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CreativeAI: Deep Learning for Graphics Course Content and Syllabus

Abstract

In computer graphics, many traditional problems are now be�er handled by deep-learning based data-driven methods. In
applications that operate on regular 2D domains, like image processing and computational photography, deep networks are
state-of-the-art, beating dedicated hand-cra�edmethods by signi�cant margins. More recently, other domains such as geometry
processing, animation, video processing, and physical simulations have bene�ted from deep learning methods as well. �e
massive volume of research that has emerged in just a few years is o�en di�cult to grasp for researchers new to this area. �is
tutorial gives an organized overview of core theory, practice, and graphics-related applications of deep learning.

1 Course Content and Syllabus
Introduction (10 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 3

Niloy J. Mitra, Iasonas Kokkinos, Paul Guerrero, Nils �uerey and Tobias Ritschel

�eory (30 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 15

Niloy J. Mitra and Nils �uerey

Neural Network Basics (30 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 62

Niloy J. Mitra and Iasonas Kokkinos

Alternatives to Direct Supervision (30 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 154

Paul Guerrero

(15 min. break)

Feature Visualization (15 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 182

Tobias Ritschel

Image Domains (30 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 187

Iasonas Kokkinos and Tobias Ritschel

3D Domains (30 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 207

Paul Guerrero and Tobias Ritschel

Motion and Physics (30 min.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 241

Nils �uerey and Niloy J. Mitra
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CreativeAI: Deep Learning for Graphics About the Lecturers

2 About the Lecturers
Niloy J. Mitra leads the Smart Geometry Processing group in the Department of Computer Science at University College
London. He received his PhD degree from Stanford University. His research interests include shape analysis, geometry pro-
cessing, and computational design and fabrication. Niloy received the ACM Siggraph Signi�cant New Researcher Award in
2013 and the BCS Roger Needham award in 2015. His work has twice been selected and featured as research highlights in
the Communication of ACM, received best paper award at ACM Symposium on Geometry Processing 2014, best so�ware SGP
2017, and Honourable Mention at Eurographics 2014.

Iasonas Kokkinos obtained the Diploma of Engineering in 2001 and the Ph.D. Degree in 2006 from the School of Electrical
and Computer Engineering of the National Technical University of Athens in Greece, and the Habilitation Degree in 2013
from Universit Paris-Est. He is currently a faculty at the University College London and Facebook AI Research (FAIR). His
research activity is currently focused on deep learning for computer vision, focusing in particular on structured prediction for
deep learning and multi-task learning architectures. He has been awarded a young researcher grant by the French National
Research Agency, has served as associate editor for the Image and Vision Computing journal and the Computer Vision and
Image Understanding journal, and serves regularly as a reviewer and area chair for all major computer vision conferences and
journals.

Paul Guerrero is a Post-Doc at University College London, working on shape analysis and image editing, combining meth-
ods from machine learning, optimization, and computational geometry. He received his PhD in computer science from Vienna
University of Technology. Paul has published several research papers in high-quality journals, is a regular reviewer fo confer-
ences and journals, and a conference IPC member.

Nils �uerey is an Associate Professor at the Technical University of Munich (TUM). He works in the �eld of computer
graphics, with a particular emphasis on physics simulations and deep learning algorithms. A�er studying computer science,
Nils �uerey acquired a PhD on liquid simulations in 2006 (both at the University of Erlangen-Nuremberg). Until 2010 he held
a position as a post-doctoral researcher at ETH Zurich. He received a tech-Oscar from the AMPAS in 2013 for his research on
controllable smoke e�ects. Subsequently, he worked for three years as R&D lead at ScanlineVFX, before he started at TUM in
October 2013.

Tobias Ritschel is a Senior Lecturer at University College London. Previously he was a junior research group leader at
the Max Planck Center for Visual Computing and Communication at Max Planck Institut Informatik. His interests include
interactive and non-photorealistic rendering, human perception, and data-driven graphics. Ritschel received a PhD in com-
puter graphics from Max Planck Institut Informatik. In 2011, he received the Eurographics PhD dissertation award and the
Eurographics Young Researcher Award in 2014.
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People
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CreativeAI: Deep Learning for Graphics Part 1: Introduction
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Timetable

3

Niloy Iasonas Paul Nils Tobias

Introduction X X X X X

Theory X X

NN Basics X X

Alternatives to Direct Supervision X

15 min. break

Feature Visualization X

Image Domains X X

3D Domains X X

Motion and Physics X X
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Code Examples

PCA/SVD basis

Linear Regression

Polynomial Regression

Stochastic Gradient Descent vs. Gradient Descent

Multi-layer Perceptron

Edge Filter ‘Network’

Convolutional Network

Filter Visualization

Weight Initialization Strategies

Colorization Network

Autoencoder

Variational Autoencoder

Generative Adversarial Network

4
http://geometry.cs.ucl.ac.uk/dl4g/

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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Two-way Communication

• This tutorial is given for the first time!

• Our aim is to convey what we found to be relevant so far.

• You are invited/encouraged to give feedback
• On-line form

• Speakup. Please send us your criticism/comments/suggestions

• Ask questions, please!

• Thanks to many people who helped so far with slides/comments.

5

Course Overview

• Part I: Introduction and ML Basics

• Part II: Supervised Neural Networks: Theory and Applications

• Part III: Unsupervised Neural Networks: Theory and Applications

• Part IV: Beyond Image Data

6

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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Representations in CG

• Images (e.g., pixel grid)

• Volume (e.g., voxel grid)

• Meshes (e.g., vertices/edges/faces)

• Animation (e.g., skeletal positions over time; cloth dynamics over time)

• Pointclouds (e.g., point arrays)

• Physics simulations (e.g., fluid flow over space/time)

7

Problems in Computer Graphics

• Feature detection (image features, point features)

• Denoising, Smoothing, etc. 

• Embedding, Distance computation

• Rendering

• Animation

• Physical simulation

• Generative models

8

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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Rise of Machine Learning

9

neural network

machine learning

artificial intelligence
NN

ML

AI

Data-driven Algorithms (Supervised)

1
0

Labelled data
(supervision data)

Test data
(run-time data)

PredictionTrained model

ML algorithm

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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Data-driven Algorithms (Supervised)

1
1

Labelled data
(supervision data)

Test data
(run-time data)

PredictionTrained model

ML algorithm

Validation data
(supervision data)converged?

Implementation Practice: Training: 70%; Validation: 15%; Test 15% 

Data-driven Algorithms (Unsupervised)

1
2

Training data

Test data
(run-time data)

PredictionTrained model

ML algorithm

Validation dataconverged?

