintained.

Followed the educational session, we then share our experience

in deploying Max/Processing setup as a part of Illimitable Space

http://cycling74.com
http://cycling74.com

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

System v2 (ISSv2) as a case study, on stage, along with the lessons

learned.

Suggestions for additional readings will is provided for each

course topic. There are additional useful resources on the subject

that we may refer to for one concept or another throughout the

course. They are listed under the “References” section: [Böttcher

2013; Cycling ’74 2015; Elsea 2013; Grogono 2002; Manzo 2011;

Microsoft 2012a; Molich and Nielsen 1990; Pelletier 2012; Puckette

and PD Community 2014; Rogers et al. 2011; Song 2012; Song et al.

2014a; Stone et al. 2005; Ursu et al. 2009].

Relevant and helpful courses from past SIGGRAPH events on

various aspects on color theory in digital media, pipeline design

patterns, capturing human body, videography, and storytelling for

a variety of applications can be found at [Caldwell 2015; LaViola

2015; Li et al. 2015; Polson 2015; Rhyne 2015; Richardt et al. 2015].

4 PRODUCTION HISTORYWITH ISS AND
DEMOS

Illimitable Space System (ISS) is a real-time interactive config-

urable toolbox used to create visual effects and musical visualiza-

tions based on input such as voice or gestures with the correspond-

ing image mapping and multiple input devices [Song et al. 2014a].

We use Illimitable Space System v2 for rapid development of

real-time motion-based graphics apps for stage implemented in

Processing and Jitter. (Our previous experience using the pre-

vious iteration of the ISSv1 system is documented in [Song et al.

2014a,b] where we used a different set of technologies.)

We share our research-creation for a real-time production for an

interactive dance show that took place in Montreal, Quebec, Canada

as part of the Chinese New Year Gala 2015 on February 14, as

well as District 3 Demo Day and the corresponding research work

on projection, image mapping, multiple-camera inputs, irregular

surface projection, as part of the production and future work.

We show what is possible with the ISSv2 pipeline if time permits:

• Gray Zone quick app demo

• Live dance demowith projection mapping (similar to the Dis-

trict 3 Demo Day and CG in Asia at SIGGRAPH 2015 [Song

et al. 2015b])

• Lion face tracking demo

• Physics and falling candies

• An interactive texture distorter patch

• Projection mapping to irregular surface

4.1 ISS Overview
ISS is a flexible and configurable research-creation entertainment

software for deployment on stage for real-time motion-based ap-

plications, for dance and other shows. ISSv1 supports interactive

documentary and voice-based interaction. ISSv1 was exhibited SIG-

GRAPH Asia’14 and VSMM’14 in 2014 [Song et al. 2014a,b]. ISSv1

was used in Chinese New Year Gala 2014, in the Ascension dance

(two days of production in Montreal) [Song and Mokhov 2014] and

in three scenes of the Like Shadows theatre production in Beijing,

China for about 10 days and 900 people in audience [Song et al.

2014a].

In 2015, the production team created and used a subset of the

features of the ISSv2 toolbox for interactive artistic performance

Gray Zone [Song et al. 2015b] including enhancements on projec-

tion, image mapping, irregular surface projection, multiple-camera

tracking and to study and evaluate the user experience before 300

or so audience.

Ascension Dance using ISS

Figure 2: Ascension Dance Using ISSv1

ISSv2 switched to other technologies as opposed to ISSv1 (that

used XNA and C# on Windows) to allow for rapid turn out with

computation artists. Max- and Processing-based rapid prototyping

environment is ideal for entertainment computing, as well as for

artists and real-time performances using interactive graphics. With

this course we share the expertise we developed in connecting the

real-time graphics with on-stage performance with the Illimitable

Space System (ISS) v2.

ISS with "Like Shadows" at CAD

Figure 3: Like Shadows Theatre Production in Beijing Using
ISSv1 in 2014

4.2 ISSv2 Production History
As mentioned, ISSv2 was used for an interactive dance shows at the

production for the Chinese New Year Gala 2015 (https://vimeo.

com/121177927) and Chinese New Year Gala 2016 and District

3 Demo Day Events (https://vimeo.com/129692753, https://vimeo.

com/130122925). The dance was almost five minutes long and used

four different visualizations including both music visualizations

and visual effects using Jitter/Max and Processing.

https://vimeo.com/121177927
https://vimeo.com/121177927
https://vimeo.com/129692753
https://vimeo.com/130122925
https://vimeo.com/130122925

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

The District 3 Demo Day events had 5-minute live performance

presentations, based on dance and projection mapping on the body

using Processing [Fry and Reas 2015].

In ISS, the requirements change according to each production,

so we adopted the agile methodology to confirm the requirements

by building different profiles for specific production [Mokhov et al.

2016]. In every profile the visual effects are configured according to

the nature and demand of the production. After the configuration

is done we design the system according to the visual effects and

implement it in the Processing IDE [Fry and Reas 2015] with the

help of Java and other libraries like OpenGL. The system is tested

using Kinect in the research lab and acceptance testing is done on

the day of real production on the stage. With the help of feedback

from testing, the system is adjusted accordingly. We reused the

components of the system according to the need and optimized the

system after every production to make it better. See most recent

rendition at TEDxConcordia, see [Mokhov et al. 2017] as well as

ChineseCHI (https://youtu.be/8nxxzClnx_I).

Gray Zone Dance using ISSv2

Figure 4: Gray Zone Dance Using ISSv2

Prior to the productions, a month-long testing and experiments

were done at the Hexagram black-box and white-box at Concordia

University by the production team [Song et al. 2015b]. The research-

creation team mainly focused on testing the musical visualization

and motion-based visual effects including testing calibration, image

mapping, and floor and wall projections. The blackbox had a similar

condition as that of the actual theater used for the production.

There was a back wall projection for the main visual effects and a

complementary floor projection. There is a subset consisting of four

different modes for the ISSv2 combining both musical and video

visualizations that made it into the dance production: line tunnel

music visualization, glowing shadows, multi-colored shadows, and

outline shadows as shown in the video and in Figure 1 [Song et al.

2015b].

Significantly more Processing-based Kinect and physical-based

animations were produced for the District 3 Demo Day event

as exemplified in the videos [Song et al. 2015a]. Relying on the

prototyping technologies, OSS support, and versatile Kinect v1, we

are still able to pull of real-time graphics, physical based modeling,

and interaction on stage that is still appealing to the audience today

for very small production cost.

As mentioned earlier, in the past we produced similar, ISSv1

Kinect-based installations featured on stage in a Chinese New

District 3 Demo Day

Figure 5: Distric 3 Demo Day Using ISSv2 in 2015

Year Gala 2014 show on January 2014 and the Like Shadows

theatre production at the Central Academy of Drama in Beijing in

April 2014. However, the development aspect and VFX prototyping

in this version usingWindows, XNA, and Visual Studio was tedious

and less extensible. Switching technologies and working with VFX

artists on a more open platform using either OS X or Windows

with Processing and Jitter/Max allowed us a very rapid design,

development, testing and deployment in real productions fast –

within weeks or a month from starting the project to the actual

production.

For motion tracking we used Kinect v1 in both ISSv1 and ISSv2

as well as regular cameras in ISSv2 expanding its possibilities, but

without the voice-recognition component.

We are working on expand the ISSv2 set and already started on

the ISSv3 using Unity3D with both Kinects v1 and Kinect v2 and

other devices, and AR/VR technologies, for more immersive and

gaming experience.

Figure 6: Conceptual Design of an Interactive Performance
Installation

Regardless the version, the conceptual design is the same: there

are four (4) components in the ISS illustrated in Figure 6: the partici-

pants, input devices (data capturing), computer system (for process-

ing) and the output (response) system (e.g., projector) [Song 2012;

Song and Mokhov 2014]. The input to the system can be gestures

https://youtu.be/8nxxzClnx_I

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

or the voice commands from the participants, who are mainly the

artistic performers or audience and these user interactions can vary

with different types of users.

4.3 ISSv2 Components
The second version of the Illimitable Space System is more

platform-independent and works with different communicating

software systems as well. The research was done on a Mac OS X sys-

tem with Processing and Max/MSP/Jitter installed. Even though

the visual effects can be produced in Processing, for more portabil-

ity, the ISSv2 passed the input from the Kinect to Max/MSP/Jitter

and added the necessary effects there and then output to the pro-

jector. A middleware Syphon [Butterworth and Marini 2013; Col-

ubri 2014] or Spout [Joris and The Resolume Team 2014] is used

for transmitting the image frames from Processing to Jitter.

The oscP5 (Open Sound Control protocol library for Processing)

[Schlegel 2011] is used as an additional communication channel to

pass short messages, such as skeleton coordinates from Kinect via

Processing to Jitter.

Figure 7: ISSv2 Components Diagram

Syphon acts as a video framesharing middleware between Pro-

cessing and Max. The depth and color frames captured from input

devices such as a camera or Kinect are sent to Jitter/Max by Pro-

cessing through Syphon on OS X. A Processing library called

KinectProjectorToolKit [Kogan 2014a] is used for connectivity

with Kinect and calibration mapping with a projector. (An alter-

native for Syphon on Windows is Spout [Joris and The Resolume

Team 2014].) The final image from Jitter/Max will be sent to

projector.

