
Integer Programming for Layout Problems

Peter Wonka, KAUST
Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SA '18 Courses, December 04-07, 2018, Tokyo, Japan
ACM 978-1-4503-6026-5/18/12.
10.1145/3277644.3277794

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3277644.3277794&domain=pdf&date_stamp=2018-12-04

Linear Programming

• General Form • Example

max Tc x
Ax b≤

1 1 2 2

11 1 12 2 1

21 1 22 2 2

max c x c x
a x a x b
a x a x b

+
+ ≤
+ ≤

1 2

1 2

1

max 4 2
2 12

7 22

x x
x x

x

+
+ ≤
≤

Presenter
Presentation Notes
Objective function and constraints are linear

How to solve linear programming problems?

• Simplex algorithm / interior point algorithms

• Standard solvers / quite fast
• Formulation is already non-trivial

• Graphical Example

Variations

• Float variables
 linear program (LP)

• Integer variables
 (linear) integer program (IP)

• Float and integer variables
mixed integer program (MIP)

• Binary variables
 binary integer program (BIP)

• Switch min and max

• Switch
• Require all variables

• Examples:

, ,≤ ≥ =

min

0

cx
Ax b
x

≤
≥

0≥

max Tc x
Ax b≤

Graphical Example

Optimization

• Modeling:
How to formulate an application problem as a standard optimization problem?

• Algorithm Development:
How to derive new optimization algorithms for standard optimization problems or specialized
optimization problems?

• Optimization “Theory”:
Finding convergence guarantees, bounds, … of optimization algorithms

Multiple ways to publish using optimization

• Modeling: propose an interesting problem formulation for a new or an existing problem

• Algorithm: propose a new algorithm for a specific formulation
• Modeling + Algorithm

• Theory: doesn’t work well in visual computing / can work in ML

• Do Nothing: just publish a known formulation
• Worse than nothing: publish an ad-hoc algorithm to a problem that has a known / efficient

formulation

• Pretend algorithm development: pretend to develop a new algorithm while copying the
derivation from another source

good

not
so
good

How to solve an IP Problem?

• (Step 1): check if the problem is difficult or a simpler special case
• difficult means that a polynomial algorithm is unlikely to exist

• Step 2: use a black box solver such as Gurobi, matlab, …

• Step 3: choose from the options below
• develop a new exact or heuristic algorithm for the specific problem
• reuse an existing heuristic algorithm
• reformulate the problem to make it easier to solve, use existing extensions / tricks

scale

time
black box solvernaïve solver

heuristic

Knapsack Problem

• Input:
• a set of items i with values and

weights
• a knapsack with maximum capacity C

• Formulation: means we pack item i in
the knapsack

• Difficulty: difficult in general, but DP solution
exists for integer weights and capacity

max

{0,1}

T

T

i

v x
w x C
x

≤
∈

1ix =

iw
iv

Standard Problem

10C =

1 3v =

3 5v =

2 7v =
1 5w =

2 8w =

3 3w =

Matlab Example
C = 750
weights = [70; 73; 77; 80; 82; 87; 90; 94; 98; 106; 110; 113; 115; 118; 120];
values = [135; 139; 149; 150; 156; 163; 173; 184; 192; 201; 210; 214; 221; 229;
240];

LZero = zeros(length(weights),1);
LOne = ones(length(weights),1);
LCount = 1:length(weights);

tic;
intlinprog(-values, LCount, weights', C, [], [], LZero, LOne)
toc;

City Exploration

• Input: city map as graph (nodes and edges)
start and end location (node) on the map
c – edge attractiveness for each edge
t – time it takes to walk along an edge
T – maximum time allowed

• Goal: find a walk through the city from start
to end that explores the most worthy edges,
but stays under the time limit

TVCG 2017

City Exploration

• Input: city map as graph (nodes and edges)
start and end location (node) on the map
c – edge attractiveness for each edge
t – time it takes to walk along an edge
T – maximum time allowed

• Goal: find a walk through the city from start
to end that explores the most worthy edges,
but stays under the time limit

TVCG 2017

• Variables:
• if edge i is selected
• if vertex j is selected

• Time constraint

• Connection constraint

• Objective function:

• Problem: can create isolated cycles

• Solution: lazy constraint adding

1ix =

Tt x T≤

, {0,1}i jx v ∈

2
j

i j
i N

x v
∈

=∑

1jv =

max Tc x

1
s

i
i N

x
∈

=∑ 1
e

i
i N

x
∈

=∑

Map Labeling Problem

• Given a set of map objects i (cities, streets,
rivers, …) and corresponding labels

• Goal: place labels without overlap
• IP Formulation: discretize possible label

positions j

Wien

Berlin

Zuerich Donau

• Variable definition: if label i is placed at
position j

• Coverage: Each element is labeled exactly once:

• Non-overlap for each conflicting placement

• Objective (assuming some positional preferences)

1ijx =

1ij
j

x =∑

1ij lmx x+ ≤

min ij ij
i j

c x∑∑

{0,1}ijx ∈

???