Implementation Practice: Training: 70%; Validation: 15%; Test 15% 

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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Various ML Approaches (Supervised approaches)

1
3

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Rise of Learning

• 1958: Perceptron

• 1974: Backpropagation

• 1981: Hubel & Wiesel wins Nobel prize for ‘visual system’

• 1990s: SVM era

• 1998: CNN used for handwriting analysis

• 2012: AlexNet wins ImageNet

1
4

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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Rise of Machine Learning (in Graphics)

15

machine learning

neural network

2013 2017 2013 2017

What is Special about Graphics?

• Image Processing (image translation tasks)

• Many sources of input data — model building
(e.g., images, scanners, motion capture)

• Many sources of synthetic data — can serve as supervision data
(e.g., rendering, animation)

• Many problems in generative models

1
6

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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End-to-end: Features

• Old days
• First some handy features were extracted, e.g. edges or corners (hand-crafted)

• Second, some AI was ran on that features (optimized)

• Now
• End-to-end

• Move away from hand-crafted representations

1
7

End-to-end: Loss

• Old days
• Evaluation came after  

• It was a bit optional:
• You might still have a good algorithm without a good way of quantifying it

• Evaluation helped publishing

• Now
• It is essential and build-in

• If the loss is not good, the result is not good

• Evaluation happens automatically

• While still much is left to do, this makes graphics much more reproducable

1
8

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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End-to-end: Data

• Old days
• Test with some toy examples

• Deploy on real stuff

• Maybe collect some data later

• Now
• Test and deploy need to be as identical as you can

• Need to collect data first

• No two steps

1
9

Examples in Graphics

2
0

Rendering

Image 
manipulation

Geometry

Animation

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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Examples in Graphics

2
1

Sketch
simplification

Colorization

Mesh segmentation

Real-time rendering

Denoising

Boxification

Procedural
modelling

BRDF estimation

Facial animation

Animation

Fluid

Rendering

Image 
manipulation

Geometry

Animation

PCD processing

Learning
deformations

Examples in Graphics

2
2

Sketch
simplification

Colorization

Mesh segmentation

Real-time rendering

Denoising

Boxification

Procedural
modelling

BRDF estimation

Facial animation

Animation

Fluid

PCD processing

Learning
deformations

CreativeAI: Deep Learning for Graphics Part 1: Introduction
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CreativeAI: Deep Learning for Graphics

Theory

Timetable

2

Niloy Iasonas Paul Nils Tobias

Introduction X X X X X

Theory X X

NN Basics X X

Alternatives to Direct Supervision X

15 min. break

Feature Visualization X

Image Domains X X

3D Domains X X

Motion and Physics X X
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Machine Learning

Machine learning is a field of computer science that uses statistical
techniques to give computer systems the ability to learn (i.e., progressively
improve performance on a specific task) with data, without being explicitly

programmed.

‘ML’ coined by Arthur Samuel, 1959.

3

data model building prediction

Machine Learning Variants

• Supervised

• Classification

• Regression

• Data consolidation

• Unsupervised

• Clustering

• Dimensionality Reduction

• Weakly supervised/semi-supervised

Some data supervised, some unsupervised

• Reinforcement learning 

Supervision: sparse reward for a sequence of decisions

4

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Machine Learning Variants

• Supervised

• Classification

• Regression

• Data consolidation

• Unsupervised

• Clustering

• Dimensionality Reduction

• Weakly supervised/semi-supervised

Some data supervised, some unsupervised

• Reinforcement learning 

Supervision: sparse reward for a sequence of decisions

5

Classification Examples

• Digit Recognition

• Spam Detection

• Face detection

6

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Segmentation + Classification in Real Images

7

Evaluation measures: Confusion matrix, ROC curve, precision, recall, etc. 

`Faceness’ Function: Classifier

8

decision boundary

face

background

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Face Detection 

9

C
M

U
 Scie

n
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 Lab

Machine Learning Variants

• Supervised

• Classification

• Regression

• Data consolidation

• Unsupervised

• Clustering

• Dimensionality Reduction

• Weakly supervised/semi-supervised

Some data supervised, some unsupervised

• Reinforcement learning 

Supervision: sparse reward for a sequence of decisions

10

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Human Face/Pose Estimation

11

[Blanz and Vetter, Siggraph, 1999]

Regression: Model Estimation

12

[Zwicker et al., EGSR, 2005][Guennebaud et al., Siggraph, 2007]

[Mitra et al. SoCG, 2003]

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Machine Learning Variants

• Supervised

• Classification

• Regression

• Data consolidation

• Unsupervised

• Clustering

• Dimensionality Reduction

• Weakly supervised/semi-supervised

Some data supervised, some unsupervised

• Reinforcement learning 

Supervision: sparse reward for a sequence of decisions

13

Clustering: Color Points According to X

14

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Clustering Examples: Image Segmentation using NCuts

15

Clustering Examples

16

[Chu et al., TVCG, 2009] [Zheng et al., Eurographics, 2014]

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Machine Learning Variants

• Supervised

• Classification

• Regression

• Data consolidation

• Unsupervised

• Clustering

• Dimensionality Reduction

• Weakly supervised/semi-supervised

Some data supervised, some unsupervised

• Reinforcement learning 

Supervision: sparse reward for a sequence of decisions

17

Dimensionality Reduction (Manifold Learning)

18
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[Averkiou et al., Eurographics, 2014]

[Yang et al., TOG, 2011]
[Tenenbaum et al., Science, 2000]

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Example of Nonlinear Manifold: Faces

19

X

Morphing (Interpolation in Shape Space)

20[Kilian et al., Siggraph, 2007]

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Moving Along Learned Face Manifold

21

Trajectory along the “male” dimension

Trajectory along the “young” dimension

[Lample et. al. Fader Networks, NIPS 2017]

Notations: Vectors and Matrices

• linear independence; rank of a matrix

• span of a matrix

22

vector

matrix

linear
equation

inner prod. 

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Notations: Vectors and Matrices (cont.)

23

range

null space

Eigenvectors and Eigenvalues

• All eigenvalues of symmetric matrices are real.

• Any real symmetric nxn matrix has a set of n mutually orthogonal 
eigenvectors. 

24

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Code Example

25

Morphable Faces

26

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Singular Value Decomposition (SVD)

• Very useful for matrix manipulation.

• Used for robust numerical computation.

27

rotationscaling

Code Example

28

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Differentiation (chain rule recap)

29

Derivative Matrix

30

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Regression: Continuous Output

31

Learning a Function

32

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Learning a Function

33

input

method

parameters

prediction

Calculus

Vector calculus

Machine learning: can work also for discrete inputs, strings, images, meshes, animations, …

Classification:

Regression:

learned

Learning a Simple Separator/Classifier

34

fixed non-linearity

separating hyperplane

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Combining Simple Functions/Classifiers

35

convex region

Combining Simple Functions/Classifiers

36

complex polygons

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Learning a Function: Modeling

37

input

method

parameters

prediction

Regression

1. Least Squares fitting

2. Nonlinear error function and gradient descent

3. Perceptron training

38

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Regression

1. Least Squares fitting

2. Nonlinear error function and gradient descent

3. Perceptron training

39

Assumption: Linear Function

40

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Reminder: Linear Classifier

41

feature coordinate
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labelled input

supervised setting

Which Line to Pick?