4.4 Production Using ISSv2 and Visual Modes
When Gray Zone production happened on the 14th of February

2015 in Montreal in front of around 300 people, the theatre had two

seating levels namely upper deck and lower deck. There was a wall

projection for the main visual effects and a floor projection. There

are four different modes for the ISSv2 combining both musical and

video visualizations.

Figure 8: Line tunnel musical visualization

Figure 9: Glowing shadows

Figure 10: Multi-colored shadows

Figures 1(b)–1(d) show different modes made available to the

ISSv2 for the production at the Gala. All the images are taken from

the venue. The visual effects were manually sequenced with specific

time intervals. The Figure 1(b) is a musical visualization while

others are gesture-based visualizations. One Kinect was used to

capture the dancer motions from the dance. A built-in microphone

within the Kinect was used for the sound capture for the musical

visualization.

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Figure 11: Outline shadows

4.5 Difficulties Encountered During Production
Though enough testingwas done prior to the production, the system

still had different issues encountered during the production. During

the pre-production testing, where side and top lights were more or

less fixed before the dance, except the floor-pointing lights. Starting

from the lighting conditions of the production environment, it was

not controlled by the ISS production crew. This adversely affected

the input to the Kinect. There was a duo scene in the dance where

all the lights were off but two spot lights. During this performance,

the visual effect used was the line shadow mode. Due to the high in-

tensity of the spot light, the Kinect couldn’t capture the participants

reliably at some time points. The visual effect-generated border

lines were not clear compared to the testing results. Also the stage

was very wide and all the dancer were sometimes spread across the

entire stage. This led to another problem in capturing the dancers.

The roof rails were not high enough for the projector which

was used for the floor projection to cover the entire production

stage. And due to the very suboptimal lighting conditions, the floor

projections were not visible to most of the audience. Since the

projector used for the main wall projection was at the very back of

the auditorium, an HDMI extender using network cable was used

to connect between the ISS operator’s system which was at the

side of the stage and the system connected to the projector (which

was at the back of the auditorium). The short cable length of the

USB which was used for connecting the Kinect to the laptop, the

ISS operator had to sit beside the stage, close to the Kinect and

performers. All the manual queuing was done from here.

Since there were many other performances apart from the inter-

active dance show, a main projector operator was present at the

spot who was not a part of the ISS crew. As a result, right before

and after the interactive dance, the projector HDMI cable had to

be switched to that of the ISS with the projector system over the

default projector input.

Even though there were four different visualization modes, the

sequencing of visual effects during the performance was done man-

ually. As stated above, due to the rigorous uncontrollable lighting

conditions, capturing the performers was a hard task for the Kinect

and ISSv2. The heat due to the lights, time of operation, the Kinect

was not capturing the performers very effectively. This likewise

adversely affected the visual effects displayed to the audience.

4.6 Image Mapping and Calibration
In real-time video production, especially in the interactive dance

performances, image mapping is one of the can be an important

features to be considered, such as the District 3 Demo Day. This is

the process of projecting the visual effects directly on to the partici-

pants in real-time by identifying their position on the stage. In order

to perfectly map the visuals, a perfect calibration of the production

environment has to be done. The research team has used the afore-

mentioned KinectProjectorToolkit [Kogan 2014b] to perform

the calibration with the Kinect and a projector. The calibration

process is done at the production environment with the help of a

movable white screen. Even though the KinectProjectorToolkit

is an integral part of the ISSv2, it was not exploited specifically for

the Gray Zone dance’s projection or the calibration, but instead as

a source of user data, unlike in District 3 Demo Day where stage

dimensions were smaller and more testing effort was put prior to

the even for this purpose.

4.7 Ongoing Work (ISSv2)
• Scaling out to multiple linked devices and immersive instal-

lations with multiple Kinect 2’s

• 3D projection

5 COURSE COVERAGE
Sample notes cover example materials and slides for the topics

for the half-day course. We begin with the introduction of the

use of OpenGL in Jitter/Max, then gradually build up on that by

adding Processing, Kinect, Wii, iDevices, tracking, and shaders to

with Jitter/Max and OpenGL rendering. We combined all these

techniques to illustrate a subset of the presented in a case study we

deployed as a part of the ISSv2 (Section 4) [Song et al. 2015b,a,b].

See the slide sets and posted examples linked from this page:

http://mdreams-stage.com/courses/sa2019

5.1 Introduction to Max/MSP/Jitter
Max [Cycling ’74 2015] a dataflow graphical programming lan-

guage that originated from PureData [Puckette and PD Community

2014] (pd, free, open-source), which in turn was influenced by Lu-

cid [Ashcroft et al. 1995; Ashcroft and Wadge 1977; Wadge and

Ashcroft 1985]. Max started off and has become more or less stan-

dard tool used in the music technology field for electronic, music

composition, music control, and various other tasks for realtimemu-

sic [Manzo 2011; Winkler 2001] performances in the computation

arts community.

Originally, developed by Miller Puckette in mid-1980s at IRCAM,

Paris, it was ported to NeXT and ISPW boards in the late 1980s and

early 1990s. Its first commercial version for Macintosh computers

was released in 1991 under the lead of David Zicarelli, who began

distributing MSP viaÂăCycling’74Âăin 1999 and Max since 2000.

Max/MSP ([Winkler 2001]) was augmented with Jitter later on to

add video processing and graphical capabilities to Max programs;

Max/MSP/Jitter has become simply Max.

• Max – the language covering all aspects on:

• MSP – (audio) signal processing

• Jitter – graphics processing

http://mdreams-stage.com/courses/sa2019

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Max allows further export its patchers as a standalone apps.

We briefly go over Max environment, essentials and its visual

dataflow programming language.

5.2 OpenGL in Jitter
Jitter is a visual part of Max that extends its dataflow language

to manipulate graphics, often used for visual effects by VJs and

the like accompanied with a sound. OpenGL in Jitter is a built-in

wrapper that exposes an API to OpenGL functions via the jit.gl
objects. In this module we cover some drawing controls, advanced

color manipulation, textures mapping, transformations, and other

API of interest. This is very easy to prototype OpenGL-based apps

this way.

Some of the API covered here is:

• jit.gl.render
• jit.gl.plato
• jit.gl.model
• jit.gl.mesh
• jit.gl.sketch
• jit.gl.videoplane
• jit.gl.gridshape

5.3 Kinect, OpenGL, and Jitter
In this module we work through the connectivity of Max patch-

ers to Kinect (v1). The first way to connect Kinect to a Jitter

patch, is directly via a Max external, such as Synapse. Other
options exist, such as wrappers jit.freenect.grab (based on

libfreenect), jit.openni (OpenNI), dp.kinect (on Windows,

with Kinect SDK [Microsoft 2012b]). Synapse was known to work

with model 1414 of Kinect, but not 1473 or Kinect v2. It also tracks

only a single skeleton. (To track more than one skeleton or Kinect

device or version we’ll use Processing in Section 5.8 that we can

then connect to Max via Syphon/Spout and/or OSC).

5.4 Wii and Jitter
In this short module we show how to connect the Wii controller to

a Jitter patch using the OSC protocol and the OSCulator program.

OSC messaging requires UDP-based networking available.

• http://www.osculator.net

5.5 iDevice Touch, Video, and Jitter
In this module we show how to extend some of the controls into

touch devices, such as an iPhone or an iPad that can be mapped to

slides and other controls in Max. Likewise, working with a camera

is also possible with some limitations.

• We will use Fantastick (http://pinktwins.com/fantastick/)

(free) app as a control example.

• Other example apps exist for a small fee: TouchOSC and C74.

For camera access:

• Pocketcam (free)

• iWebcamera (paid)

5.6 Tracking
The tracking module covers applications of computer vision tech-

niques using OpenCV in Jitter to manipulate video frames to extract

and track objects or color of interest in them in realtime.

API of interest includes:

• jit.rgb2luma
• cv.jit.track
• cv.jit.threshold
• cv.jit.label
• cv.jit.blobs.centroid
• cv.jit.blobs.sort
• cv.jit.blobs.binedge

5.7 Shaders in Jitter
This module goes over the most common shaders concepts in Jitter.

Since the use of jit.matrix is mostly CPU bound, some speedup

can be update via shaders since they use GPU, just like in traditional

pipelines.

API of interest:

• jit.gl.shader
• jit.gl.slab

5.8 Depth cameras and VFX in Processing
• OpenProcessing sketches (e.g., Curtain)

• Projection mapping [Kogan 2014b]

• OpenCV and blobs [Borenstein 2013]

• Syphon [Butterworth and Marini 2013; Colubri 2014] and

OSC [Schlegel 2011] to connect Processing and Max.

5.9 Putting it all Together
Here we integrate a sample application that uses some of the pre-

sented examples and we discuss performance issues.

• Simultaneous multimodal and multidevice interaction.

• Sound-based input and output.

• iPhone or iPad control to brighten or darken animations, to

speedup or slowdown and other forms of control.

• Kinect based or/and Wii-based interactive animation and/or

sound controls.

