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CreativeAl: Deep Learning for Graphics Course Content and Syllabus

Abstract

In computer graphics, many traditional problems are now better handled by deep-learning based data-driven methods. In
applications that operate on regular 2D domains, like image processing and computational photography, deep networks are
state-of-the-art, beating dedicated hand-crafted methods by significant margins. More recently, other domains such as geometry
processing, animation, video processing, and physical simulations have benefited from deep learning methods as well. The
massive volume of research that has emerged in just a few years is often difficult to grasp for researchers new to this area. This
tutorial gives an organized overview of core theory, practice, and graphics-related applications of deep learning.
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CreativeAl: Deep Learning for Graphics About the Lecturers

2 About the Lecturers
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CreativeAl: Deep Learning for Graphics Part 1: Introduction

Timetable
Niloy lasonas Paul Nils Tobias
Introduction X X X X X

[%]
> Theory X X
S &
25 NN Basics X X
= c

© Alternatives to Direct Supervision X

15 min. break

)
< Feature Visualization X
(]
f:-»_ Image Domains X X
o
9 3D Domains X X
©
) Motion and Physics X X
- ]
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Code Examples

PCA/SVD basis
Linear Regression
Polynomial Regression

Stochastic Gradient Descent vs. Gradient Descent
Multi-layer Perceptron

Edge Filter ‘Network’

Convolutional Network

Filter Visualization

Weight Initialization Strategies

Colorization Network

Autoencoder

Variational Autoencoder

Generative Adversarial Network

o http://geometry.cs.ucl.ac.uk/dl4g/




CreativeAl: Deep Learning for Graphics

Part 1: Introduction

Two-way Communication
* This tutorial is given for the first time!
* Our aim is to convey what we found to be relevant so far.

* You are invited/encouraged to give feedback
* On-line form
* Speakup. Please send us your criticism/comments/suggestions
* Ask questions, please!

* Thanks to many people who helped so far with slides/comments.

¢ SICERAPH
AS|A 2018
I DKY QO

Course Overview

e Part I: Introduction and ML Basics

¢ SICERAPH




CreativeAl: Deep Learning for Graphics Part 1: Introduction

Representations in CG

* Images (e.g., pixel grid)

* Volume (e.g., voxel grid)

* Meshes (e.g., vertices/edges/faces)

* Animation (e.g., skeletal positions over time; cloth dynamics over time)
* Pointclouds (e.g., point arrays)

* Physics simulations (e.g., fluid flow over space/time)

ﬁ SIGRAPH :
ASIA 2018
IaKY O

Problems in Computer Graphics

* Feature detection (image features, point features) Rmx'm, -7

* Denoising, Smoothing, etc. Rmx m — Rmxm

* Embedding, Distance computation Rme,me SN Rd
* Rendering Rme N Rme

* Animation RSmX t N RSm

* Physical simulation R3’m><t N RSm

* Generative models Rd — Rmxm

¢ SIGGRAPH )




CreativeAl: Deep Learning for Graphics Part 1: Introduction

Rise of Machine Learning

Al

_ neural network
W artificial intelligence Mt
& NN

machine learning

e T

ﬁ SICGRAPH
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Data-driven Algorithms (Supervised)

Labelled data

(supervisiondata) — | ML algorithm

Test data P, o
(run-time data) ——> | Trained model{ ~=————  Prediction

ﬁ SIGERAPH ,
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CreativeAl: Deep Learning for Graphics Part 1: Introduction

Data-driven Algorithms (Supervised)

Labelled data 3 L atear
(supervision data) — | 8

Validation data
converged? | < (supervision data)

|

| Trained model E—— Prediction

Test data
(run-time data)

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

Data-driven Algorithms (Unsupervised)

Trainingdata iMLaIgorithm

|

converged? | «——— Validation data

|

I Trained model —_— Prediction

Test data
(run-time data)

Implementation Practice: Training: 70%; Validation: 15%; Test 15%

@smmemw ,
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CreativeAl: Deep Learning for Graphics Part 1: Introduction

Various ML Approaches (Supervised approaches)

aaaaaaaaaa

! _ http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Rise of Learning

*1958: Perceptron

*1974: Backpropagation

*1981: Hubel & Wiesel wins Nobel prize for ‘visual system’
*1990s: SVM era

*1998: CNN used for handwriting analysis

«2012: AlexNet wins ImageNet

¢SIEERM3H .
ASIA 2018 2
| QKYQ




CreativeAl: Deep Learning for Graphics Part 1: Introduction

Rise of Machine Learning (in Graphics)

- machine learning
- neural network
SIG+SA+EG+SGP+EGSR Eurographics

14% 14%

124 12%

10% 10%

g% %

6% 6%

4% 4%

2% 2%

0% 0%

2013 2017 2013 2017

& :

What is Special about Graphics?

* Image Processing (image translation tasks)

* Many sources of input data — model building
(e.g., images, scanners, motion capture)

* Many sources of synthetic data — can serve as supervision data
(e.g., rendering, animation)

* Many problems in generative models

ﬁsmmemw ,
ASIA 2018 6
| QKYQ
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CreativeAl: Deep Learning for Graphics Part 1: Introduction

End-to-end: Features

* Old days
* First some handy features were extracted, e.g. edges or corners (hand-crafted)
* Second, some Al was ran on that features (optimized)

* Now
* End-to-end
* Move away from hand-crafted representations

input image  edge image 21;’2-D sketch 3-D model

End-to-end: Loss

* Old days

* Evaluation came after

* It was a bit optional:
* You might still have a good algorithm without a good way of quantifying it
* Evaluation helped publishing

* Now

* It is essential and build-in

* If the loss is not good, the result is not good

* Evaluation happens automatically

* While still much is left to do, this makes graphics much more reproducable

ﬁsmmamw ,
AE}\A 2?18 8
I QKYQ
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CreativeAl: Deep Learning for Graphics Part 1: Introduction

End-to-end: Data

* Old days
* Test with some toy examples
* Deploy on real stuff
* Maybe collect some data later

* Now
* Test and deploy need to be as identical as you can
* Need to collect data first
* No two steps

ﬁsmmmw ,
ASIA 2018 9
I DKY QO

Examples in Graphics

Geometry

Image
manipulation

Animation
Rendering

ﬁsmmemw )
ASIA 2018 o
| QKYQ
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CreativeAl: Deep Learning for Graphics

Part 1: Introduction

Examples in Graphics

Colorization
Sketch
simplification | M age
manipulation

BRDF estimation

Real-time rendering
Rendering

Denoising

Geometry
Procedural Mesh segmentation Learning
modelling deformations
Animation
Boxification
Fluid
Animation

Facial animation PCD processing

) Colorization
Sketch

simplification

BRDF estimation

Real-time rendering

Denoising

ﬁ SIGERAPH
ASIA 2018
I QKYQ

Mesh segmentation

Animation

Procedural
modelling

Learning
deformations

T

! il o Boxification
Fluid K -

normals

Facial animation

13




CreativeAl: Deep Learning for Graphics Part 1: Introduction

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/
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Part 2: Theory
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Timetable

Niloy lasonas Paul Nils Tobias
Introduction X X X X X
(%]
g' '§ Theory X X
o .
25 NN Basics X X
= c
© Alternatives to Direct Supervision X
15 min. break
=
g Feature Visualization X
:*:: Image Domains X X
o
i) 3D Domains X X
©
& Motion and Physics X X
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Machine Learning

Machine learning is a field of computer science that uses statistical

techniques to give computer systems the ability to learn (i.e., progressively

improve performance on a specific task) with data, without being explicitly
programmed.

‘ML’ coined by Arthur Samuel, 1959.

[
data —_— model building —  prediction

Machine Learning Variants

* Supervised
* Classification
* Regression
* Data consolidation
* Unsupervised
* Clustering
* Dimensionality Reduction
* Weakly supervised/semi-supervised
Some data supervised, some unsupervised
* Reinforcement learning
Supervision: sparse reward for a sequence of decisions

% SIGERAPH
:
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CreativeAl: Deep Learning for Graphics

Part 2: Theory

Machine Learning Variants

Supervised
* Classification
* Regression
* Data consolidation
* Unsupervised
* Clustering
* Dimensionality Reduction
* Weakly supervised/semi-supervised
Some data supervised, some unsupervised
* Reinforcement learning
Supervision: sparse reward for a sequence of decisions

Classification Examples
* Digit Recognition 3 n ;‘;__Q_ 2__ 2 7

* Spam Detection

Fetiie . . /7 - AN 2 fothin.. 3
= Subject: **JUNK MALL*** Don't waste your tme on dise heakl
7@ Ce st inicestions com>

Froem: 2
@rﬂasons of quit smokir@! gg:i [www.markthrill.com/

o
Date: 28(07/2008 0214
Voo pokbirdperat uda.ody

* Face detection

@ SIGERAPH
ASIA 2018
| QKYQ
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Segmentation + Classification in Real Images

person : 0.992

horse : 0.993 R¥40%

Evaluation measures: Confusion matrix, ROC curve, precision, recall, etc.

ﬁ SIGCRAPH
AS|A 2018 7
I OKY QO

“Faceness’ Function: Classifier

background decision boundary

ﬁ SIGGRAPH \
ASIA 2018
I OKYQ

18



CreativeAl: Deep Learning for Graphics Part 2: Theory

Face Detection

qeq aduans NIND

Machine Learning Variants

* Supervised
* Classification
* Regression
* Data consolidation
* Unsupervised
* Clustering
* Dimensionality Reduction
* Weakly supervised/semi-supervised
Some data supervised, some unsupervised
* Reinforcement learning
Supervision: sparse reward for a sequence of decisions

& :

19




CreativeAl: Deep Learning for Graphics Part 2: Theory

Human Face/Pose Estimation

[Blanz and Vetter, Siggraph, 1999]

5 Y .
IaKY O

Regression: Model Estimation

[Mitra et al. SoCG, 2003]

[Guennebaud et al., Siggraph, 2007] [Zwicker et al., EGSR, 2005]
< SIGGRAPH

ASIA 2018 12
I UKY O
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CreativeAl: Deep Learning for Graphics

Part 2: Theory

Machine Learning Variants

Supervised
* C(lassification
* Regression
* Data consolidation
* Unsupervised
* Clustering
* Dimensionality Reduction
*  Weakly supervised/semi-supervised
Some data supervised, some unsupervised
* Reinforcement learning
Supervision: sparse reward for a sequence of decisions

13

2 .
L=20 .zi"
o2
o).
0 -
J o % [
0
. lo‘
) 13
-2 0 {f) 2

ﬁ SIGERAPH
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Clustering Examples: Image Segmentation using NCuts

5 Y .
IaKY O

Clustering Examples

airplane infant bed

/‘»‘ﬁnu

" bicycle

o Y .
I QKYQ
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CreativeAl: Deep Learning for Graphics

Part 2: Theory

Machine Learning Variants

Supervised
* C(lassification
* Regression
* Data consolidation
* Unsupervised
* Clustering
* Dimensionality Reduction
* Weakly supervised/semi-supervised
Some data supervised, some unsupervised
* Reinforcement learning
Supervision: sparse reward for a sequence of decisions

17

A B c

Face Manifold
T
1

ﬁ SIGERAPH
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Example of Nonlinear Manifold: Faces

> S :

Morphing (Interpolation in Shape Space)

& :

24



CreativeAl: Deep Learning for Graphics Part 2: Theory

Moving Along Learned Face Manifold

- 0000000000

Trajectory along the “male” dimension

--0 06600800840
A anfnAffAnN

Trajectory along the “young” dimension
[Lample et. al. Fader Networks, NIPS 2017]

o oy .
IaKY O

Notations: Vectors and Matrices

* linear independence; rank of a matrix
* span of a matrix

vector x
matrix Axn =1[ar...a,
linear
: Ax=Db
equation
inner prod. <x,y>=xly x| = vxTx

xTy = |||yl cos(6)

& e

25



CreativeAl: Deep Learning for Graphics Part 2: Theory

Notations: Vectors and Matrices (cont.)

x|, = (|z1|P + |z P + ... )MP
Ixllp = (lz1[” + |2l +...) Lqi,Ly,L,, L

x[|p = max{|z1], [z2], .. . } p=0o0

range R(A) ={Ax:x e R"}
nullspace  N(A) ={x € R": Ax =0}

& :

Eigenvectors and Eigenvalues

y=AX T:[V1V2...]

Ae; = \e; T AT = diag(A1, Aa, .. .)

* All eigenvalues of symmetric matrices are real.

* Any real symmetric nxn matrix has a set of n mutually orthogonal
eigenvectors.

26



CreativeAl: Deep Learning for Graphics Part 2: Theory

rng = np.random.RandomState(18)
X = np.dot{rng.rand(2, 2), rng.randn(2, 588)).T

mean_vec = np.mean(X, axis=8)
|cov_mat = (X - mean_vec).T.dot({X - mean_vec)) / (X.shape[8]-1) |
eig_wvals, eig_vecs = np.linalg.eig(cov_mat)

Morphable Faces

¢SI BRAPH )
I?\%_\}AKZ:‘JT% 26

27



CreativeAl: Deep Learning for Graphics Part 2: Theory

Singular Value Decomposition (SVD)

* Very useful for matrix manipulation.
 Used for robust numerical computation.

A =UxVv7T
N\
scaling rotation
A=AT =UxU”T
¢ ;

i 4 s mean_vec = np.mean{X, axis=8)
YA Ly cov_mat = (X - mean vec).T.dot((X - mean _vec)) / (X.shape[8]-1)
f matl, sigma, matV = np.linalg.svd{cov_mat)

> S .

28



CreativeAl: Deep Learning for Graphics Part 2: Theory

Differentiation (chain rule recap)

z= fog(z) = f(g(z)) dz dz dy
Is —dn 2s =1 W' (@) = f(9(2))g' (z)
z= f(y) R
y =g(z)
f(=o)
z = sin(5z) g

_ dsin(5z) d(5z) i slope

T dBz) de _

= 5 cos(5x) % :

‘ L T

5 Y .
I KY O

Derivative Matrix

f:R® - R™
f1(x) )
. of (x) ’
£(x) = -

j X

fm(x) 8%;(3 : )

m X
3"('\*
yoc® ¢ L=Df = 0f(x) . Lf(x)

& .

29



CreativeAl: Deep Learning for Graphics Part 2: Theory

Regression: Continuous Output

4

-1

-2

3
=¥

pi=p]
=

g

APH
013 31
KY O

&

—
il

Learning a Function

Y= fw(m)

> S :

30



CreativeAl: Deep Learning for Graphics Part 2: Theory

Learning a Function

method
prediction l

\?AJ — fw(x)
N

parameters input
Calculus r€eR Classification: Y € {0, 1}
Vector calculus X & Rd Regression: Yy e R

Machine learning: can work also for discrete inputs, strings, images, meshes, animations, ...