42

feature coordinate
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labelled input

supervised setting

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Linear Regression in 1D

43

Training set: input–output pairs

noise

Linear regression in 1D

44

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Sum of Square Errors (MSE without the mean)

45

Loss function: sum of squared errors

In two variables: 

Question: what is the best (or least bad) value of w?

Calculus 101

46

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Local Extrema Condition

47

Local Extrema Condition

48

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Vector Calculus 101

49

2D function graph isocontours gradient field

at minimum of function:

Line Fitting

50

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Line Fitting (continued)

51

Line Fitting (continued)

52

2x2 system 
of equations

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Line Fitting (continued)

53

Code Example

54

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Linear Regression (Line/Plane Fitting)

55

LS Solution for Regression

56

CreativeAI: Deep Learning for Graphics Part 2: �eory
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known nonlinearity

Generalized Linear Regression

57

1D Example: k-th Degree Polynomial Fitting

58

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Generalized Linear Regression 

59

Nx1 NxM Mx1 Nx1

LS Solution for Linear Regression

60

CreativeAI: Deep Learning for Graphics Part 2: �eory
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LS Solution for Generalized Linear Regression

Code Example

62

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Underfitting vs. Overfitting

63
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Tuning Model’s Complexity

64

A flexible model approximates the target function well in the training set

but can “overtrain” and have poor performance on the test set (“variance”).

A rigid model’s performance is more predictable in the test set

but the model may not be good even on the training set (“bias”).

CreativeAI: Deep Learning for Graphics Part 2: �eory

46



Regularized Linear Regression

66

residual vector

linear regression: minimize model error

Complexity term:
(regularizer) 

scalar, remains to be determinedminimum remains to be determined

“data fidelity” complexity

Least Squares Solution

67

Condition for minimum: 

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Ridge regression: L2-regularized Linear Regression

68

as before, for linear regression identity matrix

Condition for minimum: 

Bias-Variance Tradeoff (function of λ)

69

sweet spot!

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Selecting λ with Cross-validation

• Cross validation technique
• Exclude part of the training data from parameter estimation

• Use them only to predict the test error 

• K-fold cross validation:
• K splits, average K errors

• Use cross-validation for different values of λ
• pick value that minimizes cross-validation error

70

Least glorious, most effective of all methods

Form of posterior distribution

71

Sigmoidal:

“squashing function”: 

Bernoulli-type conditional distribution

Particular choice of form of f:

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Logistic vs Linear Regression

72

Logistic Regression Linear Regression

From Two to Many

• How about multi-class classification?

73

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Multiple Classes & Linear Regression

74

C classes: one-of-c coding (or one-hot encoding) 4 classes, i-th sample is in 3rd class:

Matrix notation:

Loss function:

Least squares fit (decouples per class):

where

Class 1 Class 2 Class 3

75

Nothing ever gets assigned to class 2!

2D version:

One linear discriminant per class:

Linear Regression Masking Problem

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Multiple classes & Logistic regression

76

Soft maximum (softmax) of competing classes:

Softmax (outputs)Discriminants (inputs)

Logistic vs Linear Regression, n>2 classes

77

Logistic regression does not exhibit the masking problem

Linear regression Logistic regression

CreativeAI: Deep Learning for Graphics Part 2: �eory
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LS Solution (in vector form)

78

Condition for minimum: 

Gradient of Cross-entropy Loss

79

using

nonlinear system of equations!!

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Fact: gradient at any point gives direction of fastest increase

Gradient Descent Minimization

80

Idea: start at a point and move in the direction opposite to the gradient

Fact: gradient at any point gives direction of fastest increase

Gradient Descent Minimization

81

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Idea: start at a point and move in the direction opposite to the gradient

Fact: gradient at any point gives direction of fastest increase

Gradient Descent Minimization

82

Idea: start at a point and move in the direction opposite to the gradient

Fact: gradient at any point gives direction of fastest increase

Gradient Descent Minimization

83

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Idea: start at a point and move in the direction opposite to the gradient

Fact: gradient at any point gives direction of fastest increase

Gradient Descent Minimization

84

Update: i=0

Initialize:

Gradient Descent Minimization

85

Update: i=1

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Gradient Descent Minimization

86

Update: i=1

Gradient Descent Minimization

87

Update: i=2

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Gradient Descent Minimization

88

Update: i=2

Update: i=3

Gradient Descent Minimization

89

CreativeAI: Deep Learning for Graphics Part 2: �eory
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Gradient Descent Minimization

90

Initialize:

Update:

We can always make it converge for a convex function.

convex non-convex

XOR Problem

91

0 0 0

0 1 1

1 0 1

1 1 0

X

CreativeAI: Deep Learning for Graphics Part 2: �eory
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XOR Problem

92

0 0 0

0 1 1

1 0 1

1 1 1

0 0 0

0 1 0

1 0 0

1 1 1

0 0 0

1 0 1

1 0 1

1 1 0

XOR Problem

93

CreativeAI: Deep Learning for Graphics Part 2: �eory
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XOR Problem

94
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Neural Network Basics

Timetable

2

Niloy Iasonas Paul Nils Tobias

Introduction X X X X X

Theory X X

NN Basics X X

Alternatives to Direct Supervision X

15 min. break

Feature Visualization X

Image Domains X X

3D Domains X X

Motion and Physics X X
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CreativeAI: Deep Learning for Graphics Part 3: Neural Network Basics
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Introduction to Neural Networks

Examples:

: function parameters,
these are learned

: source domain : target domain

Image Classification:
: image dimensions : class count

Image Synthesis:
: image dimensions: latent variable count

Goal: Learn a Parametric Function
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Feature coordinate 

Fe
at

u
re

 c
o

o
rd

in
at

e

Each data point has a class label:

Machine Learning 101: Linear Classifier

Sec. 15.2.3

Nonlinear decision boundaries
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Given a library of simple functions

Compose into a

complicated function

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Building A Complicated Function

Given a library of simple functions

Compose into a

complicated function

Idea 1: Linear Combinations

• Boosting

• Kernels

• …

Building A Complicated Function
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Given a library of simple functions

Compose into a

complicated function

Idea 2: Compositions

• Decision Trees

• Deep Learning

Building A Complicated Function

Given a library of simple functions

Compose into a

complicated function

Idea 2: Compositions

• Decision Trees

• Grammar models

• Deep Learning  

Building A Complicated Function
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Sigmoidal activation 

basic building block

‘Neuron’: Cascade of Linear and Nonlinear Function

Sigmoidal (“logistic”)Step (“perceptron”) Hyperbolic tangent Rectified Linear Unit
(RELU)

function

derivative

Image Credit: Olivier Grisel and Charles Ollion

Activation functions

CreativeAI: Deep Learning for Graphics Part 3: Neural Network Basics

67



non-adaptive

hand-coded

features

output units  e.g. 

class labels

input units 

e.g. pixels

Apple Orange

Fixed 

mapping

Slide credit: G. Hinton

Perceptrons (60’s)

XOR: perceptron killer

input vector

hidden 

layers

outputs

Slide credit: G. Hinton

Multi-Layer Perceptrons (~1985)
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Sec. 15.2.3

This is what the hidden layers
should be doing! 