5.10 OpenISS
Open Illimitable Space System is a collection of open-source li-

braries and toolkits which provides a platform for the artists to

augment art, entertainment and technology by leveraging multi-

modal interaction tools with capabilities including but not limited

to motion capture, image processing and visual effects etc. that

can be fused with an artist’s performance in real time with an

immersive visual experience. OpenISS is an open source core for

ISSv2 [Song et al. 2015a]–an interactive system for artistic perfor-

mance controlled by gestures and voice. OpenISS was started by

Serguei Mokhov as an education project in Linux/Unix program-

ming primarily in C as a tool to build and link complex projects and

systems. Recently, Mokhov’s idea to extend these capabilities as a

service was proposed to a group of students here at Concordia Uni-
versity by providing SOAP and REST API in a scalable ecosystem

of the components within OpenISS. A partial yet significant work

http://www.osculator.net
http://pinktwins.com/fantastick/

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

has been achieved in this process and a subset of the functionalities

of these components can now be made available in the form of web

services [Psimoulis et al. 2018].

The further idea to expose some of the OpenISS functionality as

composable services continues with this work.

OpenISS provides image-processed frames by leveraging various

algorithms normally for real-time processing of the images and

rendering a final image. It is designed to do so by querying the Java

wrappers of the devices or the image generators (simulators), depth

cameras (Microsoft’s Kinect), or webcams, or phone cameras to get

a given image at a given instance. Then it is designed to be able to

remix images from multiple sources, including Magenta [Google

LLC 2018], OpenCV [Intel Corporation et al. 2018], or user-submitted

and then returning the resulting images as a service in a browser

or a web application.

The WSDL and REST wrappers around the OpenISS component

instance enables the client to not only request the service and query

the current frames at a source (service) and display the image to the

client itself but also submit a source image from the client to the

service along with a desired operation call on the same that “mixes”

the submitted image with the service source image and produces

the resulted “mixed” image in response as described earlier.

In general, the services we would like to expose are all avail-

able via both SOAP and REST APIs. For the SOAP API, the re-

quired OpenISSSOAPService class was implemented with initially

two API calls doCanny() and contour(). They acquire an im-

age from the devices and apply canny edge detector and con-

tour extraction on the image respectively. For the REST API,

/openiss/opencv/canny PATCHwould set the canny application

to true to no matter what image you get from the client POSTed

image or the image one requests from the devices. The same idea

applies to /openiss/opencv/contour PATCH would set the con-

touring application to true to the target images.

Thus the overall idea is to expose a real-time image capture and

processing application with visual effects as a service to both SOAP

and REST clients to enable its use at a wider scale, in particular dur-

ing an ISSv2 live dance or theatre performances where viewers may

not be physically present but streaming or want to decorate their

image experiences differently, in near real-time. Ideally, regardless

of REST or SOAP it is a stateful web service which provides interac-

tive capabilities to the end user via composition of images or even

POSTing their own images and composing with other sources. A

use case diagram of our API’s can be seen in the Figure 13 illustrat-

ing various actions a user can perform with our service. However,

this illustration must be seen as a subset of such use cases that are

a part of either ongoing or future works of this active research.

5.10.1 SOAP API.. General overview of the SOAP architecture

can be seen in the Figure 12 OpenISS components are exposed via

SOAP API under a specific submodule libfreenect [OpenKinect
Contributors 2018] which includes a server backend startup and a

wrapper for it using the libfreenect’s Java wrapper API. Initially,

the server backend is a recording from a real device, which can pro-

vide RGB-Depth data, essentially replaying frames using fakenect
replay tool and a small pre-recorded RGBD dataset on the loop.

Subsequently, OpenISSSOAPService translates the HTTP SOAP
requests to the Java wrapper of libfreenect to basically grab

Figure 12: SOAP Architecture

the current frame. IFF the backend is not available, it returns a

default template image with a text in it simply saying “OpenISS
Capture Server Is Not Currently Running.” Thus, this results in

OpenISSSOAPService exposing two methods: getFrame(type) –
returns current frame type (depth or color) from the libfreenect’s
output running in a loop; and mixFrame(image, type, op), that
POSTs the image and “mixes” it with the desired frame and returns

the resulting processed image via the desired algorithm.

5.10.2 REST API.. The same components of OpenISS are ex-

posed as RESTful resources as well. /openiss/depth GET – which

returns the current depth image. /openiss/rgb GET – returns cur-

rent RGB image. A stub API is provided as well for skeleton data

extraction. I likewise, returns a “service unavailable” error code

if depth is not enabled on the service side. A work in progress is

Magenta [Google LLC 2018] to make it a git submodule of OpenISS
alongwith a Magenta client that talks to the OpenISS backend using
REST and uses one of the Magenta’s sample artistic AI models.

An observer-listener “push-server” and “receive-client”, or more

rather like peer-to-peer push operation. In this scenario the client

can register itself (IP, port) with the server running a depth camera

or fakenect instance using SOAP and REST registerPeer API.

Then, the server, possibly in multiple threads, posts the current

frame to the list of registered “receive-clients”, that receive the

image and store it and refresh it locally for the display.

5.10.3 Requirements Specification. This current implementation

work was set based on a collection of specific requirements, a subset

of which was implemented and released on https://github.com/

OpenISS/OpenISS; the rest of the requirements are an ongoing

work. What follows is a nearly complete list:

(1) Setup and document a local copy of OpenISS in terms of

main service components, how to deploy, and how to run.

In OpenISS/src/api/ create a subdirectory for

java/openiss/ws/soap/.
Create classes OpenISSSOAPService and

OpenISSSOAPClient.
Have OpenISSSOAPClient in js/openiss/ws/soap/ for a

NodeJS-based SOAP client.

https://github.com/OpenISS/OpenISS
https://github.com/OpenISS/OpenISS

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Define a server backend startup and a wrapper for it using

libfreenect’s Java wrapper API.
The backend shoud be able to work not as a real Kinect

device, but a recording from a real device, replaying frames

using fakenect replay tool and a small pre-recorded dataset

on the loop:

https://bitbucket.org/openiss/public/downloads/

test-recording.tar.bz2

OpenISSSOAPService should translate HTTP SOAP re-

quests to the Java wrapper of libfreenect to basically grab
the current frame.

IFF the backend is not available, return a default template

image with a text in it simply saying “OpenISS Capture

Server Is Not Currently Running.”

Thus, this results in OpenISSSOAPService exposing two

methods: getFrame(type) – returns current frame type

(depth or color) from the libfreenect’s output running
in a loop; and mixFrame(image, type, op), that POSTs
the image and “mixes” it with the current frame and returns

the resulting image (“mixing” for now can be assumed for

op to be a simple plus (+) of two images, clipped at the image

dimensions whichever is smaller.)

(2) Call a Java OpenCV processor and the option to in-

voke OpenCV optionally, such as the SOAP client

can set an OpenCV option and define a service call

OpenISSSOAPService for it.
Provide a SOAP calls for doCanny() in

OpenISSSOAPService that take either a POST image

data from the client and return edge-processed image back,

or if depth or color type specified and the depth camera

code is there, call it, to get the frame getFrame() (color or
dept) and doCanny() on it and return it to the client.

(3) Do the same with libfreenec2 using a real device (ask in-

structor) and the Java wrapper can be used from OpenKinect-

for-Processing library.

(4) Expose OpenISS components as RESTful resources. Design

and document JSON states transferred between the client

and service components.

(a) Refactor OpenISSSOAPService’s calling the imaging func-

tions of libfreenect an opencv into a util module,

openiss.util.OpenISSImageDriver.
(b) Implement openiss.ws.rest.OpenISSRESTService to

invoke OpenISSImageDriver with the REST-like opera-

tions below. The design decisions should be thoroughly

documented. This is like a filtered pipeline implemen-

tation, where both or either depth or color images are

returned after a series of filters applied to them either

through mixing or OpenCV.

(i) /openiss/depth GET – returns current depth image;

POST/PUT/PATCH/DELETE – currently undefined

(ii) /openiss/rgb GET – returns current RGB image;

POST/PUT/PATCH/DELETE – currently undefined

(iii) /openiss/mix PATCH – sets the mixing flag on to apply

images internally to either “patching” the specified base

frame (/depth, /rgb) with /depth, /canny, or /custom
image passed as a request. These can be combined.

PUT/GET/POST currently undefined; but one of the

above GET methods will respect the mixing flag and

image.

DELETE – would unset the flag turning off mixing.

(iv) /openiss/opencv/canny PATCH – would set the

canny application to true to the GET’ed images above.

DELETE – would unset the flag turning off canny appli-

cation to the current frames.

PUT/POST/GET – currently undefined

(v) /openiss/opencv/contour PATCH – would set the

contouring application to true to the GET’ed images

above.

DELETE – would unset the flag turning off contouring

application to the current frames.

PUT/POST/GET – currently undefined

(c) Provide an async REST JavaScript Client to refresh the

page and get new images, both depth and RGB to test the

above API.

(d) Test with a real Kinect depth camera on the service side.

Document the deployment setup and requirements.

(e) Provide an initial integration with Magenta/p5.js (https:

//github.com/tensorflow/magenta). Magenta would need

to become a git submodule of OpenISS. Will need to define

a Magenta client that talks to the OpenISS backend using

REST and uses one of the Magenta’s sample models.