Assignment Problem

• n people carry out n jobs
• Each person i is assigned to exactly one job j
• Qualification is modeled by a cost for

person i being assigned to job j

• Variable definition: if person i does job j
• Limited Work: Each person i does one job: for all i

• Coverage: Each job is done by one person: for all j

• All variables are binary, minimize cost

• Difficulty: specialized algorithm existsPeople i Jobs j

ijc

ijc

1ijx =

1ij
j

x =∑

1ij
i

x =∑

min ij ij
i j

c x∑∑{0,1}ijx ∈

Standard Problem

Tourist Map Layout

• Overview Map

• Points of Interest (POIs)
• Detail maps for each POI

• Cost corresponds to the distance of
POI on overview map and the detail map

• Standard assignment problem

EG 2014

ijc

Tourist Map Layout

• Extension: include detail maps larger than
one grid cell

• Variables if top left corner of detail
map i is assigned to grid pos j
Note: not all combinations possible

• Coverage: for each pos j

• One time placement: for each map i

EG 2014

1ijx =

(,) C
1

j

ij
i j

x
∈

=∑

1ij
j

x =∑

placement (i,j) covers pos j

Urban Layouts

More regular Occurrence
control

Default

SG 2014

Urban Layouts

• Drop constraint that each tile can only occur once  replace it with general occurrence control
• e.g. exactly one school tile, 2-4 store tiles, …

• Tiles can be placed in multiple orientations

• Cost is modeled by deformation cost of the regular template
• Add color constraints to enforce that only sides with matching colors can be adjacent to each

other. Can be modeled as hard or soft constraint. Vertex based constraints to limit T-junctions.

Floor Planning

• Meet both accessibility (corridors) and aesthetic (room shapes) criteria of floor plans of large
facilities

SG 2014

Network Modeling

• find a subset of mesh edges that
optimize a set of quality measures while satisfying validity constraints:

• Coverage
• Connectivity

ei=1ei =0

SG 2016

Presenter
Presentation Notes
Let’s reiterate the problem definition of our IP problem. A network is presented as a subset of the edges in the quadrangulate mesh. We encode the presence of each edge in the network as a Boolean variable ei. Our goal is to find a subset of the Boolean variables that best optimizes a weighted set of quality measures, which is given as a energy function to minimize, while satisfying a set of validity constraints.

Modeling Coverage Constraint

• Every vertex is within the coverage range of the network
edges.

(Coverage range = 2)

∀
𝑣𝑣∈𝑉𝑉

�
𝑒𝑒𝑖𝑖 covers 𝑣𝑣

𝑒𝑒𝑖𝑖 ≥ 1

Presenter
Presentation Notes
Modeling the coverage constraint is easy. In short, we require that every vertex of the mesh is within the coverage range of some of the network edges. This can be expressed as a combination of linear cIP onstraints.

Modeling Connectivity Constraint

• A global phenomenon – cannot be modelled locally.

By coverage
constraint alone

Forbid dead-end vertices

∀𝑣𝑣 ∈
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�
𝑒𝑒𝑖𝑖 touches 𝑣𝑣

𝑒𝑒𝑖𝑖 ≥ 2

Presenter
Presentation Notes
However, modeling the connectivity constraint is not trivial. [click] If we only enforce the coverage constraint, the result is likely a scatter of isolated edges, something like a minimal edge cover. [Click] If we try to solve it by imposing local constraints, like forbidding dead-end vertices, the result is likely a collection of disconnected loops.

Modeling Connectivity Constraint

• Succeeding half-edges of a network must have descending
“distance” values, except at sinks.

∀𝑒𝑒𝑖𝑖→𝑗𝑗 ∈
network,

𝑣𝑣𝑗𝑗 not a sink

∃𝑒𝑒𝑗𝑗→𝑘𝑘 ∈
network

𝐷𝐷𝑖𝑖→𝑗𝑗 > 𝐷𝐷𝑗𝑗→𝑘𝑘

∀
𝑒𝑒𝑖𝑖−𝑗𝑗 ∈ network

𝑒𝑒𝑖𝑖→𝑗𝑗 + 𝑒𝑒𝑗𝑗→𝑖𝑖 > 0

Distance value

Presenter
Presentation Notes
Inspired by a IP formulation of the traveling salesman problem…[TODO] Note that by our formulation, loops that are connected to the sinks are allowed.