5 Y .
I OKY O

Learning a Simple Separator/Classifier

VRN ‘
separating hyperplane

y = flwizy + wazs)
[ Yk "

31
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Part 2: Theory

Combining Simple Functions/Classifiers

2 layers of
trainable
weights

convex region

3
=¥

IGGRAPH
w13
JKYO

pi=p]
=

(]

&

—
il

35

Combining Simple Functions/Classifiers

3 layers of
trainable
weights

complex polygons

ﬁ SIGERAPH
ASIA 2018
| QKYQ
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Part 2: Theory

Learning a Function: Modeling

method
prediction l

~
y = fu(@) = f(z;w)
N

parameters input

we R
w c RE

37

Regression

1. Least Squares fitting
2. Nonlinear error function and gradient descent

3. Perceptron training

ﬁ SIGERAPH
ASIA 2018
| QKYQ

38
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Regression

1. Least Squares fitting

3
=¥

3 RAP
@ PR >
I KY O

I
|
o =p}
I

Assumption: Linear Function

y = fwlx) = flx,w) = w'x

D
wix = (w,x) = dexd
d=1

x € RP.weRP
0 Y o

34



CreativeAl: Deep Learning for Graphics Part 2: Theory

Reminder: Linear Classifier

@
. o X; positive: x; -w >0
® .
\ ® X; negative: x; -w < 0

@ ()
S @
5 ® o o e o
8 ¢ L
Y ® , o ° labelled input
3 ° \ e
o

—]1 e

. o yt:{—l—lo

feature coordinate

3
=¥

B .

s

pi=p]
=

g

¢

-2
~n

Which Line to Pick?

X; positive: x;-w >0

X; negative: x; -w <0

labelled input

[+l e
yt_ _1 ®

feature coordinate

feature coordinate

35



CreativeAl: Deep Learning for Graphics Part 2: Theory

Linear Regression in 1D

10F o epata
ofL—curvetit] )
8_ .......................................
-

7,_ ......................................
6-

5_ ....................................
4 1
0o 1 2 3 4 5

S={("y")}, i=1...,N
' eR, y'eR

o oy .
IaKY O

Training set: input—output pairs

Linear regression in 1D

10f| e epata

i fCurvefit ...............

?: . + ’L + '[: . [ SRR ........ R

Yy = Wo T+~ wi1xy € wWo bias I S 4 R
. . . 6F : | :

= wory +wix] +€, xyH=1, Vi s Vb

. s 4 | )
0 1 2 3 4 5
= wlx! —F‘eZ \ x
noise

> S :
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Sum of Square Errors (MSE without the mean)

yz — WTXZ _l_ 61

10F( o ;Data
Loss function: sum of squared errors gf ——curvefit|
N st S
\2
Liw) =Y () -t
=1 6F
In two variables: o S S S S
N 4 i
2 0o 1 2 3 4 5
L(wg,wy) i [y" — (wozh + wizt)] x
i=1

Question: what is the best (or least bad) value of w?

5 Y .
I KY O

Calculus 101

fla)

*

T x
" = argmax, f(x)

> S :

37



CreativeAl: Deep Learning for Graphics Part 2: Theory

Local Extrema Condition

flz)

™ T

" =argmax, f(z) — f'(z*)=0

o oy .
IaKY O

Local Extrema Condition

" = argmax, f(x) — f'(2*) =0

0 Y .
I QKYQ
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Part 2: Theory

CreativeAl: Deep Learning for Graphics

Vector Calculus 101

¢ gutigetiede’
“‘“\‘\0“:,:
>

{‘ ot o%

f(x)

isocontours

2D function graph
@ a2t minimum of function: Vf(X) — 0

SN
NN
N\

AR

N

S~
L LANNANNS

o

' /-
P 727
WL T
————

A

- y \\‘\\-\\
NN

'\\f}'d—c—-q._.
b S

RNSY
=N

\\ 1.;? P S
NN

e NN\

e -

ha N RN ‘...,.‘
———

<
—
x
I
<]

| — |
Q )
3 -

gradient field

49
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Line Fitting

AT (woa:f) + wlaxi)

@ SIGERAPH
ASIA 2018
| QKYQ

N
L(wo,wy) =
i—1
OL(wo, w1) _ i
8w0 i1
OL(wg,w1) N d[z%]? 92" _ i
Owg — 0zt Owy =

8’(1}0

50
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Line Fitting (continued)

OLwo.wn) _ 0Ly (worh + ]|

Bwo awO

=1

i i Qi
= -2 E (y Ty — WLy — wlxlxo)
i=1

2

N N N
OL(wo,w1) iQ i i i
5 =0 Y'TH = wo ToToy + Wi T
wo i=1 i=1 i=1
o oy .
IaKY O

Line Fitting (continued)

N N N

Z yixé = Wy Z :cé:cf) + wq Za:i:c'a
i=1 i=1 i=1

N N N
Z yzsc?L = Wy Z :1;6;1711 + wn Z :1:?’[:1:’1
i=1 i=1 i=1

N i i N i N i
2x2 system l >im1 YT ] _ [ D1 ToTH Dig TOTY [ Wo ]

of equations Zz’:l Yyt Zi:l Toxq Zi:l L1y wh

40



CreativeAl: Deep Learning for Graphics

Part 2: Theory

Line Fitting (continued)

v
Ez’:l y'ry

N i
>im1 L0
YN, i

i=1-t1+1

N g
2%1 ToZo
1 1

Zi:l ToTy

Wo
w1

X'y = X' Xw

1

ﬁ SIGCRAPH
AS|A 2018
I OKY QO

Z
S

53

Code Example

ﬁ SIGERAPH
ASIA 2018
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Iw_est = matmul{inv{matmul{X.tr

import numpy as np

from numpy import array

from numpy import matmul
from numpy.linalg import inv
from numpy.random import rand
from matplotlib import pyplot

# generate data on a line perturbed with some noise

noise_margin= 2

w = rand(2,1) # w[@] is random constant term (offset from origin), w[1] is random linear term (slope)
x = np.linspace(-5,5,28)

y = w[@] + w[1]*x + noise_margin*rand(len(x))

# create the design matrix: the x data, and add a column of ones for the constant term
X = np.column_stack( [np.cnes([len(x), 1]), x.reshape(-1, 1)] )

# These are the normal eguatiuns in matrix form: w = (X" X)*-1 X' y
(), X)), X.tr ()).dot(y) |

# For ridge regression, use regularizer
#weight = 8.81
#w_est = matmul(inv(matmul(X.transpose(),X) + weight*np.identity(2)),X.transpose()).dot(y)

# evaluate the x values in the fitted model to get estimated y values
y_est = w_est[8] + w_est[1]*x

# visualize the fitted model
pyplot.scatter(x, y, color="red')
pyplot.plot(x, y_est, coler='blue’)
pyplot.show()
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Linear Regression (Line/Plane Fitting)

Ty

10fl e epata
| = curve fit

o oy .
I KY O

LS Solution for Regression

Dw) = S WX = (e
=1 1—1_ 61 _
¢2
Liw)=] € ¢ eN | :
N
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Generalized Linear Regression

known nonlinearity

5 Y .
I KY O

1D Example: k-th Degree Polynomial Fitting

350

- - 300 + RawData |
1 [ —— 3rd Order Polynomial Fit '
—— 5th Order Polynomial Fit ‘
250 - ——— 9th Order Polynomial Fit l
200
P(x) = >
. 150
K 100
| (x) _ 50 -
0 "
-1 o] 2 4 6 8 9
X

(W, p(x)) = wo + wiz + ... + wp(x)®
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Generalized Linear Regression

N N
Liw) = Y (-wlg(x )T = 3 (e)?
1=1 =1
] T )T 1T ] [T
y? d(x?) Wo =
) = : : +
v T L | [

(]

o oy .
IaKY O

LS Solution for Linear Regression

)T
y = XW + € o |
Lw)=c¢"¢ (X]\EI)T
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LS Solution for Generalized Linear Regression

y =®w +¢ o |80

L(w)=¢€'e ST

5 SIGERAPH
AS|A 2618

61
IaKY O

import numpy as np
from numpy import array
from numpy import matmul
from numpy.linalg import inv
from numpy.random import rand
from matplotlib import pyplot
35
# generate data on a line perturbed with some noise
noise_margin= 3
M = 2*rand(3,1) # w[@] is random constant term (offset from origin), w[1] is random linear term, w[2] is random quadratic term
x = np.linspace(-5,5,20)
y = w[8] + w[1]*x + w[2]*x**2 + noise_margin*rand(len(x))
2 = np-column_stack( [np.ones([len(x), 1]), x.reshape(-1, 1), (x**2).reshape(-
# These are the normal equations in matrix form: w = (X' X)*-1 X' y
15 w_est = matmul(inv(matmul(X.transpose(),X)),X.transpose()).dot(y)
10 # evaluate the x values in the fitted model to get estimated y values
y_est = w_est[8] + w_est[1]*x + w_est[2]*x**2
5 . # visualize the fitted model
. pyplot.scatter(x, y)
o pyplot.plot(x, y_est, color="red')
-6 -4 -2 0 2 4 8 pyplot .show()
* T 1
-
SIBGRAPH .
ASIA 2018
I QKYQ
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Part 2: Theory

classification

e' regression
—pLa
oNEs
e

Underfitting

Underfitting vs. Overfitting

63

ﬁ SIGERAPH
ASIA 2018
| QKYQ

A flexible model approximates the target function well in the training set

A rigid model’s performance is more predictable in the test set

but the model may not be good even on the training set (“bias”).

Prediction Error

Tuning Model’s Complexity

but can “overtrain” and have poor performance on the test set (“variance”).

High Bias Low Bias
Low Variance High Variance
-l -—

Test Sample

/

Training Sample

Model Complexity

64
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Part 2: Theory

Regularized Linear Regression
€ — y — @W residual vector
L(W) p— e'[ e linear regression: minimize model error

Complexity term: R(W) - HW”% — WTW

(regularizer)
Lw)=€¢e+\w'w

t “data fidelity” I complexity

minimum remains to be determined scalar, remains to be determined

ﬁ SIGCRAPH
AS|A 2018
I DKY QO

66

Least Squares Solution
L(w)=¢€'e
= (y — Xw)' (y - Xw)
=yly — 2y Xw+ w! X! Xw

Condition for minimum:

VL(w")=0
X'y +2XI'Xw* =0
W* — (XTx)—ley

ﬁ SIGERAPH
ASIA 2018
| QKYQ
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Ridge regression: L2-regularized Linear Regression

Lw)=¢e+w'w

=yly — 2y Xw + w! X" Xw + \w!Iw

as before, for linear regression identity matrix

=yly — 2y Xw + w! (XTX -+ /\I) W
Condition for minimum:
VL(w*) =0 1
—2X'y +2(XIX + A)w* =0 Doy,
wh = (XIX )1 X"y ",
APH 68

w13
L]

3
=¥

G

pi=p]
=

-2
il
g

Bias-Variance Tradeoff (function of A)

High Bias t tl Low Bias
Low Variance sweet spot: High Variance

o ————— e -

o]

-

-

&

g

=]

B

;_é / [est Sample

—

[a

/

Training Sample

Low High
Model Complexity
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Part 2: Theory

CreativeAl: Deep Learning for Graphics

Selecting A with Cross-validation

* Cross validation technique

* Exclude part of the training data from parameter estimation

* Use them only to predict the test error

e K-fold cross validation:

* K splits, average K errors

e Use cross-validation for different values of A

* pick value that minimizes cross-validation error

Least glorious, most effective of all methods

Data

L

Training

Test

Test

Test

Test

Test

o oy .
Form of posterior distribution
Bernoulli-type conditional distribution
PY =1 X =x;w) = f(x,w) .
PY=0X=xw)= 1-— f(x,w)
P(Y =y|X =x;w) = f(x,w)"(1 — f(x,w))" ¥

Particular choice of form of f:

1

PY =1]X =x;w) = g(w'x) b

Sigmoidal: gla) = 1+ exp(—a)
—o0 — 0 1
“squashing function”: L
400 — 1
e :
I DKYQ
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Part 2: Theory

Logistic vs Linear Regression

Linear Regression

72

From Two to Many

* How about multi-class classification?

@ SIGERAPH
ASIA 2018
| QKYQ

73
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Part 2: Theory

Multiple Classes & Linear Regression

C classes: one-of-c coding (or one-hot encoding) 4 classes, i-th szabmgle1 isOBn 3rd class:
y = ? ? 3
Matrix notation: y! yl
C
Y = : :[yl‘...|yc where y. = :
Kl | v
Ye
W = [ W1 ] | wWe }
; C
Loss function: T
L(W) = E (Ve — Xw.) (Yo — Xw,)
c=1
Least squares fit (decouples per class): T 1T
r=(XTX) XTy.

74

Linear Regression Masking Problem

Class 1 1 1 Class 2 Class 3
Y =XW
BB X XX % %x2e
; Yy =xw
y? = xw?
/ _ 11 x

One linear discriminant per class: SC(X) = W_ X

Nothing ever gets assigned to class 2!

2D version:

ﬁ SIGERAPH
ASIA 2018
| QKYQ

75
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Part 2: Theory

Multiple classes & Logistic regression

Soft maximum (softmax) of competing classes:

Softmax (outputs)

76

Logistic vs Linear Regression, n>2 classes

Linear regression Logistic regression

6

Logistic regression does not exhibit the masking problem

¢ SIGERAPH

77
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CreativeAl: Deep Learning for Graphics Part 2: Theory

LS Solution (in vector form)
L(w) =¢€€
(y Xw)' (y — Xw)
=yly — 2y Xw+ w! X" Xw
Condition for minimum:
VL(w") =0
X'y + 22X Xw* =
= (X'X)"' X"y

APH e

018

S =r]
=

KN

—pLa
L=y

Gradient of Cross-entropy Loss

N
B Z y'log g(w'x") + (1 — ") log(1 — g(w' x"))

n 1— ;
| 8(’1)/;‘:) _ ; |:yig(w}rx"") 89(8\27:: ) . (1 4) - g(i}vTx'i) _89(8\’;7;X ))
iy e~ = 1@ - 9(@)
- é[yig(wix) 0= )| a1 = gl
== (1= g(w'x) = (1 =y )g(w'x")] i
3 gl VL(w*) =0
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Part 2: Theory

Gradient Descent Minimization

SN
—v ) \\\Q§§§

el L WNN

MO
NSNS
e VNN

N
Tt .'

Vi)

Fact: gradient at any point gives direction of fastest increase

o2
.

I
Q
<5

Q
8
¥

80

NSNS,
SN,

3.
)
S

mization

o

77

“‘@‘e‘%—" /‘/
L usnaes [
' o -~
‘.. - -

v

A

711

R RN NN

Q
—

I
Q
£

V(%)

Q
&
o

Fact: gradient at any point gives direction of fastest increase
Idea: start at a point and move in the direction opposite to the gradient

81

ﬁ SIGERAPH
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Part 2: Theory

CreativeAl: Deep Learning for Graphics

n

6.

Gradient Descent Minimizat

W
17777

11277/

Y r s 9f
&l Vix)=| %
EER dz2
J111Y

Fact: gradient at any point gives direction of fastest increase
Idea: start at a point and move in the direction opposite to the gradient

82

6.
-

Gradient Descent Minimizat

7

1957

11277/ .

yrr s of
&I Vix)=| %
j;:;: Oxo
J11L1Y

Fact: gradient at any point gives direction of fastest increase
Idea: start at a point and move in the direction opposite to the gradient

ﬁimmw
ASIA 2018
| QKYQ
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Part 2: Theory

CreativeAl: Deep Learning for Graphics

Gradient Descent Minimization

iy
/e

y 2P/ ﬂ
@77 Vf(x)= [ %ﬁ]
J 1y N> 0o
41V

J11Y

Fact: gradient at any point gives direction of fastest increase
Idea: start at a point and move in the direction opposite to the gradient

X0

Initialize:
X'i—l—l =X; — OZVf(XZ)

i=0

84

Gradient Descent Minimization

W

b

11277/ .
ERRE 44 of
@7 Vf(x)= [ %
Jiii
4/!!11\

Update: i=1

ﬁ SIGERAPH
ASIA 2018
| QKYQ
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CreativeAl: Deep Learning for Graphics

Gradient Descent Minimization

U

NS E ST/

O ~~AtT l'////

SRS .::::z::;Iz.f«:-’% :

=50 1 ///.r*;‘.:':':’ Vf(x) =

7//'7{111‘\”‘ f()
// YAVERERIN
/???{/!111&

.