Reminder: Non-linear decision boundaries

Evolution of isocontours as parameters change

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Nonlinear mapping
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Non-linearly 

separable data
Data mapped to

learned space 
Decision function

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

From non-separable to linearly separable

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linearizing a 2D classification task (4 hidden layers)
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Points in 1D, 

Decision in 2D

Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Intuition: learn “dictionary” for objects

“Distributed representation”:
represent (and classify) objects by mixing & mashing reusable parts 

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Hidden Layers: intuitively, what do they do?
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“car”

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Deep Learning = Hierarchical Compositionality

Trainable 

Classifier

Low-Level

Feature

Mid-Level

Feature

High-Level

Feature

“car”

Deep Learning = Hierarchical Compositionality
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MLP Demo: playground.tensorflow.org

Training and Optimization
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Residual Networks

Old: 

New: (last 5-6 years)

Back-propagation algorithm

Neural Network Training: Old & New Tricks

Our network implements a parametric function:

During training, we search for parameters that minimize a loss:

Example: L2 regression loss given target                pairs :

Training Goal
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Initialize:

Update:

We can always make it converge for a convex function

Gradient Descent Minimization Method

Empirically all are almost equally good

Central research topic: how can this happen?

On to the gradients!

Multiple Local Minima, based on initialization
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Forward

Backward

All you need is gradients

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Chain Rule
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Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Chain Rule

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

‘Another Brick in the Wall’
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Composition of differentiable blocks: 

Toy example: single sigmoidal unit 

Computation graph & automatic differentiation

Slide Credit: Justin Johnson
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input vector

hidden 

layers

outputs

Multi-Layer Perceptrons

Slide Credit: G. Hinton

input vector

hidden 

layers

outputs

Back-propagate                

error signal to get 

derivatives for 

learning

Compare outputs 

with correct answer

to get error signal

Multi-Layer Perceptrons

Slide Credit: G. Hinton
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Back-propagation Algorithm

Our network implements a parametric function:

During training, we search for parameters that minimize a loss:

Example: L2 regression loss given target                pairs :

Training Goal
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Inputs Outputs

Hidden layer

Parameters:

A Neural Network for Multi-way Classification 

Inputs Outputs

Hidden layer

A Neural Network in Forward Mode
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Inputs Outputs

Hidden layer

A Neural Network in Forward Mode

Inputs

Hidden layer

Outputs

A Neural Network in Forward Mode
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Inputs

Hidden layer

Outputs

A Neural Network in Forward Mode

Outputs
Ground

truth

Objective for linear regression
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Outputs

Softmax unit

Ground

truth

`Cross-entropy’ loss

Objective for multi-class classification

Network output:

Loss (prediction error):  

What we need to compute for gradient descent: 

Neural network in forward mode: recap
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Outputs

A Neural Network in Backward Mode

Hidden layer

Outputs

This we want

?

A Neural Network in Backward Mode
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Hidden layer

Outputs

This we want

?

A Neural Network in Backward Mode

Linear Layer in Forward Mode: All For One
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Linear Layer in Backward Mode: One From All

Linear Layer Parameters in Backward: 1-to-1
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Outputs

This we want

Hidden layer

This we have
This we computed

A Neural Network in Backward Mode

Hidden layer

Outputs

This we want This we have
This we computed

A Neural Network in Backward Mode
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Hidden layer

Outputs

A Neural Network in Backward Mode

Hidden layer

Outputs

A Neural Network in Backward Mode
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: 

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

Back-propagation algorithm

Back-prop for 

i-th example

If N=106 , we will need to run back-prop 106  times to update W once!

Gradient descent:

(l,k,m) element of gradient vector:

Per-sample loss
Per-layer regularization

Training Objective for N training samples
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Gradient:

Noisy (‘Stochastic’) Gradient: b(1), b(2),…, b(B): sampled from [1,N]Minibatch: B elements

Epoch: N samples, N/B batches

Batch: [1..N]

Stochastic Gradient Descent (SGD)

Back-prop on minibatch ‘’Weight decay’’

Gradient:

Noisy (‘Stochastic’) Gradient: b(1), b(2),…, b(B): sampled from [1,N]Minibatch: B elements

Epoch: N samples, N/B batches

Batch: [1..N]

Regularization in SGD: Weight Decay
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Learning rate

Gradient Descent
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e.g.

(S)GD with adaptable stepsize

Main idea: retain long-term trend of updates, drop oscillations

(S)GD

(S)GD + momentum

(S)GD with momentum
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• Nesterov’s Accelerated Gradient (NAG)

• R-prop 

• AdaGrad

• RMSProp

• AdaDelta

• Adam

• …

Step-size Selection & Optimizers: research problem

Code example 

68

Multi-layer perceptron classification
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

Linearization: may need higher dimensions

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Reminder: Overfitting, in images
Classification

Regression

just right

Per-sample loss Per-layer regularization

Previously: l2 Regularization
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Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers

But: they should all do the same job

Dropout

‘Feature noising’

Dropout block
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Test time: Deterministic Approximation

Dropout Performance
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Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

Sigmoidal (“logistic”) Rectified Linear Unit (RELU)

‘Neuron’: Cascade of Linear and Nonlinear Function
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Outputs

Gradient signal 

from above
scaling: <1  (actually <0.25)

Reminder: a network in backward mode

Gradient signal 

from above scaling: <1  (actually <0.25)

Do this 10 times: updates in the first layers get minimal

Top layer knows what to do, lower layers “don’t get it”

Sigmoidal Unit: Signal is not getting through! 

Vanishing Gradients Problem
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Scaling: {0,1}Gradient signal 

from above

Vanishing Gradients Problem: ReLU Solves It

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization

Old: (80’s)

New: (last 5-6 years)

Neural Network Training: Old & New Tricks

CreativeAI: Deep Learning for Graphics Part 3: Neural Network Basics

102



10 am 2pm 7pm

External Covariate Shift: your input changes

• Make each patch have zero mean:

• Then make it have unit variance:

Photometric  transformation:   I  a I + b

“Whitening”: Set Mean = 0, Variance = 1
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Neural network activations during training: moving target

Internal Covariate Shift

Whiten-as-you-go: 

Batch Normalization
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Batch Normalization: used in all current systems

Convolutional Neural Networks
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Example:  200x200 image

40K hidden units

~2B parameters!!!

- Spatial correlation is local

- Waste of resources 

- we have not enough training samples anyway..

