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Linear Programming

• General Form • Example
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Presenter
Presentation Notes
Objective function and constraints are linear



How to solve linear programming problems?

• Simplex algorithm / interior point algorithms

• Standard solvers / quite fast
• Formulation is already non-trivial

• Graphical Example



Variations

• Float variables
 linear program (LP)

• Integer variables
 (linear) integer program (IP)

• Float and integer variables
mixed integer program (MIP)

• Binary variables
 binary integer program (BIP)

• Switch min and max

• Switch
• Require all variables

• Examples:  
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Graphical Example



Optimization

• Modeling:
How to formulate an application problem as a standard optimization problem?

• Algorithm Development:
How to derive new optimization algorithms for standard optimization problems or specialized 
optimization problems?

• Optimization “Theory”:
Finding convergence guarantees, bounds, … of optimization algorithms



Multiple ways to publish using optimization

• Modeling: propose an interesting problem formulation for a new or an existing problem

• Algorithm: propose a new algorithm for a specific formulation
• Modeling + Algorithm 

• Theory: doesn’t work well in visual computing / can work in ML

• Do Nothing: just publish a known formulation
• Worse than nothing: publish an ad-hoc algorithm to a problem that has a known / efficient 

formulation

• Pretend algorithm development: pretend to develop a new algorithm while copying the 
derivation from another source

good

not 
so 
good



How to solve an IP Problem?

• (Step 1): check if the problem is difficult or a simpler special case
• difficult means that a polynomial algorithm is unlikely to exist

• Step 2: use a black box solver such as Gurobi, matlab, …

• Step 3: choose from the options below
• develop a new exact or heuristic algorithm for the specific problem
• reuse an existing heuristic algorithm
• reformulate the problem to make it easier to solve, use existing extensions / tricks

scale

time
black box solvernaïve solver

heuristic



Knapsack Problem

• Input: 
• a set of items i with values      and 

weights
• a knapsack with maximum capacity C

• Formulation:              means we pack item i in 
the knapsack

• Difficulty: difficult in general, but DP solution 
exists for integer weights and capacity
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Matlab Example
C = 750
weights = [ 70; 73; 77; 80; 82; 87; 90; 94; 98; 106; 110; 113; 115; 118; 120];
values = [ 135; 139; 149; 150; 156; 163; 173; 184; 192; 201; 210; 214; 221; 229; 
240];

LZero = zeros(length(weights),1); 
LOne = ones(length(weights),1);
LCount = 1:length(weights);

tic;
intlinprog( -values, LCount, weights', C, [], [], LZero, LOne)
toc;



City Exploration

• Input: city map as graph (nodes and edges)
start and end location (node) on the map
c – edge attractiveness for each edge
t – time it takes to walk along an edge
T – maximum time allowed

• Goal: find a walk through the city from start 
to end that explores the most worthy edges, 
but stays under the time limit

TVCG 2017



City Exploration

• Input: city map as graph (nodes and edges)
start and end location (node) on the map
c – edge attractiveness for each edge
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T – maximum time allowed

• Goal: find a walk through the city from start 
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• Variables:
• if edge i is selected
• if vertex j is selected

• Time constraint

• Connection constraint 

• Objective function:

• Problem: can create isolated cycles

• Solution: lazy constraint adding         
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Map Labeling Problem

• Given a set of map objects i (cities, streets, 
rivers, …) and corresponding labels

• Goal: place labels without overlap
• IP Formulation: discretize possible label 

positions j

Wien

Berlin

Zuerich Donau

• Variable definition:              if label i is placed at 
position j

• Coverage: Each element is labeled exactly once: 

• Non-overlap for each conflicting placement

• Objective (assuming some positional preferences)
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Assignment Problem

• n people carry out n jobs
• Each person i is assigned to exactly one job j
• Qualification is modeled by a cost for

person i being assigned to job j

• Variable definition:              if person i does job j
• Limited Work: Each person i does one job: for all i

• Coverage: Each job is done by one person: for all j

• All variables are binary, minimize cost

• Difficulty: specialized algorithm existsPeople i Jobs j
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Tourist Map Layout

• Overview Map

• Points of Interest (POIs)
• Detail maps for each POI

• Cost        corresponds to the distance of 
POI on overview map and the detail map

• Standard assignment problem

EG 2014

ijc



Tourist Map Layout

• Extension: include detail maps larger than 
one grid cell

• Variables                if top left corner of detail 
map i is assigned to grid pos j
Note: not all combinations possible

• Coverage: for each pos j

• One time placement: for each map i

EG 2014
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Urban Layouts

More regular Occurrence
control

Default

SG 2014



Urban Layouts

• Drop constraint that each tile can only occur once  replace it with general occurrence control
• e.g. exactly one school tile, 2-4 store tiles, …

• Tiles can be placed in multiple orientations

• Cost is modeled by deformation cost of the regular template
• Add color constraints to enforce that only sides with matching colors can be adjacent to each 

other. Can be modeled as hard or soft constraint. Vertex based constraints to limit T-junctions.



Floor Planning

• Meet both accessibility (corridors) and aesthetic (room shapes) criteria of floor plans of large 
facilities

SG 2014



Network Modeling

• find a subset of mesh edges that 
optimize a set of quality measures while satisfying validity constraints:

• Coverage
• Connectivity

ei=1ei =0

SG 2016

Presenter
Presentation Notes
Let’s reiterate the problem definition of our IP problem. A network is presented as a subset of the edges in the quadrangulate mesh. We encode the presence of each edge in the network as a Boolean variable ei. Our goal is to find a subset of the Boolean variables that best optimizes a weighted set of quality measures, which is given as a energy function to minimize, while satisfying a set of validity constraints. 