QX

[~

Q

[ ¥

86

Gradient Descent Minimization

WU

NSRS A

X ~~AtT l'////

‘:ﬁ_@‘n‘\“ﬁ‘ﬁf‘ ,:::::;ﬁﬁf; -

R A v
// YRR
G797

Update:

SIGGRAPH

ASIA 2018
I OKYQ

¢

Q;%Q;
HMH,

Q
&
o

| E— |
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CreativeAl: Deep Learning for Graphics

Gradient Descent Minimization

U

AANRE ,4;4%%
—sxtt ? 277/

Tl e
5/;;];;.:::: Vf(x)_[
73N

.

QX

[~

Q

8
¥

88

Gradient Descent Minimization

iy

17777

v g 17777

wm\?““:‘i‘;“:‘i‘:“% i’ ﬁ‘j}"f 5 B

“‘““ et . A
4.0 - - Vf(X)

AR

JI11Y

Update:

SIGGRAPH

ASIA 2018
I OKYQ

¢

O
gl

Q
&
o

| E— |
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CreativeAl: Deep Learning for Graphics Part 2: Theory

Gradient Descent Minimization

Initialize: X
Update: Xit1 = X; — Osz(Xi)

We can always make it converge for a convex function. AR\ // /)
1) . —
convex @\ non-convex . o
glz) * \ |
Fla) |- W \ |

tf(z1) + (1= t) f(z2)
fltzy + (1 —t)z2)

f=1)

T try +(1—t)z, T2 g -5 o 5 10

5 Y .
I OKY O

XOR Problem y = f(z1,z2)

EEEEE vz
0 0 0 \Q ®
0 1 1
1 0 1
1 1 0

I

y = f(wo, w1, ws) = H(wy + wiz1 + waxs)

o Y .
IO KY O
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CreativeAl: Deep Learning for Graphics Part 2: Theory

XOR Problem ¥ = f(z1,22) = f(g91(21,72), g2(21,22))
BSOS T T 2 1 Zm oy

0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1
1 0 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0
T2 g 22
@] @) @
I A 5

3
=¥
=032
=

5 SIGGRAPH
ﬁ 1A 2618 92
I OKY O

I
|
I

XOR Problem

Y= f(z1,zz) — f(91($17$2),92($1,$2))
= f (H(wl,ml,mg),?{(w2,a:l,:,r:g))
=|H(w?>,H (g1 (W, zq, mg))} H(ga(W?, z1,23))

T2 To Z9

Iy 1 2]

[ Yk .
IO KY O
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XOR Problem

Y= f(zlaz2) = f(91(3717372) 92(371:372))
- f(H W 7$17$2) H(W2,$1,.’I72))

=|H(w :H(gl(Wl,ﬂ?l,$2))|>H(92(W275U17$2))

(=) @\

: u13 94

=

1L

S|
==

N

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/ .=|:I.'
-

= P
¢ %E@%E SIGGRAPH Asia Course Creati veAl: Deep Learning for Graphics
IO KY O
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SIGGRAPH

ASIA 2018
TOKYO

CreativeAl: Deep Learning for Graphics

Neural Network Basics

Niloy Mitra lasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook ucCL TU Munich UCL

Artificial Intelligence Research

Technische Universitat Manchen

Niloy lasonas Paul Nils Tobias
" Introduction X X X X X
(&)
FaliT) Theory X X
S ©
em NN Basics X X
-
c Alternatives to Direct Supervision X
- 15 min. break
g Feature Visualization
:'E_ Image Domains X
S}
) 3D Domains X
T
& Motion and Physics X X
3 SICERAPH SIGGRAPH Asia Course CreativeAl: Deep Learning for >
/‘\S(_[‘,f\(2xvalg Graphics
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Part 3: Neural Network Basics

Introduction to Neural Networks

Goal: Learn a Parametric Function

fo : X—Y

@ : function parameters, X :source domain
these are learned

Examples:

Image Classification:
w X h X ¢ :image dimensions

Image Synthesis: fo : R — RwWXhxe

Y :target domain

fo : RWXM>e 500 1,... k—1}

k1 class count

n. : latent variable count w X h x ¢ :image dimensions
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Machine Learning 101: Linear Classifier

° fo : R™ — {0,1}

1 ifwr+b>0
0 ifwr4+b<0

0 = {w, b}

® Each data point has a class label:

i 1 (')
y‘{o (o)

Nonlinear decision boundaries

X X!
. g: X —X * .

folz) = {1 i w g(x) +5>0

0 ifwglz)+b<O0
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Building A Complicated Function

Given a library of simple functions

A \ Compose into a

\ COS

compllcated function
\exp /

Building A Complicated Function

Given a Iibrary of simple functions

Idea 1: Linear Combinations
sin Compose into a )
* Boosting

\ cos( « Kernels

compllcated functlon
\:xp /
E al g’L
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Building A Complicated Function

Given a library of simple functions

-

/. \ Idea 2: Compositions
y: sin x) . Compose into a o

‘: log (x) \‘ — * Decision Trees

|

cos(x \ _ .= Deep Learnin
" (x) X / complicated function P g

f(z) = g1(g2(- - (gn(x)...))

~

Building A Complicated Function

Given a I|brary of S|mple functions

/ Idea 2: Compositions
sin ( Compose into a
f log (x) » Decision Trees
| | —

\ cos( * Grammar models
compllcated function

» Deep Learning
\ exp

(z) = log(cos(exp(sin”(z))))

| sin(x) ] »° |elexp(x) |o] cos(x) | log(x)
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‘Neuron’: Cascade of Linear and Nonlinear Function

—_—
axon from a neuron

e

synapse
WoZo

Sigmoidal activation

1

cell body

Zwl—:z:i +b

b (Z wiz; + b)
output axon

activation ‘
function

Activation functions

—— function
—— derivative

—

05

Step (“perceptron”) Sigmoidal (“logistic’) Hyperbolic tangent Rectified Linear Unit

g(a) = { 0 a<0 (a) 1 (a) = exp(a) — exp(—a)

Image Credit: Olivier Grisel and Charles Ollion

¢

2 o 2 ? ° 2

(RELU)
g(a) = max(0, a)

1 a>0 Ty exp(—a) exp(a) + exp(—a)

SIEGRARH

ASIA 2018
TOKYO
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Part 3: Neural Network Basics

Perceptrons (60’s)

Apple Orange

Fixed
mapping

% SIGERARH
S @%’?&%\?ﬁ&inton

XOR: perceptron killer

output units e.g.

class labels Io
@) @
non-adaptive
hand-coded
features
input units .
e.g. pixels -’ >
g.p T1

U =9 Z Wk,i g
keEN (i)

ﬁsmmww
S @a_ln’%;:?(gﬁ-linton

Multi-Layer Perceptrons (~1985)

meN (k)
outputs
~ hidden
« layers

Z Wy ke Uyn, + bk) + bi)

input vector
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CreativeAl: Deep Learning for Graphics

Reminder: Non-linear decision boundaries

This is what the hidden layers

X should be doing! X"
. g: X — X ° .
* 1 1nga: +b>0
fo(z) = . ()
0 ifwglz)+b<0

Nonlinear mapping R? — R?

Evolution of isocontours as parameters change

1

y1 = g(w1,171 + w1 222 + w1 3)

Y2 = g(wa 121 + wo 22 + W 3)

051

05F

y = 9(Wx)

Ey o5 o 05 T http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

69
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From non-separable to linearly separable

Non-linearly Data mapped to Decision function
separable data learned space
/
\ | /
, I~ N -
ol TS V4
S 4
7/
/
a5 ” /
\ /

EY 05 v [5 1

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linearizing a 2D classification task (4 hidden layers)
\
0sh Pl N \
pad AN
/
7/
ol / p 7
( /
/
/
\\ //
05} \ N 7
\
s o5 > o5 T http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
[ Y,
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Linearization: may need higher dimensions

71



Part 3: Neural Network Basics

CreativeAl: Deep Learning for Graphics

Linearization: may need higher dimensions

-15

-0.5

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Hidden Layers: intuitively, what do they do?

Intuition: learn “dictionary” for objects

“Distributed representation”:
represent (and classify) objects by mixing & mashing reusable parts

00100001001 10010...] tuckfeature
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Deep Learning = Hierarchical Compositionality
— — —> | —“Ear”
& | .

Low-Level Mid-Level | |High-Level Trainable | “car’
—> — — . —
Feature Feature Feature Classifier
4 A |3
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Part 3: Neural Network Basics

MLP Demo: playground.tensorflow.org

5 Epoch
. 000,000

Ratio of training to
test data: 50%

Noise: 0

Batch size: 10

—e

REGENERATE

Leaming rate Activation Regularization Regularization rate Problem type
- Tann - None - 0 - Classification -

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties do

you want to use? youwant to feed in?

Test loss 0.501

0
m @ Y — Training loss 0.518

4 neurons 2 neurons

Colors shows
" | —

data, neuron and
weight values 1 U !

[ Showtestdata [ Discretize output

Training and Optimization
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Neural Network Training: Old & New Tricks

Old:

Back-propagation algorithm

Stochastic Gradient Descent, Momentum, “weight decay”
New: (last 5-6 years)

Dropout

RelUs

Batch Normalization
Residual Networks

Training Goal

Our network implements a parametric function:
fo: X—Y y = f(x;0)

During training, we search for parameters that minimize a loss:

rnein L(0)
Example: L2 regression loss given target (z*, ") pairs :

Lg(0) = Z I1f(z*;6) — o'l

75



CreativeAl: Deep Learning for Graphics Part 3: Neural Network Basics

Gradient Descent Minimization Method

Initialize: 6o
Update: 011 = 0; —aV f(6;)

We can always make it converge for a convex function

121

flzz)

if(J.'ﬂi’(l*f)f(Ig)
fltz + (1 —t)z2)

)
N \ /
_ flz1) o /
¢ SIEBRAPH
ASIA 2613 016 -5 [ 5
TOKYO T toy + (1 —t)aa T2

Multiple Local Minima, based on initialization

Empirically all are almost equally good
Central research topic: how can this happen?

ﬁﬁgﬁ@@g On to the gradients!
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All you need is gradients

Forward

X

———

Backward

oL
0X

Chain Rule

I
dL dL

dx

dy

Given y(x) and dL/dy,
What is dL/dx ? -
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Chain Rule

I
dL dL

dx

dy

Given y(x) and dL/a’y, dL dlL dy

What is dL/dx ? Cdx T dy dx

‘Another Brick in the Wall’

I
dL dL

dx

dy

Given y(x) and dL/dy, dL _ dL dy

What is dL/dx ? dx ~ dy dx

¢SIEEHAPH i! li v
/‘\Slﬂ'\Q 13

78
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Part 3: Neural Network Basics

Toy example: single sigmoidal unit

1

f(w7m) - 1 + eXp(_(woxO + w11 + wZ))

Composition of differentiable blocks:

fa)=2 = fa)=—p
fc(ZL‘):C—FZB — f’(:l:):l

fw)=e o fla)=e

fuw)=ax > fla)=a

Computation graph & automatic differentiation
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Multi-Layer Perceptrons

Ui =9

Z Wk,ig

keN (4)

Z Wy kU + b | + b;

meN (k)
outputs
~ hidden
« layers

y input vector

Multi-Layer Perceptrons

Compare outputs
with correct answer
to get error signal

outputs

hidden
layers

Back-propagate
error signal to get
derivatives for
learning
Yy
| eS|
< input vector
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Back-propagation Algorithm

Training Goal

Our network implements a parametric function:
Jo: X — Y g = f(x;0)

During training, we search for parameters that minimize a loss:
mein L(0)

Example: L2 regression loss given target (a:i, y“) pairs :

Lg(0) = Z I1f(z*;6) — o'l
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A Neural Network for Multi-way Classification
xnl@an%znﬁbnlyn

ZnH

@
—_— Z
Parameters: 0 {‘ 4 : W} nl
ﬁSIEEHAIJH Hidden layer
ASIA 2618
IOKYO

A Neural Network in Forward Mode pp

ﬁsmmww Hidden layer
ASIA 2618
D KT 0
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A Neural Network in Forward Mode pp

1

2=
" T+ ep(—ap)

ﬁsmmmm{ Hidden layer
J"\SV\ 2\?18

A Neural Network in Forward Mode pp

ﬁsmmmw Hidden layer
J"\SV\ 2?18
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A Neural Network in Forward Mode pp

Hidden layer

Objective for linear regression
h(b) =b
ZnH
' y=~h(b) y
Tnp () (D UnC ¢y [ O ]
Tni . . Unk (— 1
Tn1 . . Yn1 M O
Outputs -
3 Ground
C truth
Znl ~ -
1(3,5) =Y (ye—e)
[ Y e=1
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Objective for multi-class classification

Softmax unit g, = exp(br)

ZnH

y = h(b)

Outputs

c=1

25:1 exp(be)

Ground
C truth
1 “ -
! Uy,y) = Z Yelog(¥e) “cross-entropy’ loss

0

Neural network in forward mode: recap

Network output:

Loss (prediction error):

oy,y)
aVi

What we need to compute for gradient descent:

ol(y,y)

6Wj
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A Neural Network in Backward Mode <4

A Neural Network in Backward Mode <<

Hidden layer

This we want 21

ol
8wjk

= ?
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A Neural Network in Backward Mode <4

Hidden layer

This we want  zp;

ol

% SIEGRARH
[~ Rt 9z

= ?

Linear Layer in Forward Mode: All For One

H

bm - E ZhWh,m

h=1

2 ®
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Linear Layer in Backward Mode: One From All

Linear Layer Parameters in Backward: 1-to-1

H
bm - Z ZhWh,m
h=1
° ° oL
9 S ab,,
Zh :/’
o
e o
oL OL Ob.. OL
Ownm ; Ob,  Owpm Oy "
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A Neural Network in Backward Mode <4

Hidden layer

This we want his we haV‘T‘his we computed

ol m ol

A Neural Network in Backward Mode <<

Hidden layer

This we want Zhis we haV‘?‘his we computed

ol - ol
A o) R
G S A
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A Neural Network in Backward Mode <4

Hidden layer

A Neural Network in Backward Mode <<

Hidden layer
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Neural Network Training: Old & New Tricks

Old:

Back-propagation algorithm

Stochastic Gradient Descent, Momentum, “weight decay”
New: (last 5-6 years)

Dropout

RelUs

Batch Normalization

Training Objective for N training samples

N
L(W) = %Zl(y' ') +ZAZZ Wi m)?
1= k,m

Per-sample loss L
Per-layer regularization

Gradientdescent: W11 = Wy — eVwL(W,)

(I,k,m) element of gradient vector:

N i "z)l
% 3 O L on W,

aw! l
8Wk7m — (9Wk,m
Back-prop for|
i-th example

SIEEHAJ
SIA

¢ If N=10% , we will need to run back-prop 108 times to update W once!
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Stochastic Gradient Descent (SGD)

Gradient: Batch: [1..N]
— § ( VVl
a l == 2)\[ k,m

Noisy (‘Stochastic’) Gradient: Minibatch: B elements b(1), b(2),..., b(B): sampled from [1,N]

oL 1 = Ol(y*®, y0))
— ’ + 20, WL
oW, . B Z awl !