(f) Provide a stub API for skeleton data extraction. Return a

“service unavailable” error code if depth is not enabled on

the service side.

Recompile libfreenect to support skeleton data extrac-

tions with the OpenNI2 driver enabled.

See SimpleOpenNI’s mapping of the skeletal joints to Java

constants.

The resource would be /openiss/skeleton/<id> and a

GET method that would return a JSON object of joint

mappings and values. Return service unavailable if id is

not valid; there may be no id’s, if there are, they start at

1. Can go up to 6 (Kinect 1 up to 2 and Kinect 2 up to

6 skeletons but both can track 6 users). Querying with

GET /openiss/skeleton would give how many users are

currently visible in the frame.

Write a JavaScript client for now simply displays the values

Write Java client would parse JSON and get back Java-data

structure joints and their values.

(g) test with a web cam as a image source, and OpenCV pro-

cessing

(h) implement /depth2, /rgb2 based on libfreenect2 with
the support for related machinery as above

(5) Implement observer-listener “push-server” and “receive-

client”, or more rather like peer-to-peer push operation. In

this scenario the client registers itself (IP, port) with the

server running Kinect or fakenect instance using SOAP and

REST registerPeer API.

Then, the server, possibly in multiple threads, posts the cur-

rent frame to the list of registered “receive-clients”, that

receive the image and store it and refresh it locally for the

https://bitbucket.org/openiss/public/downloads/test-recording.tar.bz2
https://bitbucket.org/openiss/public/downloads/test-recording.tar.bz2
https://github.com/tensorflow/magenta
https://github.com/tensorflow/magenta

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

display. The receive-client peer can be written in any lan-

guage, such as Java, PHP, or in-browser.

(6) Implement the same for OpenCV as per above using a deco-

rator pattern; that is an OpenCV push-server would use the

whatever framesource it has locally (Kinect or otherwise),

passes its frames through doCanny(), and pushes the result

to the client.

The two implementations may share register and push logic.

(7) implement a simple sequential BPEL process to access depth

data by a client

(8) implement simple BPEL process, image from the client, apply

doCanny() (SOAP), return processed image.

(9) Write a composite BPEL service:

First, in sequential push freenect, to another service doCanny

to mix using the above two services.

Then, use the result in a parallel activity to distribute to four

OpenISS push-clients in parallel.

The main BPEL client to this composite service simply makes

the initial request, and then is notified in the end that all

push-clients were notified (or some failed).

5.10.4 Dependencies. In order to help someone who wants to

reproduce the project or deploy our services, it is important to

point out all the dependencies the system needs. For the OpenISS

and Image Processing pipeline the system will require namely,

the following libraries, freenect, fakenect, JNA and OpenCV. For
the SOAP service, the systems depends on JAX-WS. And, for the
REST service, JAX-RS, Jersey, maven and Glassfish or Tomcat
are required to reproduce similar results.

See Also
• http://cycling74.com

• http://opensoundcontrol.org

• http://www.osculator.net

• http://pinktwins.com/fantastick/

• http://openprocessing.org

• http://projection-mapping.org

ACKNOWLEDGMENTS
We acknowledge the reviewers of this work and their constructive

feedback. This work was sponsored in part by SIGGRAPH Asia

2015–2016, Faculty of Engineering and Computer Science (ENCS),

Faculty of Fine Arts (FOFA), Concordia University, Montreal, Que-

bec, Canada.

Special thanks to:

• mDreams Stage Research Creation Group

• OpenProcessing community

• Projects: OpenCV, SimpleOpenNI, KinectProjectionToolkit

• Open Source community

Figure 14: Sample OpenISS Output Rendered in a Browser

http://cycling74.com
http://opensoundcontrol.org
http://www.osculator.net
http://pinktwins.com/fantastick/
http://openprocessing.org
http://projection-mapping.org

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

color

depth

doCanny

contour

mix

color

depth

mixFrame

Streaming

PATCH

GetFrame

Use Case

Figure 13: Use Case Diagram of OpenISS OpenCV and Depth Camera APIs

Introduction

 Real-time interaction is becoming more and more prevalent on stage

 In the past it was a privilege only of more advanced studios with
expensive software and hardware

 Availability of less expensive sensors, such as Microsoft Kinect and
others as well as inexpensive or FOSS software tools, such as Max,
PureData, Processing, and their libraries made life easier

 Programming of such systems was relatively tedious as well for non-
programmers; however, these tools enable quick prototyping of
interactive apps and their connectivity with various devices, while
simplifying the programmability

Introduction (2)

 Illimitable Space System (ISS) v2 is the production
example we use to show what is possible to put on
stage after 2 months of prototyping

 We review that first and share our experience for on-
stage deployment

 Then we review very concrete examples in possibly
hands-on activities for Max and Processing

Introduction to Interactive Media and
ISS Production History

Background

Miao Song. Computer-Assisted Interactive

Documentary and Performance Arts in Illimitable

Space. PhD thesis, Special Individualized

Program/Computer Science and Software

Engineering, Concordia University, Montreal,

Canada, December 2012. Online at

http://spectrum.library.concordia.ca/975072 and

https://arxiv.org/abs/1212.6250.

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Japanese Noh Stage
Modern Chinese

Drama Teahouse

Beijing Opera

San Cha Kou

Up Wake Marciel Hallucine
The Silhouettes Dance

Group Performance

Performance Arts and Theatre Production

From Traditional to Modern Theatre (1)

In Laurel's very early work in 1991, Computers as

Theatre, she applied her knowledge of theatre

to Computer-User interface design.

She says, “In many ways, the role of the graphic

designer in human-computer interaction is

parallel to the role of the theatrical scene

designer.”

Foreword: Computer as Theater (2013, 2nd

edition) by Don Norman, “Shakespeare Said the

World Is a Stage: For Us, Computer Applications

Are Our Stages”

NEW HCI in THEATRE

 OVERALL RESEARCH-CREATION

From Traditional to Modern Theatre (2)

Salter's artistic creativity focuses on “dynamic and

temporal processes over static objects and

representations”.

For instance, in his work, SCHWELLE II, a live dance

theatre performance, a solo dancer experienced a

traumatic transformation from death to rebirth.

During the live performance period, the dancer wears

several wireless acceleration sensors, the input of

which dynamically affected the audio

and visual performance output

based on the sensor data obtained

from the performer.

Outline

 The Use of the Illimitable Space System (ISS) within
MCCCA (the Montreal Center of Chinese Culture and
Arts)

 CAD (the Central Academy of Drama), Beijing
 ISSv2 Live Demo and Audience Experience at

SIGGRAPH/Asia 2015, 2016, and District 3, MCCCA

 Max, Jitter, OpenGL with Kinect and other devices

 Processing and Kinect

 Max and Processing

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

From lab to Production

(2011-2013, ISSv1)

• ISS Skeleton-based Capture and Interaction

• Particles Highlighted

• Real-time motion capture, physically based simulation, music

visualization, green-screening, video processing for HCI in

performance arts and documentary film.

ISS -- A REALTIME ARTS TOOLBOX:
TESTING

Ascension Dance using ISSv1 (2014)

ISSv1 with "Like Shadows" at CAD

ISSv1 Technologies and Their Limitations

 Windows
 XNA 4
 Kinect 1.x SDK
 HLSL

 Slow/tedious prototyping and testing
 ~1.5 years in development before real production

 Not artist-friendly (programmability wise)

 Not portable

Gray Zone Dance using ISSv2

(February 2015)

 https://vimeo.com/121177927

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

District 3 Demo Day

(June 2015)

 https://vimeo.com/130122925

 https://vimeo.com/129692753

SIGGRAPH International Resources

(August 2015)

 https://vimeo.com/141811579

Nanjing Week (September 2015)

 https://vimeo.com/141081567

District 3 Ribbon Cutting

(September 2015)

Technologies in ISSv2

 Max 6.x (Gray Zone)

 Processing 2.x (all productions)

 Libraries
 SimpleOpenNI
 Syphon / Spout
 oscP5
 OpenCV

 ~2 months of development before production
 Subsequent runs past Gray Zone were smaller 1-3

weeks

A Brief Introduction to

Max/MSP/Jitter

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Max/MSP Brief History

 Developed by Miller Puckette in the mid-1980s at
IRCAM, Paris

 Ported to NeXT and ISPW boards in the late 1980s
and early 1990s

 Commercial version for Macintosh computers released
by Opcode in 1991 under the lead of David Zicarelli

 David Zicarelli began distributing MSP via Cycling '74

 in 1999 and Max since 2000

Max/MSP Overview

 Generally hides or takes care of low-level
programming

 Designed for "real-time" performance

 Written in C

 Extensible via external objects

 Macintosh support, Windows version released in 2003

 Graphic and video processing extensions

using Jitter

What is Max?

 A graphical data-flow programming language.

 Originated with PureData (Pd, free, open-source)

 Max is a standard tool used in the music technology
field for composition, music control, and various other
tasks.

 It provides a graphical interface and paradigm for
modular programming.

Max Hello World

max-hello-world-master.maxpat

MSP and Jitter

 Max is the core of the graphical programming
language

 MSP is the sound/signal processing part of Max (~)
 MSP: Max Signal Processing (or Miller S. Puckette)
 MSP is an extension to Max for audio signal processing
 The MSP objects were derived from the Pd signal

processing infrastructure

 Jitter is the graphics processing part to Max

Max/MSP & Jitter?