Energy Function

minimize 𝜆𝜆𝐿𝐿�Δ𝑖𝑖𝑒𝑒𝑖𝑖 + 𝜆𝜆𝐷𝐷�𝐷𝐷𝑖𝑖→𝑗𝑗

Network length Distances to sinks

Presenter
Presentation Notes
[TODO]

Scan Registration
SGA 2016

Puzzle problem

• Input: set of puzzle pieces
f - fitness scores for matching a side of one piece to a side of another piece

• Variables: 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if edge i matches edge j

• Objective function: max 𝑓𝑓𝑇𝑇𝑥𝑥
• Constraints: for every edge i:

�
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1

• Symmetry: 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑗𝑗𝑗𝑗
• Intersection Avoidance:

• add constraints on demand
• e.g. 𝑥𝑥12 + 𝑥𝑥34 ≤ 1

(Mixed-)Integer Quadratic Programming

• General Form

max Tcx x Cx
Ax b

+
≤

Discrete MDS

• Input:
• set of images; image distances

• Goal: assign image tiles to grid cells so that
distances in the grid reflect the given
distances

• Example: image distances based on optimal
transport computed on color histograms

• Discretized version of MDS

• Variables: if image i is assigned to pos j

• Cost matrix C derived from
Note: size #of images to the power of 4

• Coverage and Non-overlap:

• Objective:

EG 2015, Princeton (Quadratic Assignment)

1ijx =
ijd

ijd

min Tx Cx

1ij
j

x =∑ 1ij
i

x =∑

Discrete MDS

• Input:
• set of images; image distances

• Goal: assign image tiles to grid cells so that
distances in the grid reflect the given
distances

• Example: image distances based on optimal
transport computed on color histograms

• Discretized version of MDS

• Variables: if image i is assigned to pos j

• Cost matrix C derived from
Note: size #of images to the power of 4

• Coverage and Non-overlap:

• Objective:

EG 2015, Princeton (Quadratic Assignment)

1ijx =
ijd

ijd

min Tx Cx

1ij
j

x =∑ 1ij
i

x =∑

Camera Placement

• Input
• Room sampled into grid cells j
• Possible camera positions I
• cost for selecting a pair of

cameras l,m

• Output
• select a sparse set of cameras that see

the room

EG 2015

1lmc =

Camera Placement

• Input
• Room sampled into grid cells j
• Possible camera positions I
• cost for selecting a pair of

cameras l,m

• Output
• select a sparse set of cameras that see

the room

• Variables: if camera i is selected

• Position conflict constraints: For each location

• Visibility constraint: (grid cell visibility
computed by ray tracing, each column of V
corresponds to one camera)

• Objective Function:
1Vx ≥

EG 2015

1lmc =

1ix = {0,1}ix ∈

1
s

i
i L

x
∈

≤∑
sL

sL

(because multiple rotated cameras can be at)

sL

min1T Tx x Cxλ+

Fit and Diverse Sampling

• Input: set of samples in a domain
f - fitness scores for each sample
S - similarity score matrix
k – number of samples to be selected

• Goal: select a set of samples that is fit and
diverse

• Variables: if sample i is selected

• Sum of selected samples constraint:

• Objective function:

Current Work

1ix =

1T x k=

max T Tf x x Sx−

(Mixed-)Integer Quadratic Programming with
Quadratic Constraints
• General Form

max Tcx x Cx
Ax b

+
≤

Joint Segmentation
SGA 2011, Huang et al.

Performance considerations of IP

(a), (b), and (c):
solved by a general-purpose solver
(Gurobi)

(d):
solved by a greed method with
simulated annealing

0.54sec0.14sec 71.46sec

1000sec

[SG 2014]

QuadriFlow: A Scalable and Robust Method for Quadrangulation. Jingwei Huang et al, SGP 2018

Thank You!

	Integer Programming for Layout Problems
	Linear Programming
	How to solve linear programming problems?
	Variations
	Graphical Example
	Optimization
	Multiple ways to publish using optimization
	How to solve an IP Problem?
	Knapsack Problem
	Matlab Example
	City Exploration
	City Exploration
	Map Labeling Problem
	Assignment Problem
	Tourist Map Layout
	Tourist Map Layout
	Urban Layouts
	Urban Layouts
	Floor Planning
	Network Modeling
	Modeling Coverage Constraint
	Modeling Connectivity Constraint
	Modeling Connectivity Constraint
	Energy Function
	Scan Registration
	Puzzle problem
	(Mixed-)Integer Quadratic Programming
	Discrete MDS
	Discrete MDS
	Camera Placement
	Camera Placement
	Fit and Diverse Sampling
	(Mixed-)Integer Quadratic Programming with Quadratic Constraints
	Joint Segmentation
	Performance considerations of IP
	Slide Number 36
	Slide Number 37
	Thank You!