Epoch: N samples, N/B batches

¢SIEEHAFH
ASIA
KY O

Regularization in SGD: Weight Decay

Gradient: Batch: [1..N]

N
a Z "'L
> o) cowl,,

6W oW

kam =1

Noisy (‘Stochastic’) Gradient: Minibatch: B elements b(1), b(2),..., b(B): sampled from [1,N]

oL Ol(y*®, 50()) l
IWL __Z awl 124 W

Back-prop on minibatch “Weight decay”

2

Epoch: N samples, N/B batches

&SIEEHAFH
ASIA 21
ITOKY O
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Learning rate

low learning rate

high learning rate

\

epoch

 J

good learning rate

Wi =W, LYwL(Wy)

Gradient Descent

(VAVAVAV;
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(S)GD with adaptable stepsize

fiw) Sfiw) fiw)
w* w w* w w* w
Too small: converge Too big: overshoot and Reduce size over time
very slowly even diverge
C
eg. €t = Z

(S)GD with momentum

8 '
} A\ :

Main idea: retain long-term trend of updates, drop oscillations
(S)GD Wi =W, — ¢VwL(W)

(S)GD + momentum
Vt_|_1 = ,LLVt + (1 — ,U)VWL(Wt)
ﬁsmgwg W1 =W, — Vi
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Step-size Selection & Optimizers: research problem

* Nesterov’s Accelerated Gradient (NA "

° R_prop 1 — AdaGrad
] ai-SGD
* AdaGrad L, - ASGD
(I 3 - Prox-SAG
(I . - Prox-SVRG
* RMSProp LN, . 86D
* AdaDelta \
X!
e Adam
® ... N s _
.. \_ ,.' N
v N

Code example

Multi-layer perceptron classification
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Neural Network Training: Old & New Tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”

New: (last 5-6 years)
Dropout

RelLUs
Batch Normalization

Linearization: may need higher dimensions

a:VX Zni b:WZ

=1.5
-1.0

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Reminder: Overfitting, in images
just right —_
Underfitting oy Overfitting
&

Previously: 12 Regularization

> (Wi

k.m
Per-layer regularization

N
LW) =+ DUy, 5) + 30
1=1 l

Per-sample loss
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Dropout

a) Standard Neural Net (b) After applying dropout.

Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers
But: they should all do the same job

Dropout block

@
R ‘
@)

(

a) Standard network

(b) Dropout network

Figure 3: Comparison of the basic operations of a standard and dropout network.

l 5
rj( )~ Bernoulli (p),
D Gyl ) 7O = O xy®,
I+1 I+1)~1 I+1
yﬂ(l+l) _ f(zi(m)), 21( ) — wz( )y +bz(' ),
1+1 I+1
) g = £
[ Y
retadi ‘Feature noising’
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1.35
#—4 Monte-Carlo Model Averaging
F  Approximate averaging by weight scaling
1300
1250
®
8
T
g1200
H
=3
5
&
v]
g
=

40 &0 an
MNumber of samples used for Monte-Carlo averaging (k)

Present with
probability p
(a) At training time

Always
present
(b) At test time

Test time: Deterministic Approximation

pwW

Dropout Performance

Z.EJa
2af Without dropout
® {
SN A T
& With dropout
" N Figure 4:
A Al
)
0
0 2(.\0“000 400‘000 600‘000 8(.\0“000 1000000

Number of weight updates

Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.
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Neural Network Training: Old & New Tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”

New: (last 5-6 years)
Dropout
RelLUs

Batch Normalization

‘Neuron’: Cascade of Linear and Nonlinear Function

o Wo
synapse
WoZo

—_—e
axon from a neuron

cell body

Zwlzz +b

output axon
activation
function

Sigmoidal (“|‘19i5ti°”) Rectified Linear Unit (RELU)

9(a) g(a) = max(0,a)

1+ exp(—a)
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Reminder: a network in backward mode

ZnH 2k

@ F 2ot gta)

1
1+ exp(—ayg)

Outputs
scaling: <1 (actually <0.25)

Vanishing Gradients Problem

Gradient signal
from above

ol ol 0z,
By~ 2= 2y o, =

Do this 10 times: updates in the first layers get minimal

Top layer knows what to do, lower layers “don’t get it”

Sigmoidal Unit: Signal is not getting through!

(@ scaling: <1 (actually <0.25)

0
@ F a0 — (e

Sigmoid s(z)
Derivative s'(z) ——
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Vanishing Gradients Problem: ReLU Solves It

Gradient signal Scalina: {01
from above o 9:{0.1}
ol

8ak Zazm da, |92 (ax)

Neural Network Training: Old & New Tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”

New: (last 5-6 years)
Dropout
RelLUs

Batch Normalization
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External Covariate Shift: your input changes

10 am 2pm 7pm

“Whitening”: Set Mean =0, Variance = 1

Photometric transformation: [ >al+b

* Make each patch have zero mean:
%ﬂ_ 1

ry

Original Pateh and Intensity Values

Z(w,y)=Ia,y)—p
. * Then make it have unit variance:
1

Brightness Decreasec

2 __
TN
% 7y
_ Zlx,y)
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Internal Covariate Shift

Neural network activations during training: moving target

time = 1
} time =N
layer i

time = 1

time =N
% SIGERARH
¢{\%A<2\?18

Batch Normalization
Whiten-as-you-go: e L . P

« Normalize the activations

in each layer within a mini-
batch.

* |Learn the mean and
variance (v, ) of each
layer as parameters

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
S loffe and C Szegedy (2015)

=1
e ) . )
ob e = 3 (@ — pa)? /f mini-batch variance
=1

T — pg
\.-‘ag +e

¥i ¢ 75+ 8= BN, a(z)

oA

! normalize

/ scale and shift

2
f A TSR [
Al

0\1[ e [

™,

| e [ ——

(b) Without BN (¢) With BN
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Batch Normalization: used in all current systems

» Multi-layer CNN's train
faster with fewer data
samples (15x).

* Employ faster learning
rates and less network
regularizations. .

precision @ 1

number of mini-batches

* Achieves state of the art
results on ImageNet.

Convolutional Neural Networks
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Fully-connected Layer

Example: 200x200 image
40K hidden units
q ~2B parameters!!!

- Spatial correlation is local
- Waste of resources
ﬁSIEEWH - we have not enough training samples anyway..
A i1

200x200 image

40K hidden units

Filter size: 10x10
4M parameters

> ‘ xample:

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).
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Locally-connected Layer

. Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

Share the same parameters across

Wi different locations (assuming input is
" stationary):
\ onvolutions with learned kernels
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Convolutional Layer

AN N

#
o5
2
g

Convolutional Layer
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Convolutional Layer

Convolutional Layer
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Convolutional Layer

TR LS NN\

110



Part 3: Neural Network Basics

Convolutional Layer

"“4’47

ﬁ SIEBRAPH
ASIA 2613
ITOKY O

Convolutional Layer

@ SICLRARH
ASIA 2618
ITOKY O

CreativeAl: Deep Learning for Graphics
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Convolutional Layer

:
0
55

,!1‘\\‘\

Convolutional Layer

’
4
:
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Convolutional Layer

ﬁsmmww
ASIA 2613
ITOKY O

Convolutional Layer

ﬁ SICLRARH
ASIA 2618
ITOKY O

CreativeAl: Deep Learning for Graphics
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ing for Graphics

CreativeAl: Deep Learn

Convolutional Layer

ﬁsmmww
ASIA 2613
ITOKY O

Convolutional Layer

ﬁ SICLRARH
ASIA 2618
ITOKY O
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ing for Graphics

CreativeAl: Deep Learn

Convolutional Layer

ﬁsmmww
ASIA 2613
ITOKY O

Convolutional Layer

ﬁ SICLRARH
ASIA 2618
ITOKY O
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Fully-connected layer
#of parameters: K2
[ Y1 ] [ w11 W12 W13 W14 w1, K T
Y2 W21 W22 W23 W24 W2, K T2
Ys w31 W32 W33 W34 w3, K x3
Y4 Wqa1 Wa2 W43 Wh4 W4, K T4
| YK | | WK1 WK2 WK3 WKA4 WK,K TK
ﬁsmmmm{
ASIA 2618
IOKYO
Convolutional layer
#of parameters: size of window
_yl_ [ wy w; we 0 0 1 z1 ]
Y2 0 wy w1 wo 0 To
Y3 0 0 wy w 0 xs3
Ya = 0 0 0 wp 0 T4
| Yk | | 0 0 0 0 wo | | Tk |
@smmww
ASIA 2618
ITOKYO
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Convolutional layer

Code example

Learning an edge filter
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Convolutional layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

Convolutional layer

#input channels

—1
hi' = max ¢ 0, Z Ry wg)
/ jzl/ /
output input feature kernel
feature map map

J Conv.
layer

n

I

118



CreativeAl: Deep Learning for Graphics

Part 3: Neural Network Basics

Convolutional layer

hi’ = max < 0,

/

output
feature map

#input channels

n—1 n
hj * W,

>
~//

input feature kernel

map

n-1
h

J

Convolutional layer

hi' = max ¢ 0,

/

output
feature map

n-1
hi

#input channels

n—1
hi ™" s w;

>
~/ /

input feature kernel

map

n

J
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Pooling layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

¢

Pooling layer

By “pooling” (e.g., taking max) filter
responses at different locations we gain
robustness to the exact spatial location
of features.

qa
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Pooling layer: receptive field size

hn hn+l
Pool.
layer

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

hn—l

Conv.
layer

FSRELS T
";\\\\\

Pooling layer: receptive field size

hn—l h" hn +1
Conv. Pool.
layer layer

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

AP

L]

&'
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Modern Architectures
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CNNs, late 1980’s: LeNet

C3:f. maps 16@10x10
S4:f. maps 16@5x5

I C5: layer pg: jayer OUTPUT
I— l'r 120 PR

CL: feature maps

INPUT 6@28x28

32x32

S2: f. maps
6@14x14

r

‘ Full Gaussian

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998

&SIEEHI\PH
ASIA 2613
ITOKY O

Gradient-based learning applied to document recognition.

https://www.youtube.com/watch?v=FwFduRA_L6Q

What happened in between?

® artificial intelligence ® deep learning gpu
Search term Search term Search term
Worldwide ~ 2004 - present ¥ All categories ¥ Web Search ¥

Interest over time @

"

S,

WX

® big data
Search term

® data science
Search term

_;—'-'—""’H

@ SICCRAPH
ASIA 2613
va

10K

deep learning = neural networks (+ big data + GPUs)

+ a few more recent tricks!
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CNNs, 2012

>
192 128 204 zo3g \dense
13
E NN
3} et ——
: 13 dense idense|
1000
192 128 Max . L
Max 128 Max pooling 2048
pooling pooling

AlexNet

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton:
ImageNet classification with deep convolutional neural
networks. Commun. ACM 60(6): 84-90 (2017)

CNNs, 2014: VGG

224 x 224 X3 224 x224 x 64

112x]112x 128

6 56 ¢ 266
ft 28 % 28 % 512 x7x512

i j‘xlix-dz l 1x1x4006 1x1x1000

] softmax

Karen Simonyan, Andrew Zisserman (=Visual Geometry Group)
Very Deep Convolutional Networks for Large-Scale Image Recognition,
arxiv, 2014.
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CNNs, 2014: GooglLeNet

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
Going Deeper with Convolutions, CVPR 2015

J|{E
-

ResNet

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,
Deep Residual Learning for Image Recognition

CVPR 2016
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The Deeper, the Better

* Deeper networks can cover more complex problems
* Increasingly large receptive field size & rich patterns

Revolution of Depth

152 layers
A
\
\
v
A
A
A
. .
22 layers 19 Iayars
B
v 6.7

3.57 Slayars ‘ 8 layers | sha\lorw

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Going Deeper

* From 2 to 10: 2010-2012
* RelUs
* Dropout

Revolution of Depth 2
152 layers

22 \ayers 19 Iayers
v

v 67 7.3

3.57 Slayem ‘ 8 layers | [ shallow

i 1ate wa

ILSVRC'IS  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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Going Deeper

* From 10 to 20: 2015
* Batch Normalization

Revolution of Depth 22

152 layers
A
\
\
K 16.4
A
\
v 11 7
22 \ayers 19 layers
N 6.7 73

357 I‘ Elavars \ayers | shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Going Deeper

* From 20 to 100/1000
* Residual networks

Revolution of Depth

152 layers
A
\
\
1y
A}
\
\
\,
22 \ayers 19 layers
67 7 3

i I_ o Elavem ‘ 8 layers | shallow

ILSVRC'IS  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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Plain network: deeper is not necessarily better

* Plain nets: stacking 3x3 conv layers
* 56-layer net has higher training error and test error than 20-layer net

CIFAR-10
train error (%) test error (%)
3 2
| 56-layer
56-layer
20-layer
20-layer

y s b 3
iter. (led) iter. (le)

Residual Network

* Naive solution

* If extra layers are an identity mapping,
then training errors can not increase
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Residual Modelling: Basic Idea in Image Processing

* Goal: estimate update between an original image and a changed
image

Preserving base information

Some — residual
Network

can treat
perturbation

Residual Network

* Plain block
* Difficult to make identity mapping
because of multiple non-linear
layers X

weight layer

any two
stacked layers

weight layer

H(x)
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Residual Network

* Residual block
* If identity were optimal, easy to set
weights as 0

* If optimal mapping is closer to identity,
easier to find small fluctuations

weight layer

weight layer

Hx)=F(x)+x @®

F(x) identity

Appropriate for treating perturbation as x

keeping a base information

Residual Network: deeper is better

* Deeper ResNets have lower training error

ResNet-18 T A A
= ResNet-34 34-layer
200 10 20 30 40 50
iter. (led)

134
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CIFAR-10 plain nets

Residual Network: deeper is better

CIFAR-10 ResNets

Recently proposed, better performance/parameter ratio

27
—a— RosNets
Reshet-34 | —&— DenseNets-BC||

5

validation eror (%)
BB

B

21 2

1
3 4 5 05 075 1 125 15 175 2z 225 25
‘#parameters 0 #hops. 100

(i FlesMer-20
56-layer —zee
44-ayer —Reve
: . 32-layer 20-layer
g’ 20-layer “\ 32-layer
. SN ( 44-layer
gz : ; 56-layer
et solid: test 110-layer
o:;Lmisé 3 B + dashed: train s e
iter. (led)
ﬁsmmmm{
ASIA 2618
IOKYO
CNNs, 2017: DenseNet
Densely Connected Convolutional Networks, CVPR 2017
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
Input
Prediction
8 Dense Block 1 gl |o Dense Block 2 gl |» Dense Block 3 -
g . ) - g ° - I
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Image-to-Image

Image-to-image

* So far we mapped an image image to a number or label

* In graphics, output often is “richer”:
* Animage
* Avolume
* A 3D mesh
* Architectures
* Encoder-Decoder
* Skip connections
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Fully-convolutional Neural Networks
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Fully-convolutional Neural Networks

\ - F s\
# FCNN # "
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Fully-convolutional Neural Networks

Fast (shared convolutions)
Simple (dense)

\ 32-fold decimation
\ - 224x224 to 7x7

= FCNN ) ==

Fast (shared convolutions)
Simple (dense)
Low resolution

Fully Convolutional Neural Networks in Practice
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Receptive field arithmetic

https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

ﬁ SIEBRAPH
ASIA 2613
ITOKY O

Atrous convolution

downsamplex 2  convolve ‘implant’ in image coordinates

B
= -

S. Mallat, An introduction to wavelets, 1989 ~
DeeplLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
!"L.ﬁﬂﬁ?\ﬁweh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy, Alan L. Yuille
ASIA 2018
1OKY O
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Atrous convolution = Dilated Convolution

o[ [o] |e
(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F is produced from Fy by a 1-dilated convolution; each element in F
has a receptive field of 3x 3. (b) F» is produced from F} by a 2-dilated convolution; each element
in Fy has a receptive field of 7x 7. (c) Fj is produced from F5 by a 4-dilated convolution; each
element in F3 has a receptive field of 15x 15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

F. Yu, V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016
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Encoder-decoder

g>D 1]
%>D LI
E>mm

Space

N

aoeds

L] DD<E
ot
"n

Features

Interpretation

* Turns image into vector

* Turns code back into image

* This vector is a very compact and abstract “code”
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Encoder-decoder

[ Up-convolution ‘ HxW

XE
2

e

////"

Learning to simplify. Simo-Serra et al. 2016

Up-sampling

* We saw
* ... how to keep resolution
* ... how to reduce it with pooling

* But how to increase it again?