Jitter is the image processing part to Max

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Purpose

 Good for testing complex solutions fast

– (unlike C++)

 Excellent for quick prototyping

 Works with many sensors

 And many other reasons…

Obtaining Max

Trial Version

Max

 We use … as of this slideset.
 Max 6.x and 7.x are available, most of our examples were developed and

tested on Max 6 and Max 7.
 30 day trial.

 Go to:
 http://cycling74.com/downloads/

 Download an appropriate version for your platform.
 Install.
 Run.

 Follow documentation:

 http://cycling74.com/wiki/index.php?title=Max_Documentation_and_Resources

Introduction to Max Elements

 Help Patches

max-elements.maxpat

Max: Beginning

 Max is easy to learn
 However it requires spending some on it and its help files

and tutorials
 Learning by doing: from experimenting and making

mistakes

Max Environment: Familiarize First

 When learning on your own:
 Making Patches from the help window home screen.
 Max Tutorials up to Keyboard and Mouse input.
 Referenced tutorials from Peter Elsea and others.

● Covering all topics

● Own collection of useful utility objects

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Max Environment: Familiarize First

 At the beginning always keep Max Reference open as
you work:

Max Environment: Fundamentals

 The Max and Patcher windows

 Box data/flow types:
 object, message, bang, button, number, floating point number,

comment, ...
 connections use inlets and outlets via patch cords

 Object help files (nearly all object have them):
 While in edit mode

 option-click on object

 select object and use Help menu item

 inlet/outlet information is available in the "Assistance area" (lower-right display bar)
during "mouse-over"

 select object and use Object->Get Info (command-I) for object specific settings

Max Environment: Fundamentals (2)

 Locking/Unlocking patches:
 command-click on white space within Patcher window
 Ctrl+E or command+E to lock

 Or click anywhere in the patch outside an object, while pressing ctrl or
command.

 click the button in the lower left-hand corner of the Patcher
window

 Unlocked mode (for editing, patching, may optionally run)

 Locked mode (for running, can change controls and values,
but not edit)

Max Environment: Fundamentals (2): Key Programming Elements

 Many similarities to programming languages and
scripting
 Variables
 Functions
 Boolean

 Expressions

 Conditionals

 Arrays
 1D (signals)

 2D (matrices)

 ...

Objects

 The name of the object is its function.

 Arguments, if present, specify initial values for the object.

 Data come into the object via the inlets, and results are put out the outlets.

 Each inlet or outlet on an object has a specific meaning.

 If an object has several arguments, the order of the arguments determines the
meaning.

 For instance, a counter with arguments of 2 0 50 will count from 0 to 50 and back:

 Some objects, especially in Jitter, also have attributes.
 An attribute argument is an internal variable and is set with two or more parts: the name

of the attribute with a @ and one or more values.
 The order of @attributes is not important.

Inlets and Outlets

 Input/output. Need data
types.

 E.g., the delay object will
send a bang message out
the outlet 100 milliseconds
after a message is
received in the left inlet.
The right inlet will change
the delay.

 Always right click and
press help - or mouse-
over for documentation.

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Patch cords aka Wires

 For sending data between objects

 Color coding:
 a thin black cord is data (numbers, arrays, booleans)
 a yellow wire is an audio signal
 a green sending a video matrix (graphics)

Avoiding Wires

 Wire cords may introduce clutter for large patches

 send and receive objects to the rescue

 send – send the data somewhere “wirelessly” (can be

abbreviated as s)
 Need to give the data a name

 receive – receives data “wirelessly” (can be abbreviated as r)
 Need to tell what to receive by the same name as send

Conditionals

Two examples of how to make a conditional

Windows

 The Max window contains
information sent from Max
(like error messages) or
things you might like to print.

 The Clue window has
helpful information about
anything the mouse is over.
You can add your own clues.

 The Inspector window
shows current settings of a
selected object. The
inspector can be a separate
window or in the sidebar of a
patcher window.

Patching with Hot Keys

 Power users take advantage of hot keys.

 Pressing a key will drop a new object box at the mouse location.

 Some shortcuts:
 n – arbitrary new object with name entry

 b – button

 c – comment

 f – float number box

 i – number box

 j – jitter object box with jit. prefixed

 m – message box

 p – (lowercase) the object explorer

 P – (uppercase) a new object selected for presentation.

 t – toggle

 x – a window explaining all of these

Multiple Inputs

 Right to Left Action:

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

OpenGL in Jitter

gl-tut.maxpat

gl-shaders-plato.maxpat

iss.vfx.falling-candies.maxpat

iss.vfx.falling-skittles.maxpat

Using OpenGL in Jitter

 The Jitter OpenGL objects are prefaced with jit.gl.

 These are mostly designed to make OpenGL available
in a painless way.

 As always, making life easy might mean hiding
options, but just about everything is available if you dig
enough.

Jit.gl.render

 Jit.gl.render is the key
object in the OpenGL
world.

 Every Gl patch needs
something like:

Jit.gl.render

 The argument in jit.gl.render is the "drawing context".

 All jit.gl objects with this name will be created in this context,
and the results displayed in a jit.window or pwindow of the
same name (you can name a pwindow with its inspector.)
 The window must have its depthbuffer attribute set to 1.

 The qmetro clocks screen updates in the usual way.

 The erase message clears the windows, the bang sent to draw
(or other destination of your choice) may be useful for
mechanisms that affect the drawing, and the bang directly to
render draws the image.

Jit.gl.render

 Note you can only draw to one destination.

 That destination can be a jit.matrix if you need the
image in more than one place.

 Unfortunately, drawing to a matrix uses CPU
rendering instead of the graphics card, so there is a
significant loss of efficiency.

Jit.gl.plato

 jit.gl.plato contains the drawing commands to produce a
platonic solid- that is a tetrahedron, hexahedron (cube),
octahedron, dodecahedron (12), or icosahedron (20).

 The example shows the object and essential support items.

 The initial view of jit.gl.plato is not impressive.

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Jit.gl.plato

Lab9-ex1.maxpat

Textures

 Textures apply arbitrary patterns to objects.

 A texture is defined in the render object, then that texture is
assigned to other objects.

 There are several ways to define textures, but the easiest is:
 Send a matrix to a [prepend texture somename] object and on

to the render object.
 The matrix becomes the texture.

 Any matrix source may be used, including movie or grab.

 Send the message (texture somename) to the drawing object.
 The texture image will now be applied to the object.

gl-tut.maxpat

Textures

 The appearance of the texture may be modified by the tex_map
message to the drawing object.

 There are four modes
 0. Default (varies with object).
 1. Object linear.

 The texture is attached to the object.

 When we look at the jit.gl.sketch object we'll see how this is specified.

 2. Sphere map.
 The texture is reflected from the object.

 3. Eye linear.
 As if you are looking through the object at the texture.

Textures

 There are ways of modifying the texture dimensions
via the render object, but it is frankly better to take
care of that sort of thing before sending an image to
texture.

 One thing is not made clear- textures are assumed to
be square.

 Any other aspect ratio is interpolated down to a square
shape.

Textures

 You will quickly notice that textures from matrices
appear upside down.

 This is due to the conflict between QuickTime and
OpenGL coordinate systems.

 In QuickTime, the vertical component is positive going
down the screen.
 Important: 0,0 is in the upper left corner.
 In OpenGL Y is positive going up.

Textures

 There is also a jit.gl.texture object which allows much
more detailed control of a texture.

 It's complicated enough that it probably needs its own
tutorial.

 The jit.gl.shader object creates textures that interact
with objects in a more complex way.

 There is an excellent tutorial in the Jitter tutorial set.

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Jit.gl.handle

 Jit.gl.handle allows mouse interaction to
rotate the image.

 Jit.gl.handle can be attached to a single
object or the render object.

 In the latter case, the entire view is
rotated. (Set the jit.gl.handle object's
inherit_transform to 1 when you do this.)

 When the mouse is clicked on the
window, axes orbits appear, and
dragging the mouse perform the rotation.

 You can have multiple handles in a
scene, but their behavior is likely to be a
bit chaotic--reducing the handle radius
will help.

Jit.gl.mesh

 That will not be saved, and you will have to set the draw_mode of
the jit.gl.mesh by hand.

 Matrices are easy to manipulate to produce mutant images. The
drawing above is an xfade between a torus and a sphere.

 The xfade parameter controls a smooth morph between the two.

Jit.gl.videoplane

 Jit.gl.videoplane is a sort of movie screen
that you can position in space.

 Any matrix fed to it will be displayed-- this
includes movies and grab output.

 The default size of the videoplane is 2.0 x
2.0.

 To precisely fit a 4:3 window, scale
jit.videoplanre to 1.11, 0.843.

 When an OpenGL window is resized, objects
are resized according to the Y dimension but
keep their overall proportions.

 This means that when a window displaying a
videoplane is expanded to fullscreen, there
will usually be extra blank space at the
edges.

Visualization of Audio

Visualization of Audio

 Visualization is a type of video synthesis that
generates images from audio input.

 The effects of this can be tedious or sublime.