Modeling Coverage Constraint

• Every vertex is within the coverage range of the network 
edges.

(Coverage range = 2)

∀
𝑣𝑣∈𝑉𝑉

�
𝑒𝑒𝑖𝑖 covers 𝑣𝑣

𝑒𝑒𝑖𝑖 ≥ 1

Presenter
Presentation Notes
Modeling the coverage constraint is easy. In short, we require that every vertex of the mesh is within the coverage range of some of the network edges. This can be expressed as a combination of linear cIP onstraints.



Modeling Connectivity Constraint

• A global phenomenon – cannot be modelled locally.

By coverage 
constraint alone

Forbid dead-end vertices

∀𝑣𝑣 ∈
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�
𝑒𝑒𝑖𝑖 touches 𝑣𝑣

𝑒𝑒𝑖𝑖 ≥ 2

Presenter
Presentation Notes
However, modeling the connectivity constraint is not trivial. [click] If we only enforce the coverage constraint, the result is likely a scatter of isolated edges, something like a minimal edge cover. [Click] If we try to solve it by imposing local constraints, like forbidding dead-end vertices, the result is likely a collection of disconnected loops. 



Modeling Connectivity Constraint

• Succeeding half-edges of a network must have descending 
“distance” values, except at sinks.

∀𝑒𝑒𝑖𝑖→𝑗𝑗 ∈
network,

𝑣𝑣𝑗𝑗 not a sink

∃𝑒𝑒𝑗𝑗→𝑘𝑘 ∈
network

𝐷𝐷𝑖𝑖→𝑗𝑗 > 𝐷𝐷𝑗𝑗→𝑘𝑘

∀
𝑒𝑒𝑖𝑖−𝑗𝑗 ∈ network

𝑒𝑒𝑖𝑖→𝑗𝑗 + 𝑒𝑒𝑗𝑗→𝑖𝑖 > 0

Distance value

Presenter
Presentation Notes
Inspired by a IP formulation of the traveling salesman problem…[TODO]  Note that by our formulation, loops that are connected to the sinks are allowed.



Energy Function

minimize 𝜆𝜆𝐿𝐿�Δ𝑖𝑖𝑒𝑒𝑖𝑖 + 𝜆𝜆𝐷𝐷�𝐷𝐷𝑖𝑖→𝑗𝑗

Network length Distances to sinks

Presenter
Presentation Notes
[TODO]



Scan Registration
SGA 2016



Puzzle problem

• Input: set of puzzle pieces
f - fitness scores for matching a side of one piece to a side of another piece

• Variables: 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if edge i matches edge j

• Objective function: max 𝑓𝑓𝑇𝑇𝑥𝑥
• Constraints: for every edge i:

�
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 1

• Symmetry: 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑗𝑗𝑗𝑗
• Intersection Avoidance:

• add constraints on demand
• e.g. 𝑥𝑥12 + 𝑥𝑥34 ≤ 1



(Mixed-)Integer Quadratic Programming

• General Form

max Tcx x Cx
Ax b

+
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Discrete MDS

• Input: 
• set of images; image distances       

• Goal: assign image tiles to grid cells so that 
distances in the grid reflect the given 
distances

• Example: image distances based on optimal 
transport computed on color histograms

• Discretized version of MDS

• Variables:              if image i is assigned to pos j

• Cost matrix C derived from
Note: size #of images to the power of 4

• Coverage and Non-overlap:

• Objective:

EG 2015, Princeton (Quadratic Assignment)
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Camera Placement

• Input
• Room sampled into grid cells j 
• Possible camera positions I
• cost for selecting a pair of 

cameras l,m

• Output
• select a sparse set of cameras that see 

the room

EG 2015

1lmc =



Camera Placement

• Input
• Room sampled into grid cells j 
• Possible camera positions I
• cost for selecting a pair of 

cameras l,m

• Output
• select a sparse set of cameras that see 

the room

• Variables:              if camera i is selected

• Position conflict constraints: For each location

• Visibility constraint: (grid cell visibility 
computed by ray tracing, each column of V 
corresponds to one camera)

• Objective Function:
1Vx ≥

EG 2015
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Fit and Diverse Sampling

• Input: set of samples in a domain
f - fitness scores for each sample
S - similarity score matrix
k – number of samples to be selected

• Goal: select a set of samples that is fit and 
diverse

• Variables:              if sample i is selected

• Sum of selected samples constraint:

• Objective function:

Current Work

1ix =

1T x k=

max T Tf x x Sx−



(Mixed-)Integer Quadratic Programming with 
Quadratic Constraints
• General Form

max Tcx x Cx
Ax b
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Joint Segmentation
SGA 2011, Huang et al.



Performance considerations of IP



(a), (b), and (c): 
solved by a general-purpose solver
(Gurobi)

(d):
solved by a greed method with 
simulated annealing 

0.54sec0.14sec 71.46sec

1000sec

[SG 2014]



QuadriFlow: A Scalable and Robust Method for Quadrangulation. Jingwei Huang et al, SGP 2018  



Thank You!
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