* Options
* Interpolation
* Padding (insert zeros)
* Transpose convolutions
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Encoder-decoder + Skip connections

e 15t: Reduce resolutions as before
» 2nd: |ncrease resolution

* Transposed convolutions image [ofe NN R
tile HE |

% map

\r

128 128
256 128
¥ s 26 512 256 I

:Itl’ul :]»Itl = conv 3x3, ReLU

& E :' I . ,.,7 t S 8 copy and crop
»I ‘. ,[:_-.i.- ¥ max pool 2x2
3 '::- =y oo 45 B 4 up-conv 2x2

\-f—-;— = conv 1x1

U-Net: Convolutional Networks for Biomedical Image Segmentatio. Ronneberger et al. 2015

Encoder-decoder with skip connections

Skip link

[]

[]

[]

[]

[]
A
[

[]
aoeds

Space

Features
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Interpretation

* Turns image into vector
* Turns vector back into image
* At every step of increasing the resolution, check back with the input to
preserve details
* Familiar trick to graphics people
* (Haar) wavelet

* Residual coding
* Pyramidal schemes (Laplacian pyramid, etc.)

Deep Learning Frameworks
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Main frameworks

¥ TensorFlow Keras

(Python, C++, Java) (Python, backends support other languages)
PYTSRCH Caffe
(Python) (C++, Python, Matlab)

Currently less frequently used

++ ¥ Microsoft i }
cix theano O Caffe2 CNTK o\ @@xnet -
(Python) (Python) (Python, C++) (Python, (Matlab) (Python, Java, (Python, C++,

C++, CH) Scala) and others)

Popularity

Google Trends for search terms: “[name] github”

L APNLPANANGIAAZPLIEGARL, — S tenorion

Keras
z —— PYTHRCH

—— Caffe

Google Trends for search terms: “[name] tutoria
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Typical Training Steps

for i = 1 .. max_iterations
input, ground_truth = load_minibatch(data, i)
output = network_evaluate(input, parameters)

loss = compute_loss(output, ground_truth)

gradients = network_backpropagate(loss, parameters)

parameters = optimizer_ step(parameters, gradients)

Tensors
* Frameworks typically represent data as tensors
* Examples:
4D input data:BxCxHx W 4D convolution kernel: OC x IC x KH x KW

4

/S

: spatial height H fffij[ffjj EffjjgkernelhdghtKH
" kernel width KW
H PR
o~ input channels IC
" spatial width W
P d
feature channels C output channels OC
batches B
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What Does a Deep Learning Framework Do?

* Tensor math

* Common network operations/layers

* Gradients of common operations

* Backpropagation

* Optimizers

* GPU implementations of the above

* usually: data loading, network parameter saving/loading
* sometimes: distributed computing

Automatic Differentiation & the Computation Graph

forward pass backward pass
input
oh ‘ d loss
—— (%
welght —=(* dweight 9 loss
parameters = (weight, bias) ‘01 9 1loss I ER)
bias=>(+ .
output = g(weight * input + bias) dbias 01loss
¥ 02
d o,
loss = (output - ground_truth)~2 Y Y d loss
ground_truth, | output 4 Foutput
gradients = backpropagate(loss, parameters) 2 . o f dloss
\‘ 3 d 03
A N
Since loss is a scalar, the gradients ‘ 1
loss loss

are the same size as the parameters
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Automatic Differentiation & the Computation Graph

‘ inputs

parameters
#
‘ outputs
outputs = forward(inputs, parameters)

d loss
dloss d inputs
@ parameters parameters f
d loss
2 outputs outputs
aloss aloss _ aloss
ainputs ° aparameters backward (a outputs)

Static vs Dynamic Computation Graphs

* Static analysis allows optimizations and distributing workload

* Dynamic graphs make data-driven control flow easier

* |In static graphs, the graph is usually defined in a separate ‘language’

* Static graphs have less support for debugging

define once,
evaluate during training

Static

x = Variable()

loss = if _node(x < parameter[@0],
X + parameter[0],
X - parameter[1])

for i = 1 .. max_iterations
x = data()
run(loss)
backpropagate(loss, parameters)

define implicitly by running operations,
a new graph is created in each evaluation

Dynamic
for i = 1 .. max_iterations
x = data()

if x < parameter[0]

loss = x + parameter[0]
else

loss = x - parameter[1]
backpropagate(loss, parameters)
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Tensorflow % Tensor

* Currently the largest community

* Static graphs (dynamic graphs are in development: Eager Execution)

* Good support for deployment

* Good support for distributed computing

* Typically slower than the other three main frameworks on a single GPU

PyTorch PYTSRCH

* Fast growing community
* Dynamic graphs

* Distributed computing is in development (some support is already
available)

* Intuitive code, easy to debug and good for experimenting with less
traditional architectures due to dynamic graphs

* Very Fast

150
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Keras . Keras

* A high-level interface for various backends (Tensorflow, CNTK, Theano)
* Intuitive high-level code

* Focus on optimizing time from idea to code

* Static graphs

Caffe C affe

* Created earlier than Tensorflow, PyTorch or Keras
* Less flexible and less general than the other three frameworks
* Static graphs

* Legacy - to be replaced by Caffe2: focus is on performance and deployment
* Facebook’s platform for Detectron (Mask-RCNN, DensePose, ...)
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Converting Between Frameworks
* Example: develop in one framework, deploy in another
* Currently: a large range of converters, but no clear standard
* Standardized model formats are in development
convertor tensorflow pytorch keras caffe caffe2 CNTK chainer mxnet
model-converters/
tensorflow %/ nn_toolsconvert-to- Mtdﬂﬂll None crosstalk/MMdnn None MMdnn
Hmcnn tensorflow/MMdnn fanteos
pytorch2keras (over Pytorch2keras/ Pytorch2caffe/pytorch-
pytorch Keras) nn-transfer caffe-darknet-convert onniccaffe2 ONNX None None
nn_tools /convert-to-
tensorflow/keras_to_tens MMdnn/
keras orflow/keras to tensorflo nn-transfer MMdnnnn_tools None MMdnn None MMdnn
w/MMdnn
MMdnn/ pytorch. S2Te weight converter/
mxnet/tools/caffe_conver
MMdnn/nn tools/caffe- ~ caffe-darknet. |~ <2hre2keras/nn tools/ crosstalkeaffe/CaffeConve munet/tools/caffe_conver
caffe t low convert/ pytorch- kerascaffe2keras/ CaffeToCaffe2 rterMMdnn None ter/ResNet_caffe2mxnet/
ensor €onvery RYRIC: poop |earning Model Co rerdcnn MMdnn
resnet nverter/MMdnn
caffe2 None ONNX None None - ONNX None None
CNTK MMdnn ONNX MMdnn MMdnn MMdnn ONNX ° None MMdnn
chainer None chainer2pytorch None None None None None
mxnet MMdnn MMdnn MMdnn Mp&‘%ﬂ/ None MMdnn None
ﬁ SIBBRAPH
ASIA 2018
FOKY O

€ ONNX

e Standard format for models

* Native support in development
for Pytorch, Caffe2, Chainer,
CNTK, and MxNet

* Converter in development for
Tensorflow

MMdnn

* Converters

available for
several
frameworks

* Common intermediate

representation, but no clear standard
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Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/
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CreativeAl: Deep Learning for Graphics

Alternatives to Direct Supervision

Niloy Mitra lasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel
UCL UCL/Facebook UCL TU Munich UCL
Artificial Intelligence Research Technische Universitét Minchen
Timetable
Niloy lasonas Paul Nils Tobias
Introduction X X X X X

(%]
= § Theory X X
o
o o .
< 5 NN Basics X X
= c

® Alternatives to Direct Supervision X

15 min. break

E Feature Visualization X

[J] .

< Image Domains X X

[

o 3D Domains X X

o+

g Motion and Physics X X
¢ ?JE.E\HZQ,'::Q SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 2

| OKY O
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Unsupervised Learning

* There is no direct ground truth for the quantity of interest

* Autoencoders
* Variational Autoencoders (VAEs)
* Generative Adversarial Networks (GANSs)

Autoencoders

Goal: Meaningful features that capture the main "=y T84 o B0 I
factors of variation in the dataset et e - QM.- LY R
* These are good for classification, clustering, s
exploration, generation, ... E==%.l‘=:g
i

* We have no ground truth for them

Features A

A
Encoder

Input data | T |

% SIGCRAPH
ASIA 2618
1OKY O Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Autoencoders

Goal: Meaningful features that capture the main
factors of variation
Features that can be used to reconstruct the image

| z |
A

Decoder
L2 Loss function:

Features
(Latent variables) |:Z:| | — ||

T T »REIEY
b uaZ0EH B [ <Pl
R g k€
BT W e o
1o g Lo 3o

Encoder m@’@@ % s
Input data | T ‘ ! Enym-lﬁ
¢ SIGERAPH
1\5{}:‘\(2\?15 Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Autoencoders g

Linear Transformation for Encoder and Decoder
give result close to PCA

Deeper networks give better reconstructions,
since basis can be non-linear

[ w]

. DECOder
T

Original

Autoencoder

PCA

| Encoder

Image Credit: Reducing the Dimensionality of Data with Neural
Networks, . Hinton and Salakhutdinov
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Example: Document Word Prob. - 2D Code

LSA (based on PCA)

Interbank markets

B

S
el

indicators

Autoencoder

Leading economic*

European Community
monetary/economic
P

S~ aae

Disasters and
accidents

h Legal/judicial

e
B

Government
borrowings

Image Credit: Reducing the Dimensionality of Data with
Neural Networks, Hinton and Salakhutdinov

start unsupervised
train autoencoder on many images

| E | ——
A

Decoder
L2 Loss function:
Features [ 2| ooz

(Latent Variables) A r—x
Encoder
Input data | T l

@sn}mwu
ASIA 2418
| OKY D

Example: Semi-Supervised Classification

* Many images, but few ground truth labels

train classification network on labeled images

supervised fine-tuning

Loss function
(Softmax, etc)

Predicted Label @

1 GT Label

Classifier
Features z

A
Encoder

| X |

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Code example

Autoencoder
(autoencoder. ipynb)

Generative Models

« Assumption: the dataset are samples from an unknown distribution Pdata ()
* Goal: create a new sample from pdata(w) that is not in the dataset

{

Generated
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Generative Models

« Assumption: the dataset are samples from an unknown distribution Pdata ()
* Goal: create a new sample from Pdata () that is not in the dataset

Generated

Generative Models

Do (ZE) ~ pdata(x)

Generator with
parameters §)

p(z)

known and
easy to sample from
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Generative Models

How to measure similarity of pg (:13) and pdata(fl?) ?

~ pdata(f’j) 1) Likelihood of data in pg(x)

Generator with

Variational Autoencoders (VAEs)
parameters ()

p(z) 2) Adversarial game:
) . Discriminator distinguishes Vs Generator makes it
nown an jor (.’E) and pdata(I) hard to distinguish

easy to sample from

Generative Adversarial Networks (GANs)

Autoencoders as Generative Models?

| 2 | * A trained decoder transforms some features z
1 to approximate samples from pdata(ﬂf)

Decoder = Generator?
* What happens if we pick a random z?

 We do not know the distribution p(z) of
features that decode to likely samples

random

7 Feature space / latent space

% SIGCRARH . . . .
¢ ASIA 2013 Image Credit: Reducing the Dimensionality of Data with Neural
Poryo Networks, Hinton and Salakhutdinov

160




CreativeAl: Deep Learning for Graphics Part 4: Alternatives to Direct Supervision

Variational Autoencoders (VAEs)

* Pick a parametric distribution p(z) for features

[ mEe) | * The generator maps P(%) to an image
+  Generator with distribution pg(x) (where ) are parameters)

parameters (J
po(z) = /pe(:v\z‘) p(z) dz

* Train the generator to maximize the likelihood
of the data inpg () :

1
max Y logpalo)

xrEdata

Outputting a Distribution

Normal distribution Bernoulli distribution
po(x|z) = N(x;p(2), 5(2)) po(z|z) = Bern(z;r(z))
T —— —
Generator with Generator with
parameters 7 parameters J

sample
sample
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Variational Autoencoders (VAEs):
Naive Sampling (Monte-Carlo)

0" = arg max lo/ xz|2) p(z) dz
gg Z g [ po(z|2) p(z)

xredata

0" ~ arg max Emindata(ﬂi)Ezwp(Z) logpg (I@|Z)
0

* SGD approximates the expected values over (2, ;) samples
* In each training iteration, sample z from p(z) ...
* ...and x; randomly from the dataset, and maximize:

maxlog po(i]2)

¢SIEEIMIJH
ASIA 2618
| OKY O

Variational Autoencoders (VAEs):
Naive Sampling (Monte-Carlo)

Loss function:
— log p (| 2)
| po(|z) |« > | i |
Generator with Random from dataset
parameters J

* In each training iteration, sample = from p(z2) ...

sample

e ...and x; randomly from the dataset

* SGD approximates the expected values over
(z,x;) samples
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Variational Autoencoders (VAEs):
Naive Sampling (Monte-Carlo)

Loss function:
— log po(wi|z)
| plalz) | ———] zi |
% Generator with Random from dataset
parameters (J

* In each training iteration, sample = from p(z2) ...

sample

e ...and x; randomly from the dataset

* SGD approximates the expected values over
(2, x;) samples

* Few (2, ;) pairs have non-zero gradients

2z with non-zero
loss gradient for x;

Variational Autoencoders (VAEs):
The Encoder

Loss function:

—logpo(wilz)  py(x) = /pe(w\Z) p(z) dz

| Po(‘fﬂz) |

Generator with

* During training, another network can guess a
parameters@

N good z for a given x;
< * q¢(2|7;) should be much smaller than p(z)
qy(2|zi)

Encoder with.
parameters ()

sample

* This also gives us the data point x;
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Variational Autoencoders (VAEs):
The Encoder

Loss function:
—logpe(xilz) +KL( q(z]x;) || p(z) )

[ mlgl) ]

Generator with
parameters 6

* Can we still easily sample a new 2?