 In a typical approach, audio information is mapped to
visual attributes of simple shapes.

Visualization of Audio

 This is possible with a few simple mechanisms that can be applied to
a wide range of images.

 Amplitude.
 This is related to the loudness of the sound.
 To match perception of the listener, amplitude must be averaged over a

brief period.
 Slightly differing averaging times can produce quite different effects.

 Frequency.
 This is related to the pitch of the music.
 Accurate pitch extraction is only possible with simple sounds, but some

degree of error is tolerable in most pitch to image mappings.

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Visualization of Audio

 Waveform.
 This is one way of representing timbre.
 Waveforms may be drawn directly on the screen, but aside from a

general association between the size of the waveform loops and
loudness, it is difficult to link sound quality with a particular waveform.

 Spectrum.
 Another representation of timbre, spectrum produces a set of values

that can control many visual parameters or objects.
 Spectrum displays can convey timbre with some accuracy (after

practice), and if detailed enough can suggest pitch.

Amplitude Analysis

 Avg~ is a simpler version of average that only
produces an output when banged.

 It is limited to absolute response, but may be easier to
synchronize with a video generator since its output is
a float rather than a signal.

CV.jit

 cv.jit is a collection of Max tools for computer vision
applications.

 The goals of this project are to provide externals and
abstractions to assist users in tasks such as image
segmentation, shape and gesture recognition, motion
tracking, etc. as well as to provide educational tools
that outline the basics of computer vision techniques.

 Original:

– http://jmpelletier.com/cvjit/

Black and White

 Most of the cv.jit objects will
only work on a greyscale
image.

 The easiest way to derive this
is with jit.rgb2luma, although is
some special cases you may
want to split off one color
instead.

 That is done with jit.unpack or a
one layer jit.matrix with a
planemap attribute.

Faces

 cv.jit.faces detects one
or more faces in an
image

More about Computer Vision

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Blobs

 cv.jit.label
 Identify and track individual shapes.
 Once images have been through threshold to isolate the

brightest or darkest areas, cv.jit.label can attach numbers
to each distinct region or “blob”.

 The output of label is a one plane matrix of either long or
char of the same size as the input

 Each cell contain the number of the region it is assigned
to.

cv.jit.blobs.centroids

 Once an image is labeled, there are many cv.jit operations
available

 cv.jit.blobs.centroid will find the center point of each region

 The output of cv.jit.centroids is a matrix with X Y location
and area of each region identified by the threshold and
label process

 The XY values are used to draw an X over each region

 The area values could be used to restrict the Xs to the
largest objects, eliminating a lot of the noise

cv.jit.binedge

Kinect

Synapse

 http://synapsekinect.tumblr.com/

 Note: Kinect for Windows doesn’t work with Synapse.
 Synapse only supports “Kinect for Xbox”.
 Model 1414 Kinects work with Synapse, but there are

reports that the 1473 models do not work.

module9/*

Other Kinect Use Options

 http://cycling74.com/wiki/index.php?title=Kinect_Page

 jit.freenect.grab

 jit.openni

 dp.kinect

 Synapse

 Examples:
 http://blairneal.com/blog/jit-freenect-examples/

 http://synapsekinect.tumblr.com/post/6305020721/download

 http://synapsekinect.tumblr.com/post/6307752257/maxmsp-jitter

 http://www.instructables.com/id/Create-Interactive-Electronic-Ins

truments-with-Max/step5/Xbox-Kinect-and-MaxMSP
 http://deecerecords.com/projects/#kinectsynapse

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Synapse

 We continue with Synapse, since it appears to be the easiest to
get working on 64-bit systems.
 Tracks only one user at the skeleton level

 jit.freenect.grab appears to be more powerful, but no 64-bit version

 Likewise, OpenNI was acquired by Apple in April 2014, so things
like jit.openni might not work, but there is hope with OpenNI2

 On Windows, da.kinect seems to offer all Microsoft’s SDK for
Kinect’s functionality.

 You are welcome to experiment.

Synapse

 It also seems to be the most popular program today
for connecting to Kinect.

 Though this program can only track one user at a time,
it's relatively easy to set up and it communicates with
Max through a patch called Kinect-Via-Synapse

Synapse

 Installation, that worked for us:

1. Download from:
http://synapsekinect.tumblr.com/post/6305020721/download

 http://hihigogo.com/Synapse-Mac.zip

 http://hihigogo.com/SynapseJit.zip

2. Download the UI patcher:
 http://www.deecerecords.com/public/Kinect-Via-Synapse.zip

3. Unzip all three.

4. Copy OSC-route.mxo from Kinect-Via-Synapse to the Synapse.app’s folder and to Cycling’74’s
jitter-extensions folders

5. Copy jit.synapse.mxo from SynapseJit to jitter-extensions and jit synapse test.maxpat to jitter-help.

6. Connect your Kinect to the USB (worked for me 1473)

7. Start Synapse.app. You should see a Window similar to the screenshot next slide.

8. Then open jit synapse test.maxpat and start it. It should see the depth image within jit.pwindow.

Synapse

 Point Kinect towards yourself and calibrate.

Synapse

 If all works well you should see same b/w image in
pwindow:

Synapse

 Tracking UI may be helpful to debug the data (Kinect-
via-Synapse):

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Synapse

 Tracking UI may be helpful to debug the data (Kinect-
via-Synapse):

Kinect + Processing + Max +

Syphon
● The ini�al ISSv2 pipeline

● To capture two skeletons

ISSv2Jit/ISSv2MasterVFX.maxpat

ISSv2Jit/ISSv2Jit.maxpat

ISSv2P/ISSv2P.pde

Kinect

 We will come back to Kinect in Processing

 Recommended reading
 http://www.deecerecords.com/public/Bellona_LIPAM2012.pdf

iPhone, iPad, Touch Screen

Device

Wii

OSC (Open Sound

Control)

 OSC protocol is common to communicate data (not
only sound) between applications and computers

 opensoundcontrol.org

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

OSCulator for Wii

 OSCulator is the missing link between your controllers and your
music or video software. http://www.osculator.net/

OSCulator for Wii

 OSCulator is the missing link between your controllers and your
music or video software. http://www.osculator.net/

OSCulator for Wii

OSCulator for Wii

For iPhone

 Touch function
 Fantastick (free)

http://pinktwins.com/fantastick/

 TouchOSC ($4.99)
http://www.osculator.net/doc/tutorial:1:start

 C74 ($3.99)
http://nr74.org/software/c74.html

 Webcam
 Pocketcam (free)

http://www.senstic.com/iphone/pocketcam/pocketcam.aspx

 iWebcamera ($4.99)
http://www.made-apps.com/EN/Products/iPhone/iWebcamera.aspx

OSCulator

 Also integrates with the iDevices

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Shaders in Jitter

Processing

Processing

 FOSS, http://processing.org

 Community sketches: http://openprocessing.org

 Processing 3 has been released after ISSv2 (relies on Java 1.8)

 Simplified Java syntax, easier for artists

 Lower level than Max but higher than pure Java

 Many contributions of sketches at openprocessing.org

 Integration with OpenGL and may devices
 Kinect
 Arduino

 Jim Parker’s recent book, Introduction to Game Development Using Processing, June
2015, 978-1937585402

 More powerful for AI, as well as graphics and sound.

Processing

 OpenProcessing

Libraries of Interest

 Very Many!

 In our case
 fisica
 KinectProjectorToolkit
 MSAfluid
 opencv_processing
 oscP5
 SimpleOpenNI
 Syphon
 ...
 OpenKinect for Processing

Libraries of Interest

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

Libraries of Interest

Libraries of Interest

Processing

 Spout / Syphon, OSC glue

Processing and Max

Credits

● Serguei Mokhov

– (technical lead)

● Miao Song

– (crea�ve director)

● Julie Cha�arod

– (VFX R&D lead)

● Milin Li

– (VFX ar�st)

● Jilson Thomas

– (projec�on mapping)

● Deschanel Li

– (dancer)

● Holly Ryan

– (dancer)

● Jue�an Xing

– (produc�on assistant)

● Sebouh Bardakjian

– (developer)

● Johnathan Llewellyn

– (developer)

● Sa�sh Chilkaka

– (so,ware engineer)

● Zinia Das

– (so,ware engineer)

● Sudhir Mudur

– (advisor)

● …

Alternatives

 Max  PureData (http://puredata.info/)

 Jitter  GEM

 Vvvv (http://vvvv.org)

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

Acknowledgements

 Computer Science and Software Engineering, ENCS,
Concordia University

 OVPGSR, Concordia

 Central Academy of Drama, Beijing

 Chinese Academy of Science, RCSC

 Open source projects and their contributors
 SimpleOpenNI, oscP5, OpenCV, ...
 Processing and OpenProcessing sketches
 KinectProjectorToolkit

 Jitter/MaxMSP Cycling’74

Thank you!

● Ques�ons?

● Visit us:

– mdreams-stage.com

SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia S. Mokhov, M. Song, S. Mudur, and P. Grogono

REFERENCES
Edward A. Ashcroft, Anthony A. Faustini, Rangaswamy Jagannathan, and William W.

Wadge. 1995. Multidimensional Programming. Oxford University Press, London.