Fully-connected Layer

Example: 200x200 image

40K hidden units

Filter size: 10x10

4M parameters

Locally-connected Layer

Note: This parameterization is good 

when input image is registered (e.g., 

face recognition).
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Note: This parameterization is good 

when input image is registered (e.g., 

face recognition).

Example: 200x200 image

40K hidden units

Filter size: 10x10

4M parameters

Locally-connected Layer

Share the same parameters across 

different locations (assuming input is 

stationary):

Convolutions with learned kernels

Convolutional Layer
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Convolutional Layer

Convolutional Layer
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Convolutional Layer

Convolutional Layer
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Convolutional Layer

Convolutional Layer

CreativeAI: Deep Learning for Graphics Part 3: Neural Network Basics

110



Convolutional Layer

Convolutional Layer
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Convolutional Layer

Convolutional Layer
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Convolutional Layer

Convolutional Layer
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Convolutional Layer

Convolutional Layer
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Convolutional Layer

Convolutional Layer
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Fully-connected layer

#of parameters: K2

#of parameters: size of window 

Convolutional layer
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*        
-1  0  1

-1  0  1

-1  0  1
=        

Convolutional layer

Code example 

Learning an edge filter

112
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Learn multiple filters.

E.g.: 200x200 image

100 Filters

Filter size: 10x10

10K parameters

Convolutional layer

Conv.

layer
h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output 

feature map

input feature 

map

kernel

Convolutional layer
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h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output 

feature map

input feature 

map

kernel

Convolutional layer

h1

n− 1

h2

n− 1

h3

n− 1

h1
n

h2
n

output 

feature map

input feature 

map

kernel

Convolutional layer
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Pooling layer

Pooling layer
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Pooling layer: receptive field size

Pooling layer: receptive field size
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Receptive field

Receptive field: layer 1
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Receptive field: layer 2

Receptive field: layer 3
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Receptive field: layer 4

Receptive field: layer 5
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Receptive field: layer 6

Receptive field: layer 7
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Receptive field: layer 8

Modern Architectures
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

Gradient-based learning applied to document recognition. 
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998

https://www.youtube.com/watch?v=FwFduRA_L6Q

CNNs, late 1980’s: LeNet

deep learning = neural networks (+ big data  + GPUs) + a few more recent tricks!

What happened in between?
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AlexNet
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton:
ImageNet classification with deep convolutional neural 
networks. Commun. ACM 60(6): 84-90 (2017)

CNNs, 2012

Karen Simonyan, Andrew Zisserman (=Visual Geometry Group)
Very Deep Convolutional Networks for Large-Scale Image Recognition, 
arxiv, 2014.

CNNs, 2014: VGG
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Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, 
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
Going Deeper with Convolutions, CVPR 2015

CNNs, 2014: GoogLeNet

ResNet
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,
Deep Residual Learning for Image Recognition 
CVPR 2016

CNNs, 2015: ResNet
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• Deeper networks can cover more complex problems
• Increasingly large receptive field size & rich patterns 

The Deeper, the Better

• From 2 to 10: 2010-2012
• ReLUs

• Dropout

• …

Going Deeper

CreativeAI: Deep Learning for Graphics Part 3: Neural Network Basics

130



• From 10 to 20: 2015
• Batch Normalization

Going Deeper

• From 20 to 100/1000
• Residual networks

Going Deeper
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• Plain nets: stacking 3x3 conv layers

• 56-layer net has higher training error and test error than 20-layer net

Plain network: deeper is not necessarily better

• Naïve solution
• If extra layers are an identity mapping, 

then  training errors can not increase

Residual Network
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• Goal: estimate update between an original image and a changed 
image 

Some 

Network
residual

Preserving base information

can treat 

perturbation 

Residual Modelling: Basic Idea in Image Processing

• Plain block
• Difficult to make identity mapping 

because of multiple non-linear 
layers

Residual Network
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• Residual block
• If identity were optimal, easy to set 

weights as 0

• If optimal mapping is closer to identity, 
easier to find small fluctuations

Appropriate for treating perturbation as 
keeping a base information

Residual Network

• Deeper ResNets have lower training error

Residual Network: deeper is better
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Residual Network: deeper is better

CNNs, 2017: DenseNet

Densely Connected Convolutional Networks, CVPR 2017
Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

Recently proposed, better performance/parameter ratio
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Image-to-Image 

Image-to-image

• So far we mapped an image image to a number or label

• In graphics, output often is “richer”:
• An image

• A volume

• A 3D mesh

• …

• Architectures
• Encoder-Decoder

• Skip connections
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FCNN

Fully-convolutional Neural Networks

FCNN

Fully-convolutional Neural Networks
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FCNN

Fully-convolutional Neural Networks

FCNN

Fully-convolutional Neural Networks
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FCNN

Fast     (shared convolutions) 

Simple (dense)

Fully-convolutional Neural Networks

FCNN

Fast (shared convolutions) 

Simple (dense)

Low resolution

32-fold decimation 

224x224 to 7x7

Fully Convolutional Neural Networks in Practice
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https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

Receptive field arithmetic

downsample x 2 convolve ‘implant’ in image coordinates

filter ’atrous’

S. Mallat, An introduction to wavelets, 1989

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, Alan L. Yuille

Atrous convolution
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F. Yu, V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016

Atrous convolution = Dilated Convolution

Graphics: Multiresolution
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Encoder-decoder

S
p

a
c
e

S
p

a
c
e

Features

Interpretation

• Turns image into vector

• This vector is a very compact and abstract “code”

• Turns code back into image
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Encoder-decoder

Learning to simplify. Simo-Serra et al. 2016

Up-sampling

• We saw
• … how to keep resolution

• … how to reduce it with pooling

• But how to increase it again?

• Options
• Interpolation

• Padding (insert zeros)

• Transpose convolutions
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Encoder-decoder + Skip connections

• 1st: Reduce resolutions as before

• 2nd: Increase resolution

• Transposed convolutions

U-Net: Convolutional Networks for Biomedical Image Segmentatio. Ronneberger et al. 2015

Encoder-decoder with skip connections

Features

Skip link

S
p

a
c
e

S
p

a
c
e
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Interpretation

• Turns image into vector

• Turns vector back into image

• At every step of increasing the resolution, check back with the input to 
preserve details

• Familiar trick to graphics people
• (Haar) wavelet

• Residual coding

• Pyramidal schemes (Laplacian pyramid, etc.)