) z * Need to make sure ¢, (z|z;) approximates p(z)
§< * Regularize with KL-divergence
2 N gg(zlzi) .
Encoder with * Negative loss can be shown to be a lower bound
T parameters ¢ for the likelihood, and equivalent if
] qo(z|z) = po(2|7)

Reparameterization Trick

Example when ¢y (z|@;) = N(z: p(z;), o(z;)):
z=0+p-€,where ¢ ~ N(0,1)

Generator with dp ¢ 0¢ "€

parameters 9

o2 |

g— ................. lgackprop? Backprop

©

? q¢(z|xi) @ |

Q- .
Encoder with g < Encoder with
parameters ¢» N(0,1) parameters ¢
| 5 ‘ Does not depend on ‘ L ‘

parameters ()
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Generating Data

Ev»

JrnnEaEE
§ PARAAE A A AR
L
e
FHEEHEHEHEHEHH

AN NANNNANANNNNSNNNNSNS
VAV LLLLL LW NN~
QAVIANNNEKLLLLHOVVY YN~~~
QAVVUNINMLELLIVVIV e -~~~
QAVVULLINNHVEEWBVIVID W - ——
QO0DOHINHININMAWEBPIIVIY W - ——
QOOOMINMMNMNMODIID D @ - ——
QOODOMMNMMMMMDDDDD D - —
OODMMMIN MMM NMMD DD 0w e e —
QO DWW MMM N0 00 WD DD e e e e —
QOMME MMM N O 00O W e o am m o —
QO MM " 0000 00 oo on o e —
QAN 8800000000 00t oo~ o~ 0~ o
R K o e N N ol
i rorororrrrssoons~
JadddodogorocrrorrrrsaaannN
SdadadddogrrrrrrTIIIINN
SAddddTTrrrrrrFFIITRIRINN
SAdTTTTrrrrrrrIIr2RRNN
EIEE N N NN

4

MNIST

Generator with
parameters 6

- dwes
~ °

9|dwes

Image Credit: Auto-Encoding Variational Bayes, Kingma and Welling

E
(]
H
.
=]
(0]
S

VAE on Faces
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Code example

Variational Autoencoder
(variational autoencoder.ipynb)

Generative Adversarial Networks

. Player 1: generator f’

Scores if discriminator
can’t distinguish output
from real image

, Player 2: discriminator — real/fake
o f Scores if it can distinguish

between real and fake

A A/

from dataset
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Naive Sampling Revisited

Loss function:
— log po(wi|z)
L pels) | «——| i
% Generator with Random from dataset
parameters (J

* Few (z, ;) pairs have non-zero gradients
* This is a problem of the maximum likelihood

* Use a different loss: Train a discriminator
network to measure similarity Po(2) & paata(2)

2z with non-zero
loss gradient for x;

Why Adversarial?

* If discriminator approximates Pdata(x) :

X
3
[N
=
—

=

a

* z*at maximum of Pdata() has lowest loss

i discriminator
with

parameterst) » Optimal Py () has single mode at 2* small variance

|

(G : generator
with parameters ¢

< Pdata () po(x)
*

¢ fs\lsﬂl 201 Image Credit: How (not) to Train your Generative Model: Scheduled
IOKYO Sampling, Likelihood, Adversary?, Ferenc Huszar

2| —>

DQP ~ pdata(‘%)

sample
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Why Adversarial?

* For GANs, the discriminator instead approximates:
— pdata(l') pdata (:E)

"~ Paata(®) + po(@)

T D, discriminator pdata(w) + Po (33)

with parametersq/) —p Jepends on the generator

| % | ~ 5 D, ae — Pdaa(®)
(G : generator D?’O - pdata(x) Y™ paata(®)+pe(x)
with parameters ¢

% SIGERAPH
ASIA 2618 Image Credit: How (not) to Train your Generative Model: Scheduled
FOKYO Sampling, Likelihood, Adversary?, Ferenc Huszar

VAEs: GANSs: Maximize likelihood of
Maximize likelihood of Adversarial game generator samples in
data samples inpg () approximate Pdata ()
ﬁ ﬁlgg\lqzﬁg Image Credit: How (not) to Train your Generative Model: Scheduled
loxYo Sampling, Likelihood, Adversary?, Ferenc Huszar
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Why Adversarial?

~ KL(Paata || po) =~ JS(Pdata || Po) =~ KL(pg || paata)

VAEs: GANs: Maximize likelihood of

Maximize likelihood of Adversarial game generator samples in
data samples inpg () approximate Pdata ()

~ 1
¢ ?\lglp\lquc\lg Image Credit: How (not) to Train your Generative Model: Scheduled
FOKYO Sampling, Likelihood, Adversary?, Ferenc Huszar

GAN Objective

probability that &

| Dy (@) | is not fake
TPT( ;)w :distcriminator fake/real classification loss (BCE):
L(0,¢) = — 0.5 Eznpy,,. log Dy(z)
— 0.5 Epp, log(l — Dy(x))

i | Discriminator objective:
T (7 :generator m,lgn L(Q? @b)

Generator objective:

max 1(6,¢)

169




CreativeAl: Deep Learning for Graphics Part 4: Alternatives to Direct Supervision

Non-saturating Heuristic L(0,0) = ~ 0.5 By, log Dy()

—0.5 Ezp, log(l — Dy(x))

Generator loss is negative binary cross-entropy:
Lg(0,v)=10.5E;p,, log(l —D,(z)) poor convergence

L (0,1)0] ﬁ
[ Negative BCE

-5 ! ! ! !
0.0 0.2 0.4 0.6 0.8 1.0

~ 1
@ ?\lglp\lqzihg D’l‘[) Image Credit: NIPS 2016 Tutorial: Generative Adversarial
Poxyo Networks, lan Goodfellow

Non-saturating Heuristic
Generator loss is negative binary cross-entropy:
La(0,v)=0.5 Eznp, log(l — Dy(x)) poor convergence

Flip target class instead of flipping the sign for generator loss:
La(0,v9)=—0.5Egznp, logDy(z) good convergence — like BCE

LG (0: ¢) °L
—— Negative BCE
" | —— BCE with flipped target
-5 L L I I
0.0 0.2 0.4 0.6 0.8 1.0
~ 1
¢ ?JE.EHZ’M D’l,f) Image Credit: NIPS 2016 Tutorial: Generative Adversarial
loxyo Networks, lan Goodfellow
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GAN Training

Loss: Loss:
LG(G,Q/)) = —log D¢(§:) LD(G, w) = 70.510g(1 — qu(:ﬁ)) —0.51og DQ/,(;UZ-)

T DT/J :discriminator T Dd) :discriminator T

T
T (7 :generator

ol 2 ]
i

5 SIGERAP
GE S pz)

from dataset

Generator training
Discriminator training

Interleave in each training step

DCGAN

* First paper to successfully use CNNs with GANs
* Due to using novel components (at that time) like batch norm., RelLUs, etc.

man man woman
with glasses without glasses without glasses

Image Credit: Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, Radford et al.

woman with glasses
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InfoGAN

) varying C; R
0/1334567¢%9 | Dy(#) |
Ol 234567873 T Dy, -discriminator

810 1 23456781 :
0/ R34/56789
Ol 23456789
LS S T O O Y A A A4
V888868 &8

2333333333
4999999997 maximize
95555855557 mutual information
I 10l I(¢;Go(z,¢))
f§8 86685858588

&3 333333333
17999999999
555555555S

¢ %E_',‘E\Ly\\?lig Image Credit: INfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets, Chen et al

Code example

Generative Adversarial Network
(GBI, P
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Conditional GANs (CGANs)

* = |learn a mapping between images from example pairs

* Approximate sampling from a conditional distribution Pqata(Z | ¢)

C h
A
@ ?Jgﬁlqzﬁg Image Credit: Image-to-Image Translation with Conditional
FOKYO Adversarial Nets, Isola et al.
Conditional GANs
Loss: Loss:
L (0.v) = —log Dy (%, ¢) Lp(0,¢) = —0.510g(1 — Dy (&,¢)) — 0.5log Dy (x5, ¢)
w o0 Dy (=)
C —
= = .
o o
s = |
| -
S 2 ﬁ
= ©
= ’ £ | 5 n i
8 R (g sgenerator LLU), from dataset
,’»' i ) D i :\‘{,
.
@ A c c | | c
Q.
N ' S
¢ ?JEEHZQL@ p(Z) Image Credit: Image-to-Image Translation with Conditional
Poryo Adversarial Nets, Isola et al.

173




CreativeAl: Deep Learning for Graphics

Part 4: Alternatives to Direct Supervision

Conditional GANs: Low Variation per Condition

Loss:
Lg (9 'lft’) = - IOg Dij') (/f C)

D@’J :discriminator

i |

! (7 :generator

zis often omitted
in favor of dropout

Generator training

Loss:

Lp(0,v¢) = —0.5log(1l — Dy(%,¢)) — 0.5log Dy (24, ¢)

Discriminator training

in the generator | C

¢3||3ERA|JH
ASIA 2618
| OKY O

’ D’lﬁ :discrim. ‘

=

X

from dataset

Image Credit: Image-to-Image Translation with Conditional
Adversarial Nets, Isola et al
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CycleGANs

* Less supervision than CGANs: mapping between unpaired datasets
* Two GANs + cycle consistency

Monet Z_ Photos

Paired Unpaired
Ty Yi

1
ﬁ %ﬁ%g Image Credit: Unpaired Image-to-Image Translation using Cycle-
FOKYO Consistent Adversarial Networks, Zhu et al.

CycleGAN: Two GANs ...

* Not conditional, so this alone does not constrain generator input and output to match

Dy, (%) Cy, (9)
T lezdiscriminatorl T C’ﬂ)z:discriminatorz

9

T Fl, :generator2

not constrained to match yet

[ = ]

Image Credit: Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks, Zhu et al.
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CycleGAN: ... and Cycle Consistency

~ |

T FQQ :generator2

L1 Loss function: L1 Loss function:
ly =gl || S | |z — 21
T G91 :generatorl

< SIGGRARH :
ASIA 2618 Image Credit: Unpaired Image-to-Image Translation using Cycle-
FoRYOo Consistent Adversarial Networks, Zhu et al.

Unstable Training

GAN training can be unstable

Three current research problems (may be related):

* Reaching a Nash equilibrium (the gradient for both L and L pis0)
* Po and Pdata initially don’t overlap

* Mode Collapse
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GAN Training

LG(Qa 10)
LD(97 wa)

* In each iteration, gradient descent approximately follows this vector
over the parameter space (6, 1):

9 La(0, )
Ve = (2560 r La(0.0)
v - %LD(va)

v - V(0,0)

* Vector-valued loss: L(6, 1) =

Nash
equilib.
% SIGCRAPH . . :
ASIA 2013 Image Credit: GANs are Broken in More than One Way: The
Poryo Numerics of GANs, Ferenc Huszar
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Reaching Nash Equilibrium

Solution attempt: relaxation with term: —V I, = % V@, w)Hg

Non-conservative field v Conservative field —=VL Combined field v — 0.6VL
v A A NNNRL S S NSNS S N P B S A P A A A Y |
[ = o e e = eErs 0 £1en O = PR I R O R R R I |
N . R T 5 PR Y P
L Y L T T T Y L T Jf// LI T
R -<aa@addle SNV ALSINNN LS SZINNAN L Y o | s . e
N Rl I S T N R C. IR B R A

N A -~ =~ ~ =
~ NN s L2 e 0 e i S D 0 R ) &) = \\\\'\ﬂ-"""""“’""‘-n\\\
~ W P N I R L bt N TSN
RN A EANNNES S NN N R sttt T T A SR NN
RN B N N N N R N el T B A LU
(' T T ee e s e e O N I E A I
P LI E L S S N S - s . \\'\\frv.,_’_‘
. NN S ASINNN L S SN D N N W T T S
/ﬂqg' R T N N T T T S
Py - - —— - -— - - ///,,,_m.*-.‘\‘\\\\__,///{
PPy P N N R Y N PP P N P I IR S
ey S NNNNS S S NN S N PP R B |
Frg P R N N T //"J\v"“‘"" AP A
s - = - —— o — = - —. == = - PR [T s oA
R L I N N B A U U U _“___1i1|ff'/f¢ 50 o &
N NNV S AAINNN L A SSUNNN S A . e -
LIRS ~ x

no relaxation has cycles full relaxation introduces mixture works sometimes
> oEERARH bad Nash equilibria

ASIA 2613 Image Credit: GANs are Broken in More than One Way: The

TOKYD Numerics of GANs, Ferenc Huszar

Generator and Data Distribution Don’t Overlap

Standard

16
14
12
10
08

06

&3

0.0

-0.2 *

-3 -2 -1 0 1 2 3

B Instance noise: adding noise to generated and real images . Wasserstein GANs: EMD as distance between Pgand Pdata
14 _pﬁ(x) *N(U*U) 14 _pe(x)
i; —pdata(x) * N(O, U) i; —pdata(m)
08 08 D"[) (2:)

0.6
04
0.2
0.0

06
04
0.2
0.0
=-0.2

-0.2

=3 -2 -1 . 0 . 1 . 2 . 3 -3 -2 -1 o 1 2 3
Roth et al. suggest an analytic convolution with a gaussian:
Stabilizing Training of Generative Adversarial Networks
through Reﬂ:jllarization, Roth et al. 2017
fs':\lglgxlmlﬂg Image Credit: Amortised MAP Inference for Image Super-
loxYo resolution, Sgnderby et al.
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Mode Collapse | Pdata()
Optimal Dw (:E) pdata(CC) +p9(m)

Pe only covers one or a few modes of Pdata
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

. - -
Pe after n training steps

Pdata

-
1
¢ SIGERAPH Image Credit: Wasserstein GAN, Arjovsky et al.

ASIA 2613
| ¥ Unrolled Generative Adversarial Networks, Metz et al.

Mode Collapse

Solution attempts:

* Minibatch comparisons: Discriminator can compare instances in a
minibatch (Improved Techniques for Training GANs, Salimans et al.)

* Unrolled GANs: Take k steps with the discriminator in each iteration, and
backpropagate through all of them to update the generator

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

. . - -
Pdata Standard GAN Pg after n training steps
Unrolled GAN with k=5

- W ?: O

- 1
ﬁ S|EE\|M| g Image Credit: Wasserstein GAN, Arjovsky et al.

2al
vo Unrolled Generative Adversarial Networks, Metz et al.

Pg after n training steps
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Progressive GANs

* Resolution is increased progressively during training

* Also other tricks like using minibatch statistics and normalizing feature vectors

G Latent Latent
) ]
4x4 4x4

¢SIEEIMIJH
ASIA 2618
| OKY O

1024x1024 ]

& ! Reals

Yy v
[ 1024x1024 ]

Training progresses ——————————————»

Image Credit: Progressive Growing of GANSs for 53
Improved Quality, Stability, and Variation, Karras et al

Disentanglement

specified property: number

other properties

sxleovmn—f |

Entangled: different properties may be mixed up over all dimensions
Disentangled: different properties are in different dimensions

S e :;i

€

other properties

e

Image Credit: Disentangling factors of variation in deep
representations using adversarial training, Mathieu et al.