ISBN: 978-0195075977.

Edward A. Ashcroft and William W. Wadge. 1977. Lucid, a nonprocedural language

with iteration. Commun. ACM 20, 7 (July 1977), 519–526. https://doi.org/10.1145/

359636.359715

Sebouh-Steve Bardakjian, Miao Song, Serguei A. Mokhov, and Sudhir P. Mudur. 2016.

ISSv3: From Human Motion in the Real to the Interactive Documentary Film in

AR/VR. In Proceedings of the SIGGRAPH ASIA 2016 Workshop on Virtual Reality
Meets Physical Reality (VR Meets PR 2016). ACM, New York, NY, USA. https://doi.

org/10.1145/2992138.2992139

Greg Borenstein. 2013. OpenCV for Processing. [online]. (July 2013). https://github.

com/atduskgreg/opencv-processing.

Niels Böttcher. 2007–2013. An introduction to Max/MSP. [online], Medialogy,

Aalborg University Copenhagen. (2007–2013). http://imi.aau.dk/~nib/maxmsp/

introduction_to_MaxMsp.ppt.

Tom Butterworth and Anton Marini. 2013. Syphon for Jitter. [online]. (Nov. 2013).

https://github.com/Syphon/Jitter/releases/.

Craig Caldwell. 2015. Bringing Story to Life: For Programmers, Animators, VFX Artists,

and Interactive Designers. In ACM SIGGRAPH 2015 Courses (SIGGRAPH’15). ACM,

New York, NY, USA, 6:1–6:10. https://doi.org/10.1145/2776880.2792697

Andres Colubri. 2014. Syphon for Processing. [online]. (2014). https://github.com/

Syphon/Processing/releases.

Cycling ’74. 2005–2015. Max/MSP/Jitter. [online]. (2005–2015). http://cycling74.com/

products/max/.

Peter Elsea. 2007–2013. Max/MSP/Jitter Tutorials. [online], University of California,

Santa Cruz. (2007–2013). ftp://arts.ucsc.edu/pub/ems/MaxTutors/Jit.tutorials/.

Ben Fry and Casey Reas. 2001–2015. Processing – a programming language, de-

velopment environment, and online community. [online]. (2001–2015). http:

//www.processing.org/.

Google LLC. 2017–2018. Google Brain Team: Machine Learning Algorithms. [online].

(2017–2018). https://magenta.tensorflow.org/.

Peter Grogono. 2002. Getting Started with OpenGL. [online]. (2002). Department

of Computer Science and Software Engineering, Concordia University, Montreal,

Canada.

Intel Corporation, Willow Garage, and Itseez. 2000–2018. Itseez: Image Processing

Algorithms. [online]. (2000–2018). https://opencv.org/.

Joris and The Resolume Team. 2014. Resolume Arena Blog: Spout – Sharing Video

between Applications on Windows. [online]. (May 2014). http://resolume.com/

blog/11110/spout-sharing-video-between-applications-on-windows.

Gene Kogan. 2014a. Kinect Projector Toolkit for imagemapping and calibration. [online,

GitHub]. (July 2014). https://github.com/genekogan/KinectProjectorToolkit.

Gene Kogan. 2014b. Kinect Projector Toolkit for image mapping and calibration.

[online]. (July 2014). https://github.com/genekogan/KinectProjectorToolkit.

Joseph J. LaViola, Jr. 2015. Context Aware 3D Gesture Recognition for Games and

Virtual Reality. In ACM SIGGRAPH 2015 Courses (SIGGRAPH’15). ACM, New York,

NY, USA, 10:1–10:61. https://doi.org/10.1145/2776880.2792711

Hao Li, Anshuman Das, Tristan Swedish, Hyunsung Park, and Ramesh Raskar. 2015.

Modeling and Capturing the Human Body: For Rendering, Health and Visualization.

In ACM SIGGRAPH 2015 Courses (SIGGRAPH’15). ACM, New York, NY, USA, 16:1–

16:160. https://doi.org/10.1145/2776880.2787681

V. J. Manzo. 2011. Max/MSP/Jitter for Music: A Practical Guide to Developing Interactive
Music Systems for Education and More. Oxford University Press.

Microsoft. 2012a. Human Interface Guidelines: Kinect for Windows v. 1.5. [online].

(2012). http://go.microsoft.com/fwlink/?LinkId=247735.

Microsoft. 2012b. The Kinect for Windows SDK v. 1.5. [online]. (21 May

2012). Online at http://www.microsoft.com/en-us/kinectforwindows/develop/

developer-downloads.aspx and http://msdn.microsoft.com/en-us/library/hh855347.

Serguei A. Mokhov, Miao Song, Satish Chilkaka, Zinia Das, Jie Zhang, Jonathan

Llewellyn, and Sudhir P. Mudur. 2016. Agile Forward-Reverse Requirements

Elicitation as a Creative Design Process: A Case Study of llimitable Space Sys-

tem v2. Journal of Integrated Design and Process Science 20, 3 (Sept. 2016), 3–37.
https://doi.org/10.3233/jid-2016-0026

Serguei A. Mokhov, Kin-Fung Yiu, Brian Ye, Jie Zhang, Haotao Lai, andMiao Song. 2017.

Real-time Motion Capture for Performing Arts and Stage. [online], TEDxConcordia.

(Sept. 2017). https://www.youtube.com/watch?v=YgwnEmHFwI8.

R. Molich and Jakob Nielsen. 1990. Improving a human-computer dialogue. Commun.
ACM 33, 3 (March 1990), 338–348.

OpenKinect Contributors. 2011–2018. OpenKinect: Open Source Drivers for Kinect v1.

[online]. (2011–2018). http://openkinect.org.

Jean-Marc Pelletier. 2012. jit.freenect.grab – a Max/MSP/Jitter external for Mi-

crosoft Kinect. [online]. (7 March 2012). RC5, http://jmpelletier.com/freenect/.

Bill Polson. 2015. Pipeline Design Patterns. In ACM SIGGRAPH 2015 Courses (SIG-
GRAPH’15). ACM, New York, NY, USA, 21:1–21:59. https://doi.org/10.1145/2776880.

2792724

Konstantinos Psimoulis, Paul Palmieri, Inna Taushanova-Atanasova, Yasmine Chiter,

Amjrali Shirkhodaei, Navid Golabian, Mohammad-Ali Eghtesadi, Behrooz Hedayati,

Piratheeban Annamalai, and Andrew Laramee. 2018. OpenISS Web Services API

Implementation for OpenISS-as-a-Service. [online], SOEN487 Team 10 and Team 11,

Serguei Mokhov. (April 2018). https://github.com/OpenISS/OpenISS/tree/master/

src/api/java.

Miller Puckette and PD Community. 2007–2014. Pure Data. [online]. (2007–2014).

http://puredata.org.

Theresa-Marie Rhyne. 2015. Applying Color Theory to Digital Media and Visualization.

In ACM SIGGRAPH 2015 Courses (SIGGRAPH’15). ACM, New York, NY, USA, 5:1–

5:112. https://doi.org/10.1145/2776880.2792696

Christian Richardt, James Tompkin, Jiamin Bai, and Christian Theobalt. 2015. User-

centric Computational Videography. In ACM SIGGRAPH 2015 Courses (SIG-
GRAPH’15). ACM, New York, NY, USA, 25:1–25:6. https://doi.org/10.1145/2776880.

2792705

Yvonne Rogers, Helen Sharp, and Jenny Preece. 2011. Interaction Design: Beyond Human
- Computer Interaction (3rd ed.). Wiley Publishing. Online resources: id-book.com.

Andreas Schlegel. 2011. oscP5 – A implementation of the OSC protocol for Processing.

[online]. (2011). http://www.sojamo.de/libraries/oscP5/.

Miao Song. 2012. Computer-Assisted Interactive Documentary and Performance Arts
in Illimitable Space. Ph.D. Dissertation. Special Individualized Program/Computer

Science and Software Engineering, Concordia University, Montreal, Canada. Online

at http://spectrum.library.concordia.ca/975072 and http://arxiv.org/abs/1212.6250.

Miao Song et al. 2014a. Real-Time Motion-Based Shadow and Green

Screen Visualization, and Video Feedback for the Like Shadows Theatre

Performance with the ISS. [theatre production, video, news]. (2–12

April 2014). http://www.concordia.ca/encs/cunews/main/stories/2014/06/

04/digital-art-thatillustratesthelandofthelivingandthedead.html and http://www.

concordia.ca/content/dam/encs/csse/news/docs/like-shadows-cse-academy.pdf.

Miao Song and Serguei A. Mokhov. 2014. Dynamic Motion-Based Background Visu-

alization for the Ascension Dance with the ISS. [dance show, video]. (18–19 Jan.

2014). http://vimeo.com/85049604.

Miao Song, Serguei A. Mokhov, et al. 2015b. Illimitable Space System at CG in Asia

International Resources. Talk and Demo. (10 Aug. 2015). http://s2015.siggraph.org/

attendees/acm-siggraph-theater-events.

Miao Song, Serguei A. Mokhov, Julie Chaffarod, et al. 2015a. Dynamic Motion-Based Vi-

sualization for theDistrict 3 Demo Day with the ISSv2 and Processing. [demo, video].