Deep Learning Frameworks
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…

(Python)

(Python, C++, Java)

(C++, Python, Matlab)

(Python, backends support other languages)

Main frameworks

Currently less frequently used

(Python,
C++, C#)

(Python, C++,
and others)

(Matlab) (Python, Java,
Scala)

(Python) (Python, C++)(Python)

Popularity

Google Trends for search terms: “[name] tutorial”

Google Trends for search terms: “[name] github”
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Typical Training Steps

for i = 1 .. max_iterations

input, ground_truth = load_minibatch(data, i)

output = network_evaluate(input, parameters)

loss = compute_loss(output, ground_truth)

# gradients of loss with respect to parameters
gradients = network_backpropagate(loss, parameters)

parameters = optimizer_step(parameters, gradients)

Tensors

• Frameworks typically represent data as tensors

• Examples:

feature channels C

spatial width W

spatial height H

batches B

4D convolution kernel: OC x IC x KH x KW4D input data: B x C x H x W

input channels IC

kernel height KH

kernel width KW

output channels OC
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What Does a Deep Learning Framework Do?

• Tensor math

• Common network operations/layers

• Gradients of common operations

• Backpropagation

• Optimizers

• GPU implementations of the above

• usually: data loading, network parameter saving/loading

• sometimes: distributed computing

Automatic Differentiation & the Computation Graph

parameters = (weight, bias)

output = σ(weight * input + bias)

loss = (output - ground_truth)^2

# gradients of loss with respect to parameters
gradients = backpropagate(loss, parameters)

weight

input

bias +

*

ground_truth

-

^

2

loss

output
σ

𝑜1

𝑜2

𝑜3

+

*
𝜕 loss

𝜕 weight

-

^

loss

σ

𝜕 loss

𝜕 bias

𝜕 loss

𝜕 𝑜1

𝜕 loss

𝜕 𝑜2

𝜕 loss

𝜕 output

𝜕 loss

𝜕 𝑜3

forward pass backward pass

Since loss is a scalar, the gradients
are the same size as the parameters
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Automatic Differentiation & the Computation Graph

𝑓

inputs

outputs

𝑓

outputs = forward(inputs, parameters)

𝜕 loss

𝜕 parameters

𝜕 loss

𝜕 inputs

𝜕 loss

𝜕 outputs

parameters

𝜕 loss
𝜕 inputs

, 𝜕 loss
𝜕 parameters

= backward( 𝜕 loss
𝜕 outputs

)

Static vs Dynamic Computation Graphs

• Static analysis allows optimizations and distributing workload

• Dynamic graphs make data-driven control flow easier

• In static graphs, the graph is usually defined in a separate ‘language’

• Static graphs have less support for debugging

Static Dynamic

define once,
evaluate during training

define implicitly by running operations,
a new graph is created in each evaluation

x = Variable()
loss = if_node(x < parameter[0],

x + parameter[0],
x - parameter[1])

for i = 1 .. max_iterations
x = data()
run(loss)
backpropagate(loss, parameters)

for i = 1 .. max_iterations
x = data()
if x < parameter[0]

loss = x + parameter[0]
else

loss = x – parameter[1]
backpropagate(loss, parameters)
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Tensorflow

• Currently the largest community

• Static graphs (dynamic graphs are in development: Eager Execution)

• Good support for deployment

• Good support for distributed computing

• Typically slower than the other three main frameworks on a single GPU

PyTorch

• Fast growing community

• Dynamic graphs

• Distributed computing is in development (some support is already 
available)

• Intuitive code, easy to debug and good for experimenting with less 
traditional architectures due to dynamic graphs

• Very Fast
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Keras

• A high-level interface for various backends (Tensorflow, CNTK, Theano)

• Intuitive high-level code

• Focus on optimizing time from idea to code

• Static graphs

Caffe

• Created earlier than Tensorflow, PyTorch or Keras

• Less flexible and less general than the other three frameworks

• Static graphs

• Legacy - to be replaced by Caffe2: focus is on performance and deployment
• Facebook’s platform for Detectron (Mask-RCNN, DensePose, …)
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Converting Between Frameworks

• Example: develop in one framework, deploy in another

• Currently: a large range of converters, but no clear standard

• Standardized model formats are in development
convertor tensorflow pytorch keras caffe caffe2 CNTK chainer mxnet

tensorflow -
pytorch-tf/

MMdnn

model-converters/
nn_toolsconvert-to-
tensorflow/MMdnn

MMdnn/
nn_tools

None crosstalk/MMdnn None MMdnn

pytorch
pytorch2keras (over 

Keras)
-

Pytorch2keras/
nn-transfer

Pytorch2caffe/pytorch-
caffe-darknet-convert

onnx-caffe2 ONNX None None

keras

nn_tools /convert-to-
tensorflow/keras_to_tens
orflow/keras_to_tensorflo

w/MMdnn

MMdnn/
nn-transfer

- MMdnnnn_tools None MMdnn None MMdnn

caffe
MMdnn/nn_tools/caffe-

tensorflow

MMdnn/ pytorch-
caffe-darknet-

convert/ pytorch-
resnet

caffe_weight_converter/ 
caffe2keras/nn_tools/ 

kerascaffe2keras/ 
Deep_Learning_Model_Co

nverter/MMdnn

- CaffeToCaffe2
crosstalkcaffe/CaffeConve

rterMMdnn
None

mxnet/tools/caffe_conver
ter/ResNet_caffe2mxnet/

MMdnn

caffe2 None ONNX None None - ONNX None None

CNTK MMdnn ONNX MMdnn MMdnn MMdnn ONNX - None MMdnn

chainer None chainer2pytorch None None None None - None

mxnet MMdnn MMdnn MMdnn
MMdnn/MXNet2Caffe/

Mxnet2Caffe
None MMdnn None -

from https://github.com/ysh329/deep-learning-model-convertor

MMdnn

• Standard format for models

• Native support in development 
for Pytorch, Caffe2, Chainer, 
CNTK, and MxNet

• Converter in development for 
Tensorflow

• Converters
available for
several
frameworks

• Common intermediate
representation, but no clear standard
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Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/
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Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

CreativeAI: Deep Learning for Graphics

Alternatives to Direct Supervision

Timetable

2

Niloy Iasonas Paul Nils Tobias

Introduction X X X X X

Theory X X

NN Basics X X

Alternatives to Direct Supervision X

15 min. break

Feature Visualization X

Image Domains X X

3D Domains X X

Motion and Physics X X

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics
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Unsupervised Learning

• There is no direct ground truth for the quantity of interest

• Autoencoders

• Variational Autoencoders (VAEs)

• Generative Adversarial Networks (GANs)

Autoencoders

Encoder

Input data

Goal: Meaningful features that capture the main 
factors of variation in the dataset
• These are good for classification, clustering, 

exploration, generation, …
• We have no ground truth for them 

Features

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Autoencoders

Encoder

Input data

Features
(Latent variables)

Decoder

Goal: Meaningful features that capture the main 
factors of variation
Features that can be used to reconstruct the image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

L2 Loss function: 

Autoencoders

Autoencoder

Original

PCA

Linear Transformation for Encoder and Decoder
give result close to PCA

Deeper networks give better reconstructions,
since basis can be non-linear

Image Credit: Reducing the Dimensionality of Data with Neural 

Networks, . Hinton and Salakhutdinov
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Example: Document Word Prob. → 2D Code