180




CreativeAl: Deep Learning for Graphics Part 4: Alternatives to Direct Supervision

Summary

* Autoencoders
* Caninfer useful latent representation for a dataset
* Bad generators

* VAEs
* Caninfer a useful latent representation for a dataset
* Better generators due to latent space regularization
* Lower quality reconstructions and generated samples (usually blurry)

* GANs
* Can not find a latent representation for a given sample (no encoder)
* Usually better generators than VAEs
* Currently unstable training (active research)

http://geometry.cs.ucl.ac.uk/creativeai/
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CreativeAl: Deep Learning for Graphics

Feature Visualization

Niloy Mitra lasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

Artificial Intelligence Research Technische Universitét Minchen

Timetable

Niloy lasonas Paul Nils Tobias
Introduction X X X X X
(%]
> Theory X X
oA
2 - NN Basics X X
= c
® Alternatives to Direct Supervision X
15 min. break
z Feature Visualization X
[J] .
< Image Domains X
G
o 3D Domains X X
—
§ Motion and Physics X X
ﬁ ?Jgﬁlqzﬂig SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 2
| OKY O
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What to Visualize

* Features (activations)

* Weights (filter kernels in a CNN)

* Inputs that maximally activate some class probabilities or features
* Inputs that maximize the error (adversarial examples)

. 1
¢ ?\EE@’;‘LQ SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 3
1 OKY O

Feature Samples

* In good training, features are usually sparse
* Can find “dead” features that never activate

Images from: http://cs231n.github.io/understanding-cnn/

SIGERAPH

¢ ASIA 2613 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 4
1OKYO

183




CreativeAl: Deep Learning for Graphics Part 5: Feature Visualization

Feature Distribution using t-SNE

correctly

classified /7
g1
: % W B
v i H sy
O %
20 o —H ;
before training after training
in a CNN layer t-SNE embedding of MNIST (images of digits) features in a CNN layer, colored by class
Images from: https://cs.stanford.edu/people/karpathy/cnnembed/ and
Rauber et al. Visualizing the Hidden Activity of Artificial Neural Networks. TVCG 2017
%lgﬁlqzﬁig SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 5
1 OKY O

Weights

* Useful for CNN kernels, not useful for fully connected layers
* Kernels are typically smooth and diverse after a successful training

first layer filters of AlexNet

Images from: http://cs231n.github.io/understanding-cnn/

SIGERAPH ) ) : :
ASIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 6
oKy o
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Inputs that Maximize Feature Response

Local maxima of the response for class:
Indian Cobra Pelican Ground Beetle

Images from: Yosinski et al. Understanding Neural Networks Through Deep Visualization. ICML 2015

SIGGRAPH ) ) ) )
ASIA 2018 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 7
| Y

Inputs that Maximize the Error

. _ d
max £(z + 6, y; 0) A —{5 <R [ 18], < €}

+.007 x

T+ 0
“Panda” 55.7% conf. “Gibbon” 99.3% conf.

Images from: Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR 2015

SIGGRAPH ) ) : '
ASIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 8
| Y
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Course Information (slides/code/comments)

=

http://geometry.cs.ucl.ac.uk/creativeai/

-
SIBGRAPH . ) : ) E
ASIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
| ¥
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% SIGGRAPH

ASIA 2018
TOKYO

CreativeAl: Deep Learning for Graphics

Image Domains

Niloy Mitra lasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

Artificial Inte\ligence Research Technische Universitat Minchen

Timetable

Niloy lasonas Paul Nils Tobias
Introduction X X X X X
(%]
= § Theory X X
o
o
2 - NN Basics X X
= c
® Alternatives to Direct Supervision X
15 min. break
jut
< Feature Visualization
(]
f Image Domains X X
o
9 3D Domains X
©
& Motion and Physics X X
ﬁ ?Jgﬁlqzﬂig SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 2
| OKY O
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Sketch Simplification

* Learning to Simplify: Fully Convolutional Networks for Rough Sketch
Cleanup, Simon-Serra et al., 2016

* Deep Extraction of Manga Structural Lines, Li et al., 2017

‘ Up-convolution ‘ HXW
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Sketch Simplification: Learning to Simplify

* Loss for thin edges saturates easily
* Authors take extra steps to align input and ground truth edges

/K Pencil: input

Red: ground truth

Image Decomposition

A selection of methods:

Direct Instrinsics, Narihira et al., 2015

Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition, Zhou et al.,
2015

* Decomposing Single Images for Layered Photo Retouching, Innamorati et al. 2017
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Image Decomposition: Decomposing
Single Images for Layered Photo Retouching

128 256 512

== === = = - = = = = = =
T EE B
i § 2
=} Stride-2 Convolution Stride-1 Convolution =) Resize-convolution

Colorization

* Concurrent methods:
» Let there be Color!, lizuka et al., 2016
* Colorful Image Colorization, Zhang et al. 2016
* Learning Representations for Automatic Colorization, Larsson et al., 2016

* Real-Time User-Guided Image Colorization with Learned Deep Priors, Zhang et al.
2017
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Colorization: Let There Be Color!

Luminance
(Input image)

HXW

Colorization

Mid-Level Features Network
Network

Hxw

Low-Level
Features .
Network .

weights .
Chrominance

14x14 _ 20.60% Formal Garden
112x112 il S===—  Classification 16.13% Arch
56X56  28x28 e N Kk 13.50% Abbey
5= etwor 7.07% Botanical Garden pradisiedlabel
redicted labels
Global Features Network 6.53% Golf Course

Let there be Color!: lizuka et al.

ﬁ SICERAPH
ASIA 2613 9
I OKY O

Colorization: Colorful Image Colorization

Lightness L Color ab Lab Image

convl conv2 conv3 convé4 convs convé conv? conv8
64 atrous / aiated 4 trous / dilated

7128 , 256 512 512 512 512 ——
e ———
L 32 32 32 32 32
28

(a,b) probability
distribution

input output
direct regression probability distr.

RGB(a,b|L=50)

10
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Sketch Simplification

* Learning to Simplify: Fully Convolutional Networks for Rough Sketch
Cleanup, Simon-Serra et al., 2016

* Deep Extraction of Manga Structural Lines, Li et al., 2017

@ SIEERAPH
ASIA 20138 11
I OKY O

‘ Up-convolution ‘ HXW

ﬁ SICERAPH
ASIA 2613 12
| OKY D
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Sketch Simplification: Learning to Simplify

* Loss for thin edges saturates easily
* Authors take extra steps to align input and ground truth edges

/K Pencil: input

Red: ground truth

ﬁ SIEERAPH
ASIA 20138 13
I OKY O

Image Decomposition

A selection of methods:

Direct Instrinsics, Narihira et al., 2015

Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition, Zhou et al.,
2015

* Decomposing Single Images for Layered Photo Retouching, Innamorati et al. 2017

@ SICERAPH
ASIA 2613 14
| OKY D
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Image Decomposition: Decomposing
Single Images for Layered Photo Retouching

128 256 512

== === = = - = = = = = =
T EE B
i § 2
=} Stride-2 Convolution Stride-1 Convolution =) Resize-convolution

@ SIEERAPH
ASIA 20138 15
I OKY O

Colorization

* Concurrent methods:
» Let there be Color!, lizuka et al., 2016
* Colorful Image Colorization, Zhang et al. 2016
* Learning Representations for Automatic Colorization, Larsson et al., 2016

* Real-Time User-Guided Image Colorization with Learned Deep Priors, Zhang et al.
2017

16
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Colorization: Let There Be Color!

Luminance
(Input image)

HXW

Colorization

Mid-Level Features Network
Network

Hxw

Low-Level
Features .
Network .

weights .
Chrominance

14x14

ﬁé\’ 20.60% Formal Garden

¢ o N Classification | 16:13% Arch

e Net k 13.50% Abbey
3 Clwor 7.07% Botanical Garden
6.53% Golf Course

112x112
56X56  28x28
Predicted labels

Global Features Network

Let there be Color!: lizuka et al.

ﬁ SICERAPH
ASIA 2613 17
I OKY O

Colorization: Colorful Image Colorization

Lightness L Color ab Lab Image

convl conv2 conv3 convé4 convs convé conv? conv8
64 atrous / aiated 4 trous / dilated

7128 , 256 512 512 512 512 ——
e ———
L 32 32 32 32 32
28

(a,b) probability
distribution

input output
direct regression probability distr.

RGB(a,b|L=50)

18
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LDR to HDR Image Reconstruction:

* Concurrently:
* Deep Reverse Tone Mapping, Endo et al. 2017

* HDR image reconstruction from a single exposure using deep CNNs,
Eilertsen et al. 2017

ﬁ SIEERAPH
ASIA 20138 19
I OKY O

Reflectance Maps

* Paint a sphere as if it is made
of a material under a certain
illumination of another
object in a photo

Deep Reflectance Maps. Rematas et al. CVPR 2015

@ SICERAPH
ASIA 2613 20
| OKY D
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DelLight

* Factor BRDF and (HDR) Illumination

@ SIEERAPH
ASIA 20138 21
I OKY O

Denoising Renderings

* Concurrent:

* Kernel-Predicting Convolutional Networks
for Denoising Monte Carlo Renderings,
Bako et al. 2017

* Interactive Reconstruction of Monte Carlo — T~
Image Sequences using a Recurrent _ \
Denoising Autoencoder, Chaitanya et al.
2017 (more on Autoencoders later)

‘_Noi_sy (375pp)

TRAINING
Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al.

ﬁ SICERAPH
ASIA 2613 22
| OKY D
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Denoising Renderings:

iradiance -,
1 .
i,f’::;’ Diffuse CNN
p 4 Direct
4 normalization & o = or
gradient extraction Weighted
5ﬁ reconstruction
g Diffuse components
é Specular CNN
logarithmic “ W Direct
q transform & @ = or
normalization & 1 weighted
gradient extraction 5ﬁ reconstruction
Specular components
color ¥
Preprocessing Filtering

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings,

albedo
munlply

ential
trans'orm

—

Postprocessing

Bako et al. SIGGRAPH 2017

’ | Denoised image

23

Convolution

1x1 3x3 1x1

<

29 ~NEHE

3l [P ] =

Z =

Ha[WF
o = o~
o
—
1x1

VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera, Mehta et al.,

SIEIEHAIJH

ﬁ ASIA 2618

oKy o

.

Deconvolution

Without ReLU ‘

4x) [

—|
N, !

4xd With ReLU
1 [ 33 |1 = A
O || 0l o = I 3x3
Te] o N i
o~ - o~ - o0
Sioal B 2F
> =
e e e
4x4
Wd
AX, AY,AZ BL

SIGGRAPH 2017

HX,Y,Z
skeleton joint heatmap
and 3d positions:
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Object Detection: Fast(er)-RCNN

* Fast/Faster R-CNN
v'Good speed
v'Good accuracy
v'Intuitive
v'Easy to use

Ross Girshick. “Fast R-CNN”. ICCV 2015.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

ﬁ SIBERAPH
ASIA 2618
| OKY O

Mask R-CNN

* Mask R-CNN = Faster R-CNN with FCN on Rols

Faster R-CNN

FCN on Rol
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Mask R-CNN results on COCO

Mask R-CNN for Human Keypoint Detection

left_ear 0.98
-

nght eye 0.98

0.94 nose 1.00 left_eye 1.00

* Human pose = 17 masks | <K ﬂ ﬁ
rlght ear 0.93 left shoulder097rlght shoulder 1.00 left_elbow 0.41 right_elbow 0
* Softmax over spatial locations {‘
* e.g. 562-way softmax on 56x56 &’

rlght wnst 0.97 Ieft _hip 0.96 right_hip 0.9 Ieft knee 0.99
.

Bl RN

right_knee 0.99 left_: ankIe 0.91 right_ankle 0.98

X AEA

* 1 keypoint = 1-hot “mask”

.“

Ieft wnst 0.91
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I"

network for all task
| ;

, prace
%\. L \::\

-

https://github.com/jkokkin/UberNet

|. Kokkinos, UberNet: Training a Universal CNN for Low- Mid- and High-Level Vision, CVPR 2017

¢3||3ERA|JH
ASIA 2618
| OKY O

What is the ultimate vision task?

“Inverse graphics”: understand how an image was generated from a scene

If we focus on a single object category: surface-based models

UberNet:

Universal Network
DensePose:

Unified model

¢SIEEIMIJH
ASIA 2418
| OKY O
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DenseReg: dense image-to-face regression

Template

Deformation-Free Shape

R. A. Guler, G. Trigeorgis, E. Antonakos, P. Snape, S. Zafeiriou, . Kokkf%gsce
DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild, CVPR 2017
% SIBGRAPH

ASIA 2018
1OKY O

DensePose COCO Dataset

DensePose-RCNN: ~25 FPS

R. A. Guler, N. Neverova, |. Kokkinos “DensePose: Dense Human Pose Estimation In The Wild”, CVPR’18
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SFSNet: incorporating image formation in model
Normalv

/ﬂ

Conv. ||
Normal Residual / -~
|

mage - / Blocks )

A Light
| Estimator

Albedo Residual | |
Blocks I~~~

Recon. Image

SfSNet: Learning Shape, Reflectance and Illuminance of Faces ‘in the wild' Soumyadip
Sengupta Angjoo Kanazawa Carlos D. Castillo David W. Jacobs, CVPR 2018

@SIEEIMPH
ASIA 2418
| OKY O
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Beyond single frames: end-to-end optical flow

FlowNet 2.0: Evolution of Optical Flow
Estimation with Deep Networks

Eddy llg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox

University of Freiburg, Germany

Supplementary Material

¢3||3ERA|JH
ASIA 2018
| OKY O

End-to-end Structure From Motion

Image

* DeMoN: Depth and Motion Network for Learning Monocular Stereo, B. Ummenhofer, et al, CVPR 2017
* Unsupervised learning of depth and ego-motion from video, T Zhou, M Brown, N Snavely, DG Lowe, CVPR 2017

¢SIEEIMIJH
ASIA 2418
| OKY D
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Monocular depth & normal estimation

Input Image Depth Normals Labels

* D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale
Convolutional Architecture, ICCV 2015

ﬁ SIEERAPH
ASIA 2618
| OKY O

Course Information (slides/code/comments)

QOO

http://geometry.cs.ucl.ac.uk/creativeai/

5 SIGCRARH . ) : :
ASIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
1O 8]
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CreativeAl: Deep Learning for Graphics

3D Domains

Niloy Mitra lasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

Artificial |ﬂt€‘|ig€l’1C€ Research Technische Universitat Minchen

Timetable

Niloy lasonas Paul Nils Tobias
Introduction X X X X X
(%]
= § Theory X X
o
o
2 - NN Basics X X
= c
® Alternatives to Direct Supervision X
15 min. break
€
< Feature Visualization X
(]
S Image Domains X
G
Q 3D Domains X X
©
&5 Motion and Physics X X
ﬁ ,S\lsqﬁlqzﬂig SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 2
OKYO
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Motivating Applications

Deep neural network predicts
the next best part to add and

its position to enable non-expert
users to create novel shapes.