(4 June 2015). https://vimeo.com/130122925 and https://vimeo.com/129692753.

Miao Song, Serguei A. Mokhov, and Peter Grogono. 2014b. A Brief Technical Note on

Haptic Jellyfish with Falcon and OpenGL. In Proceedings of the CHI’14 Extended
Abstracts: ACM SIGCHI Conference on Human Factors in Computing Systems. ACM,

New York, NY, USA, 1525–1530. https://doi.org/10.1145/2559206.2581135 Includes

video and poster.

Miao Song, Serguei A. Mokhov, Peter Grogono, and Sudhir P. Mudur. 2014a. Illimitable

Space System as a Multimodal Interactive Artists’ Toolbox for Real-time Perfor-

mance. In Proceedings of the SIGGRAPH ASIA 2014 Workshop on Designing Tools
for Crafting Interactive Artifacts (SIGGRAPH ASIA’14). ACM, New York, NY, USA,

2:1–2:4. https://doi.org/10.1145/2668947.2668953

Miao Song, Serguei A. Mokhov, Peter Grogono, and Sudhir P. Mudur. 2014b. On a

Non-Web-Based Multimodal Interactive Documentary Production. In Proceedings
of the 2014 International Conference on Virtual Systems Multimedia (VSMM’2014),
Harold Thwaites, Sarah Kenderdine, and Jeffrey Shaw (Eds.). IEEE, 329–336. https:

//doi.org/10.1109/VSMM.2014.7136675

Miao Song, Serguei A. Mokhov, Alison R. Loader, and Maureen J. Simmonds. 2009. A

Stereoscopic OpenGL-based Interactive Plug-in Framework for Maya and Beyond.

In Proceedings of VRCAI’09. ACM, New York, NY, USA, 363–368. https://doi.org/10.

1145/1670252.1670333

Miao Song, Serguei A. Mokhov, Sudhir P. Mudur, and Peter Grogono. 2015. Rapid In-

teractive Real-time Application Prototyping for Media Arts and Stage Performance.

In ACM SIGGRAPH Asia 2015 Courses (SIGGRAPH Asia’15). ACM, New York, NY,

USA, 14:1–14:11. https://doi.org/10.1145/2818143.2818148

Miao Song, Serguei A. Mokhov, Sudhir P. Mudur, and Peter Grogono. 2016. Hands-on:

Rapid Interactive Application Prototyping for Media Arts and Stage Production. In

ACM SIGGRAPH Asia 2016 Courses (SIGGRAPH Asia’16). ACM, New York, NY, USA,

19:1–19:29. https://doi.org/10.1145/2988458.2988460

Miao Song, Serguei A. Mokhov, Jilson Thomas, et al. 2015b. Dynamic Motion-Based

Background Visualization for the Gray Zone Dance with the ISSv2. [dance show,

video]. (14 Feb. 2015). https://vimeo.com/121177927.

Miao Song, Serguei A. Mokhov, Jilson Thomas, and Sudhir P. Mudur. 2015a. Appli-

cations of the Illimitable Space System in the Context of Media Technology and

On-Stage Performance: a Collaborative Interdisciplinary Experience. In Proceedings
of GEM’15. IEEE. To appear.

Debbie Stone, Caroline Jarrett, Mark Woodroffe, and Shailey Minocha. 2005. User
Interface Design and Evaluation (1st ed.). Wiley Publishing.

Marian F. Ursu, Vilmos Zsombori, John Wyver, Lucie Conrad, Ian Kegel, and Doug

Williams. 2009. Interactive Documentaries: A Golden Age. Comput. Entertain. 7,
Article 41 (Sept. 2009), 29 pages. Issue 3. https://doi.org/10.1145/1594943.1594953

https://doi.org/10.1145/359636.359715
https://doi.org/10.1145/359636.359715
https://doi.org/10.1145/2992138.2992139
https://doi.org/10.1145/2992138.2992139
https://github.com/atduskgreg/opencv-processing
https://github.com/atduskgreg/opencv-processing
http://imi.aau.dk/~nib/maxmsp/introduction_to_MaxMsp.ppt
http://imi.aau.dk/~nib/maxmsp/introduction_to_MaxMsp.ppt
https://github.com/Syphon/Jitter/releases/
https://doi.org/10.1145/2776880.2792697
https://github.com/Syphon/Processing/releases
https://github.com/Syphon/Processing/releases
http://cycling74.com/products/max/
http://cycling74.com/products/max/
ftp://arts.ucsc.edu/pub/ems/MaxTutors/Jit.tutorials/
http://www.processing.org/
http://www.processing.org/
https://magenta.tensorflow.org/
https://opencv.org/
http://resolume.com/blog/11110/spout-sharing-video-between-applications-on-windows
http://resolume.com/blog/11110/spout-sharing-video-between-applications-on-windows
https://github.com/genekogan/KinectProjectorToolkit
https://github.com/genekogan/KinectProjectorToolkit
https://doi.org/10.1145/2776880.2792711
https://doi.org/10.1145/2776880.2787681
http://go.microsoft.com/fwlink/?LinkId=247735
http://www.microsoft.com/en-us/kinectforwindows/develop/developer-downloads.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/developer-downloads.aspx
http://msdn.microsoft.com/en-us/library/hh855347
https://doi.org/10.3233/jid-2016-0026
https://www.youtube.com/watch?v=YgwnEmHFwI8
http://openkinect.org
http://jmpelletier.com/freenect/
https://doi.org/10.1145/2776880.2792724
https://doi.org/10.1145/2776880.2792724
https://github.com/OpenISS/OpenISS/tree/master/src/api/java
https://github.com/OpenISS/OpenISS/tree/master/src/api/java
http://puredata.org
https://doi.org/10.1145/2776880.2792696
https://doi.org/10.1145/2776880.2792705
https://doi.org/10.1145/2776880.2792705
id-book.com
http://www.sojamo.de/libraries/oscP5/
http://spectrum.library.concordia.ca/975072
http://arxiv.org/abs/1212.6250
http://www.concordia.ca/encs/cunews/main/stories/2014/06/04/digital-art-thatillustratesthelandofthelivingandthedead.html
http://www.concordia.ca/encs/cunews/main/stories/2014/06/04/digital-art-thatillustratesthelandofthelivingandthedead.html
http://www.concordia.ca/content/dam/encs/csse/news/docs/like-shadows-cse-academy.pdf
http://www.concordia.ca/content/dam/encs/csse/news/docs/like-shadows-cse-academy.pdf
http://vimeo.com/85049604
http://s2015.siggraph.org/attendees/acm-siggraph-theater-events
http://s2015.siggraph.org/attendees/acm-siggraph-theater-events
https://vimeo.com/130122925
https://vimeo.com/129692753
https://doi.org/10.1145/2559206.2581135
https://doi.org/10.1145/2668947.2668953
https://doi.org/10.1109/VSMM.2014.7136675
https://doi.org/10.1109/VSMM.2014.7136675
https://doi.org/10.1145/1670252.1670333
https://doi.org/10.1145/1670252.1670333
https://doi.org/10.1145/2818143.2818148
https://doi.org/10.1145/2988458.2988460
https://vimeo.com/121177927
https://doi.org/10.1145/1594943.1594953

Dataflow Programming and Processing for Artists and Beyond SA’19 Courses, November 17-20, 2019, Brisbane, QLD, Australia

William W. Wadge and Edward A. Ashcroft. 1985. Lucid, the Dataflow Programming
Language. Academic Press, London.

Todd Winkler. 2001. Compositing Interactive Music: Techniques and Ideas Using Max.
MIT Press.

Jie Zhang, Sebouh Bardakjian, Milin Li, Miao Song, Serguei A. Mokhov, Sudhir P.

Mudur, and Jean-Claude Bustros. 2015. Towards Historical Exploration of Sites

With an Augmented Reality Interactive Documentary Prototype App. In Proceedings
of Appy Hour, SIGGRAPH’2015. ACM.

	Abstract
	Contents
	List of Figures
	1 Syllabus
	2 Bios
	2.1 Serguei A. Mokhov
	2.2 Miao Song
	2.3 Sudhir P. Mudur
	2.4 Peter Grogono

	3 Introduction
	3.1 Course Rationale
	3.2 Tentative Length and Level of Difficulty
	3.3 Intended Audience
	3.4 Course Prerequisites
	3.5 Pedagogic Intentions and Methods
	3.6 Special Presentation Requirements
	3.7 Summary

	4 Production History with ISS and Demos
	4.1 ISS Overview
	4.2 ISSv2 Production History
	4.3 ISSv2 Components
	4.4 Production Using ISSv2 and Visual Modes
	4.5 Difficulties Encountered During Production
	4.6 Image Mapping and Calibration
	4.7 Ongoing Work (ISSv2)

	5 Course Coverage
	5.1 Introduction to Max/MSP/Jitter
	5.2 OpenGL in Jitter
	5.3 Kinect, OpenGL, and Jitter
	5.4 Wii and Jitter
	5.5 iDevice Touch, Video, and Jitter
	5.6 Tracking
	5.7 Shaders in Jitter
	5.8 Depth cameras and VFX in Processing
	5.9 Putting it all Together
	5.10 OpenISS

	References