LSA (based on PCA) Autoencoder

Image Credit: Reducing the Dimensionality of Data with 

Neural Networks, Hinton and Salakhutdinov

Example: Semi-Supervised Classification

• Many images, but few ground truth labels

Encoder

Input data

Features
(Latent Variables)

Decoder
L2 Loss function: 

start unsupervised
train autoencoder on many images

supervised fine-tuning
train classification network on labeled images

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Features

Classifier

Predicted Label

Loss function 
(Softmax, etc)

GT Label
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Code example

9

Autoencoder

(autoencoder.ipynb)

Generative Models

• Assumption: the dataset are samples from an unknown distribution

• Goal: create a new sample from that is not in the dataset

… ?
Dataset Generated

Image credit: Progressive Growing of GANs for Improved 
Quality, Stability, and Variation, Karras et al.
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Generative Models

• Assumption: the dataset are samples from an unknown distribution

• Goal: create a new sample from that is not in the dataset

…

Dataset Generated

Image credit: Progressive Growing of GANs for Improved 
Quality, Stability, and Variation, Karras et al.

Generative Models

Generator with
parameters

known and
easy to sample from
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Generative Models

Generator with
parameters

known and
easy to sample from

1) Likelihood of data in 

2) Adversarial game:
Discriminator distinguishes

and
Generator makes it
hard to distinguish

vs

How to measure similarity of               and                     ?

Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs)

Autoencoders as Generative Models?

• A trained decoder transforms some features    
to approximate samples from

• What happens if we pick a random   ?

• We do not know the distribution          of 
features that decode to likely samples

Decoder = Generator?

Image Credit: Reducing the Dimensionality of Data with Neural 

Networks, Hinton and Salakhutdinov

ra
n

d
o

m

Feature space / latent space
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Variational Autoencoders (VAEs)

• Pick a parametric distribution           for features

• The generator maps           to an image 
distribution             (where    are parameters)

• Train the generator to maximize the likelihood 
of the data in            :

Generator with
parameters

sa
m

p
le

Outputting a Distribution

Generator with
parameters

sa
m

p
le

Generator with
parameters

sa
m

p
le

Normal distribution Bernoulli distribution
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Variational Autoencoders (VAEs):
Naïve Sampling (Monte-Carlo)

• SGD approximates the expected values over              samples

• In each training iteration, sample    from          …

• … and      randomly from the dataset, and maximize:

Variational Autoencoders (VAEs):
Naïve Sampling (Monte-Carlo)

• In each training iteration, sample    from          …

• … and      randomly from the dataset

• SGD approximates the expected values over
samples

sa
m

p
le

Generator with
parameters

Loss function: 

Random from dataset
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Variational Autoencoders (VAEs):
Naïve Sampling (Monte-Carlo)

• In each training iteration, sample    from          …

• … and      randomly from the dataset

• SGD approximates the expected values over
samples

• Few              pairs have non-zero gradients

sa
m

p
le

Generator with
parameters

Loss function: 

Random from dataset

with non-zero
loss gradient for 

Variational Autoencoders (VAEs):
The Encoder

• During training, another network can guess a 
good    for a given

• should be much smaller than 

• This also gives us the data point 

Generator with
parameters

sa
m

p
le

Encoder with
parameters 

Loss function: 
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Variational Autoencoders (VAEs):
The Encoder

• Can we still easily sample a new   ?

• Need to make sure                  approximates

• Regularize with KL-divergence

• Negative loss can be shown to be a lower bound 
for the likelihood, and equivalent if 

Generator with
parameters

sa
m

p
le

Encoder with
parameters 

Loss function: 

Example when                                                              :

Reparameterization Trick

Generator with
parameters

sa
m

p
le

Encoder with
parameters 

Backprop? Backprop

sa
m

p
le

, where

Encoder with
parameters 

Does not depend on
parameters
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Generating Data
sa

m
p

le

Generator with
parameters

sa
m

p
le

MNIST Frey Faces

Image Credit: Auto-Encoding Variational Bayes, Kingma and Welling

Demos

VAE on MNIST

http://dpkingma.com/sgvb_mnist_demo/demo.html

VAE on Faces

http://vdumoulin.github.io/morphing_faces/online_demo.html

24
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Code example

25

Variational Autoencoder

(variational_autoencoder.ipynb)

Generative Adversarial Networks

Player 1: generator
Scores if discriminator
can’t distinguish output
from real image

Player 2: discriminator
Scores if it can distinguish
between real and fake

real/fake

from dataset
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Naïve Sampling Revisited

• Few              pairs have non-zero gradients

• This is a problem of the maximum likelihood

• Use a different loss: Train a discriminator 
network to measure similarity

sa
m

p
le

Generator with
parameters

Loss function: 

Random from dataset

with non-zero
loss gradient for 

Why Adversarial?

• If discriminator approximates                  :

• at maximum of                   has lowest loss

• Optimal             has single mode at     , small variance

sa
m

p
le

Image Credit: How (not) to Train your Generative Model: Scheduled 

Sampling, Likelihood, Adversary?, Ferenc Huszár

: generator
with parameters

: discriminator
with parameters
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Why Adversarial?

• For GANs, the discriminator instead approximates:

sa
m

p
le

depends on the generator

Image Credit: How (not) to Train your Generative Model: Scheduled 

Sampling, Likelihood, Adversary?, Ferenc Huszár

: generator
with parameters

: discriminator
with parameters

Why Adversarial?

VAEs:
Maximize likelihood of
data samples in

Maximize likelihood of
generator samples in
approximate

GANs:
Adversarial game

Image Credit: How (not) to Train your Generative Model: Scheduled 

Sampling, Likelihood, Adversary?, Ferenc Huszár
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Why Adversarial?

VAEs:
Maximize likelihood of
data samples in

Maximize likelihood of
generator samples in
approximate

GANs:
Adversarial game

Image Credit: How (not) to Train your Generative Model: Scheduled 

Sampling, Likelihood, Adversary?, Ferenc Huszár

GAN Objective

sa
m

p
le

:generator

:discriminator

probability that    
is not fake

fake/real classification loss (BCE):

Discriminator objective:

Generator objective:
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Non-saturating Heuristic

Generator loss is negative binary cross-entropy:

poor convergence

Negative BCE

Image Credit: NIPS 2016 Tutorial: Generative Adversarial 

Networks, Ian Goodfellow

Non-saturating Heuristic

Negative BCE
BCE with flipped target

Flip target class instead of flipping the sign for generator loss:
good convergence – like BCE

Generator loss is negative binary cross-entropy:

poor convergence

Image Credit: NIPS 2016 Tutorial: Generative Adversarial 

Networks, Ian Goodfellow
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GAN Training

from dataset

Loss:

D
is

cr
im

in
at

o
r 

tr
ai

n
in

g

sa
m

p
le

:generator

:discriminator

Loss:

G
en

er
at

o
r 

tr
ai

n
in

g

:discriminator

Interleave in each training step

DCGAN

• First paper to successfully use CNNs with GANs

• Due to using novel components (at that time) like batch norm., ReLUs, etc.