[Sung et al. 2017]

,S\lSEIE\HszHg [Heuting et al. 2015] 4
1OKYO
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Motivating Applications

understanding 3D shapes can benefit image understanding

Physically based
Rendering

ﬁ SIBERAPH
ASIA 2618
| OKY O

[Zhang et al. 2017]

Motivating Applications: Semantic Scene Understanding

I floor (et s
wall e 5
bed R

© window : " SRR -

[Song et al. 2017]
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Motivating Applications: Semantic Scene Understanding

[Kelly et al. 2017]
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Representation for 3D
* Image-based

* Volumetric

* Point-based

* Surface-based

e Parametric

Representation for 3D

* Image-based
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Representation for 3D: Multi-view CNN

regular image analysis networks

™ bathtub
bed
chair

| A

4 g
]
} ———
/ [— desk[—
) — View CNN ]_. dresser[3
) ] VN pooling e
toiletr—
3D shape model (
rendered with 2D rendered our multi-view CNN architecture output Flass
different virtual cameras images predictions

[Kalogerakis et al. 2015]

Segmentation
Correspondence

Feature matching

Predicting semantic functions

¥ N -

view based convolutional network

~

localized renderings for point-wise features

point descriptor

[Huang et al. 2018]
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3D-R2N2 (3D Recurrent Reconstruction Neural Network)

* Multiple views are treated as image w | __
sequence

* An LSTM controls what part of the
latent representation is updated by

each view
Encoder - Decoder
Tr—1
A 4
h Encoder gg) Decoder
Ir 3D Convolutional LSTM T views
Choy et al. 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. ECCV 2016
~ 1
¢ ?JE.E\RZ%Q SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 13
1 OKY O

Representation for 3D

* Image-based
0S: directly use image networks, good performance
* CONS: rendering is slow and memory-heavy, not very geometric

* Volumetric

* Point-based

* Surface-based
* Parametric
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Representation for 3D

* Volumetric

Representation for 3D: Volumetric

4000
* Add one dimension to kernels and intermediate outputs:
batches x channels x w x h batches x channels x d x
) w X h
object label 10 1200 . .
* Does not scale well to high resolutions
512 filters of a2
stride 1
160 filters of 7
stride 2 JIRE)

48 filters of
stride 2

30

I [Xiao et al. 2014]
3D voxel input eoete

ﬁ SICERAPH
ASIA 2613 16
| OKY D
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Representation for 3D: Volumetric Deformation

o &

SlEERM]H [Yumer et al. 2014] 1
ASIA 2018 7
IOKYO

Efficient Volumetric Datastructures

convolution pooling ~ eee e convolution pooling
normal field
vy [
g =y 1L -7
i

N R R S

octree input (d-depth)

[Wang et al. 2017]
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Efficient Volumetric Datastructures

Generator / Decoder
Volumetric (Up-) Convolutions
Cropping

@@% e g : ‘@Iﬂ.@lﬁ‘@lﬁ.?lﬁ

,,,,,,,,,,,,,,,,,,,,,,,,,,

Wang et al. 2017

3 Labels (free space / boundary / occupied space)

= SlEERM]H [Hane et al. 2018] 1
ASIA 2018 9
IOKYO

Efficient Volumetric Datastructures

1283 2563

3 SlEEHM]H [Hane et al. 2018] 2
ASIA 2618 0
oKy o
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Octree Generating Networks

Octree Octree Octree
level 1 level 2 level 3

g2~ 643 1283
Tatarchenko et al. Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs.
ICCV 2017
ﬁ %lg,@\ly‘éqg SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 21
1 OKY O
Deep Marching Cubes
* Input Domain: images, volumetric grids, point clouds
* Qutput Domain: Meshes
D + . +
L L L
& Decoder + + =
® @ L
[ X I N J
P t.t
coee? : °
Observation Occupancy Geometry Explicit surface
Yiyi Liao et al. Deep Marching Cubes. CVPR 2018
ﬁ %lsqﬁlqgﬁig SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 22
OKYO
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Learning to Complete 3D Scans i credit: matthias Niessner

; 4 . &
- ,!' .
—— N

~ Predicted Semantics

—

'
4 8 =
\ Completed Scan

[Dai et al. 2018] 2

(slide credit: Matthias Niessner)

State-of-the-art 3D Reconstructions

! \ == = =

218



CreativeAl: Deep Learning for Graphics Part 7: 3D Domains

Problem: Incomplete Scan Geometry

SIGERARH

ASIA 2018
1OKY O

Problem: Incomplete Scan Geometry

sceneOOAS 01 sceneOOAS 00 scene0051_00 scene0051_01 scene0051_02 scene0051_03 scene0053_00 scene0060_00 scene0060_01 sceneOGBo 00 scene0067_00 scene0067_01 scene0067_02 scene0073_00

scene0197_00 scene0197_01 scene0197_02 scene0218_00 scene0218_01 scene0234_00 scene0241_00 scene0241_01 scene0241_02 scene0242_00 scene0242_01 scene0242_02 scene0249_00 scene0251_00

1I\ H %ﬁ&&ﬁ

scene0101_04 scene0101_05 scene0107_00 scene0110_00 scene0110_( 01 scene0110_02 scene0137_00 scene0137_01 scene0137_02 scene0144_00 scene0144_01 scene0153_00 scene0153_01 scene0157_00

ﬁ@_
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Learning from Synthetic Data

ﬁ SIBERAPH )
ASIA 2618 7
| OKY O

Recall: Semantic Scene Understanding

I floor n
wall S
bed v

I window  ©

B sofa et /

objects : e ' 1t 3

M furnitur

(c) output

SIGERAPH [Song et al. 2017] 5
ASIA 2618 8
OKYO
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Learning to Complete 3D Scans i credit: matthias Niessner)

ﬁ ASIA 201@ Scenes from SUNCG [Song et al. 17] 5
I OKY O

Dependent Predictions: Autoregressive Neural Networks

* PixelCNN [van den Oord 2015, van den Oord 2016, Reed 2017]

. v
/

* WaveNet [van den Oord 2016]
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Dependent Predictions: Autoregressive Neural Networks

[Dai et al. 2018]

ScanComplete: Completing 3D Scans

Input Completion Ground Truth

SIGLRAPH
ﬁ ASIA 2013 [Dai et al. 2018] 3
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ScanComplete: Completing 3D Scans

H
/A8 ASIA 2018
DKy O

Geometry Abstraction / Simplification

Learning Shape Abstractions by Assembling Volumetric Primitives, Tulsiani et al. 2016

o L .
oKy o
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Geometry Abstraction / Simplification:

wli

Learning Shape Abstractions by Assembling Volumetric Primitives, Tulsiani et al. 2016

ﬁ SIEERAPH
ASIA 20138 35
I OKY O

SplatNet

Convolve

Hang Su et al. Splatnet: Sparse lattice networks for point cloud processing. CVPR 2018

SIGERAPH ) ) : :
ASIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
oKy o
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Representation for 3D

 Image-based
* Volumetric
* PROS: modify image networks
* CONS: special layers for hierarchical datastructures, still too coarse
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Point Clouds

* Common representation
* Easy to obtain from meshes, depth scans, laser scans

* Difficulty: invariance to point order

P1 P3
= P2 D1 =P [(P)
P3 P2
point cloud ]P
invariance to all n!cases

Point Interpretation

Samples from (Irregular) samples of
a probability distribution a continuous function

-
1
ﬁ SIGERAI g SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 40
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PointNet

order-
independent
. order-
D1 D3 _f(p?) symmetric independent
P2 p1—f(p1)— Y 9(f(p;)) = F(P)
feature
D3 D2 _f p? Py €p vector for the
. feature point cloud
. . vector for a
point cloud ]P point

Qi et al. Pointnet: Deep learning on point sets for 3d classification and segmentation. CVPR 2017

-
SIBGRAPH . . : .
ASIA 2618 SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 11
| ¥

PointNet for Point Cloud Analysis

v

PointNet l

mug?

L% table?
Yy

car?

Classification Part Segmentation  Semantic Segmentation
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PointNet for Point Cloud Analysis: PointNet++

N ‘-points |n
(x,y)

N1p01nts in

(x.yf)

N2 points in
(x.y.F)

[Qi et al. 2018] 4

PointNet for Local Point Cloud Analysis

=l PCPNet
3 —
=

15}

9 (from RGBD

3

Q.

£

g | PCPNet
c q

normals

normals

mean curvature mean curvature

2X — jet fitting, small
jet fitting, medium
jet fitting, large

S — Boulch et al.

Py - Ours

o

=

©

o

1X

noise étre'ngt'h '
[Guerrero et al. 2018] 4
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MCCNN

Continuous ground truth Non-umforr.n sampling Non-uniform sampling
A A Previous A Ours
... .'.
o e o
s ] 3 .o.' 5 .o.'
a = o °o_o o °o_o
| — ? Q- ° q -
° °
—> S, S|
Space pace pace
A A
A
°. °.
g " e o ... v ® o .0.
23 3 d . B > s
EG —> > Space ° > Spa °
8 = Space pa e o o5 pace ° ° s
o o

-
1
¢ SIGERAI g SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 45

PointNet for Point Cloud Synthesis

generated output needs to be compare to some true shape

5 SIGERAPH [Suetal. 2017]
ASIA 2513
oKy o
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Representation for 3D

* Image-based
* Volumetric
* Point-based

Surface models used in engineering (i.e., CAD)
* Surface-based and computer graphics (i.e., meshes)

gJJ“T“_‘L;H[ il

i

|||||

A 2

Generated Volume Generated Points Generated Surface

o Tt :
IOKYO

AtlasNet for Surface Generation

condition decoded points on 2D patches

Generated
Latent shape 3D point
representation
®

— MLP —
e /S
2D point
ﬁ SICORAPH ovencet 2018 4
;
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AtlasNet for Surface Generation

condition decoded points on 2D patches

- Generated
inferred from images or point clouds 3 D p O i nt
|| o
— MLP -

oot L/
2D point

?JEIE\R!.\)HQ [Groueix et al. 2018] 4
IO KY O °

Quad Mesh is generated by
mapping a regular grid in
2D domain to 3D points

Latent representation can be
inferred from images or point clouds

Ll
S MLP %,

oot ./ /
2D point \\/

;:ngﬁﬂzfmg [Groueix et al. 2018] 5
OKYO 0
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AtlasNet for Surface Generation

Latent representation can be
inferred from images or point clouds

;‘.:\;;f [N

2D Image

MLP

Sampled
2D point

[/

BONUS: natural space to store
textures for CG

input image

image-to-shape texture transfer

shape-to-shape texture transfer

edited original image

[Wang et al. 2016] 5
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Parameterization for Surface Analysis

map 3D surface to 2D domain

o

-
SIGGRAPH [Maron et al. 2017] 5
ASIA 2018 3
1 OKY O

Parameterization for Surface Analysis

map 3D surface to 2D domain
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Parameterization for Surface Analysis

* Map 3D surface to 2D domain.
*One such mapping: flat torus (seamless =>
translation-invariant)

*Many mappings exists: sample a few and
average result

*Which functions to map?
XYZ, normals, curvature, ...
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Other Parameterizations

Geometry Image

3D shape

Metric Alignment

R —— —_—
Metric r Other *®®

Alignment CNN layers
(network layer) s

[Ezuz et al. 2017]

Other Parameterizations

geodesic discs

parameterize in spectral domain

Spectral domain
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Other Parameterizations

(
@B @
W 2x 1.1 Wax 1,p é
fi(z) @ D) 5L 5L il @a
O &
w2'rr11 W2, 1,p J
Q g ° gﬁf; .4
w 27 w 24 >
=Q) 1q'ap [+
fo(z) @] D() el ®gy()
@D B
\W2m,q,1 W2,q,p J

[Masci et al. 2015]

(slide credit: Michael Bronstein)

Undirected graph (V,&) Triangular mesh (V. &, F)

AN~ Y wiylfi—£) (Af)im & 3 eteuteotty (g g
(i)EE ig)ee

= local area element
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Transferring Correspondence

Texture transferred from reference to query shapes

9 SIGERAPH [Monti etal. 2016] .
ASIA 2618 1
TOKYO

Spectral MethOds (slide credit: Michael Bronstein)

GEOMETRIC DEEP LEARNING ABOUT WORKSHOPS TUTORIALS PAPERS &CODE CONTACTS

GEOMETRIC DEEP LEARNING

Geometric Deep Learning is one of the most emerging fields of the Machine Learning community. This

website represents a collection of materials of this particular research area.
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SyncSpecCNN

before synchronization after synchronization

SIGERARH Vietal.2017) .
ASIA 2618 N
10KV O

3D volumes form Xrays

erence 3D volume = ) Our 3D volume

A A

——

Novel view

d) Applications Stylization Cutaway

Single-Image Tomography: 3D Volumes from 2D Cranial X-Rays. Henzler et al. EG 2018

o L .
oKy o
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Representation for 3D

* Image-based

* VVolumetric

* Point-based

e Surface-based

Parametric

ﬁ SIBERAPH .
ASIA 2618 5
| OKY O

Procedural Parameter Estimation

a) Sketch  b) Suggested snippets c) Generated building d) Rendering of city corner

Y

= =

<

mE BB BE EE E

ﬁ SICCRAPH
ASIA 2613 66
| OKY D

239




CreativeAl: Deep Learning for Graphics Part 7: 3D Domains

Procedural Parameter Estimation:
Interactive Sketching of Urban Procedural Models

Recognition CNNs

Grammar snippets Data Training images / m m
= Generation | ~— <~ ~
N ey

Mass Roof

Offline Training

0> | Training [Parameter Estimation CNNs

~

Mass1 Mass 2

3D model and

Refinement

Interactive Sketching of Urban Procedural Models, Nishida et al.

o Tt .
IOKYO

http://geometry.cs.ucl.ac.uk/creativeai/

~ 1
¢ SIGERAPH SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics
@]
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CreativeAl: Deep Learning for Graphics

Motion and Physics

Niloy Mitra lasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

Artificial Intelligence Research Technische Universitét Minchen

Timetable

Niloy lasonas Paul Nils Tobias
Introduction X X X X X
(%]
> Theory X X
S a
2 - NN Basics X X
= c
® Alternatives to Direct Supervision X
15 min. break
< Feature Visualization X
(]
35_ Image Domains X X
o
g 3D Domains X X
©
) Motion and Physics X X
ﬁ ?Jgﬁlqzﬂig SIGGRAPH Asia Course CreativeAl: Deep Learning for Graphics 2
| OKY O
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Deep Learning for Fluids (side credit: Nils Thuerey)

warm-up s 1 6t-block

(a) Color (b) Ground Truth

sammrreonl B . o
i @{ " H 2 ] N
‘ 1 IR ‘ s 9
O T e | 100 %
= » (c) Open-Loop (d) Closed-Loop

Tompson et. al 2017 Long et. al 2017 Schenck et. al 2017

High Resolution Simulation of Liquids

(slide credit: Nils Thuerey)

Latent-space encoding Volumetric decoding
Temporal prediction

[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, arXiv 2018]
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(slide credit: Nils Thu

Examples from training data set, 64°

(slide credit: Nils Thuerey)
Further Examples, 1283
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Example input Example target (4x)

\

Down-sample

= s
[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]

|

Architecture Overview

Xa o

& SICERAPH
inzon
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Architecture Overview (slide credit: Nils Thuerey)

Architecture Overview (slide credit: Nils Thuerey)

Xa

Xt-1
Xt

Xt=1

“Loss” for generator

o Y
OKY O 10
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Architecture Overview (slide credit: Nils Thuerey)

Xa

Xt-1

Advection encoded in loss for G

ﬁsmmwlu
ASIA 2618
| OKY O 11
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Learning Rolling Motion

¢3||3ERA|JH ;
ASIA 2018 2
| OKY O 3

Learning Rolling Motion

Extrapolation results without angular velocity

Ellipsoid
Extrapolation wo /angular velocity
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Nicholas Watters, Andrea Tacchetti, Theophane Weber, Razvan Pascanu, Peter Battaglia, Daniel Zoran (DeepMind): Visual Interaction Networks, NIPS 2017

EEENPE w/o EEEIFS w/o HIEVIN w/o BB PosNet w/o EEBDispNet w/o HEEBProbNet w/o

) EENPE IS P osNet I DispNet I ProbNet
Trmm =20
20
0 ivavaV V4
Hemispherical T, =40 Ellipsoidal
40 g
20
0 ispl 1 Ell lal
. emispherica ipsoida
Image resolution: 128x15[8 ! proite
ours

http://geometry.cs.ucl.ac.uk/creativeai/

SIGERAPH ) ) : :
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