Image Credit: Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks, Radford et al.
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InfoGAN

sa
m

p
le

:generator

:discriminator

maximize
mutual information

varying

Image Credit: InfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets, Chen et al.

Code example

38

Generative Adversarial Network

(gan.ipynb)
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Conditional GANs (CGANs)

• ≈ learn a mapping between images from example pairs

• Approximate sampling from a conditional distribution                

Image Credit: Image-to-Image Translation with Conditional 

Adversarial Nets, Isola et al.

Conditional GANs

from dataset

Loss:

D
is

cr
im

in
at

o
r 

tr
ai

n
in

g

:discrim.

sa
m

p
le

:generator

Loss:

:discriminator

G
en

er
at

o
r 

tr
ai

n
in

g

Image Credit: Image-to-Image Translation with Conditional 

Adversarial Nets, Isola et al.
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is often omitted
in favor of dropout
in the generator

Conditional GANs: Low Variation per Condition

from dataset

Loss:

D
is

cr
im

in
at

o
r 

tr
ai

n
in

g

:discrim.

:generator

Loss:

:discriminator

G
en

er
at

o
r 

tr
ai

n
in

g

Image Credit: Image-to-Image Translation with Conditional 

Adversarial Nets, Isola et al.

Demos

CGAN

https://affinelayer.com/pixsrv/index.html

42
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CycleGANs

• Less supervision than CGANs: mapping between unpaired datasets

• Two GANs + cycle consistency

Image Credit: Unpaired Image-to-Image Translation using Cycle-

Consistent Adversarial Networks, Zhu et al.

CycleGAN: Two GANs …
• Not conditional, so this alone does not constrain generator input and output to match

:generator1

:discriminator1

:generator2

:discriminator2

n
o

t 
co

n
st

ra
in

ed
 t

o
 m

at
ch

 y
et

Image Credit: Unpaired Image-to-Image Translation using Cycle-

Consistent Adversarial Networks, Zhu et al.
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CycleGAN: … and Cycle Consistency

:generator1

:generator2 :generator1

:generator2

L1 Loss function: L1 Loss function: 

Image Credit: Unpaired Image-to-Image Translation using Cycle-

Consistent Adversarial Networks, Zhu et al.

Unstable Training

GAN training can be unstable

Three current research problems (may be related):

• Reaching a Nash equilibrium (the gradient for both        and         is 0)

• and            initially don’t overlap

• Mode Collapse
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GAN Training

• Vector-valued loss:

• In each iteration, gradient descent approximately follows this vector
over the parameter space            :

Reaching Nash Equilibrium

Gradient field example Example

Image Credit: GANs are Broken in More than One Way: The 

Numerics of GANs, Ferenc Huszár

Nash
equilib.
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Reaching Nash Equilibrium

Solution attempt: relaxation with term:

full relaxation introduces
bad Nash equilibria

no relaxation has cycles mixture works sometimes

Image Credit: GANs are Broken in More than One Way: The 

Numerics of GANs, Ferenc Huszár

Generator and Data Distribution Don’t Overlap

Image Credit: Amortised MAP Inference for Image Super-

resolution, Sønderby et al.

Roth et al. suggest an analytic convolution with a gaussian:

Stabilizing Training of Generative Adversarial Networks
through Regularization, Roth et al. 2017

Instance noise: adding noise to generated and real images Wasserstein GANs: EMD as distance between      and 

Standard
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Mode Collapse

after n training steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

only covers one or a few modes of 

Optimal                 :

Image Credit: Wasserstein GAN, Arjovsky et al.

Unrolled Generative Adversarial Networks, Metz et al.

Mode Collapse

Solution attempts:

• Minibatch comparisons:  Discriminator can compare instances in a 
minibatch (Improved Techniques for Training GANs, Salimans et al.)

• Unrolled GANs: Take k steps with the discriminator in each iteration, and 
backpropagate through all of them to update the generator

after n training steps

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Standard GAN

Unrolled GAN with k=5

after n training steps

Image Credit: Wasserstein GAN, Arjovsky et al.

Unrolled Generative Adversarial Networks, Metz et al.
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Progressive GANs

• Resolution is increased progressively during training

• Also other tricks like using minibatch statistics and normalizing feature vectors

53Image Credit: Progressive Growing of GANs for 

Improved Quality, Stability, and Variation, Karras et al.

Disentanglement
Entangled: different properties may be mixed up over all dimensions

Disentangled: different properties are in different dimensions

specified property: number

o
th

er
 p

ro
p

er
ti

es

Image Credit: Disentangling factors of variation in deep 

representations using adversarial training, Mathieu et al.

specified property: character

o
th

er
 p
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p
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es

o
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p
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es
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Summary

• Autoencoders
• Can infer useful latent representation for a dataset

• Bad generators

• VAEs
• Can infer a useful latent representation for a dataset

• Better generators due to latent space regularization

• Lower quality reconstructions and generated samples (usually blurry)

• GANs
• Can not find a latent representation for a given sample (no encoder)

• Usually better generators than VAEs

• Currently unstable training (active research)

56

Course Information (slides/code/comments)
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Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

CreativeAI: Deep Learning for Graphics

Feature Visualization

Timetable

2

Niloy Iasonas Paul Nils Tobias

Introduction X X X X X

Theory X X

NN Basics X X

Alternatives to Direct Supervision X

15 min. break

Feature Visualization X

Image Domains X X

3D Domains X X

Motion and Physics X X
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• Features (activations)

• Weights (filter kernels in a CNN)

• Inputs that maximally activate some class probabilities or features

• Inputs that maximize the error (adversarial examples)

What to Visualize

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 3

• In good training, features are usually sparse

• Can find “dead” features that never activate

Feature Samples

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 4

Images from: http://cs231n.github.io/understanding-cnn/
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• Low-dimensional embedding of the features for visualization

Feature Distribution using t-SNE

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 5

Images from: https://cs.stanford.edu/people/karpathy/cnnembed/ and

t-SNE embedding of image features
in a CNN layer t-SNE embedding of MNIST (images of digits) features in a CNN layer, colored by class

before training after training

Rauber et al. Visualizing the Hidden Activity of Artificial Neural Networks. TVCG 2017

• Useful for CNN kernels, not useful for fully connected layers

• Kernels are typically smooth and diverse after a successful training

Weights

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 6

Images from: http://cs231n.github.io/understanding-cnn/
first layer filters of AlexNet
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Inputs that Maximize Feature Response

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 7

Local maxima of the response for class:

Indian Cobra Pelican Ground Beetle

Images from: Yosinski et al. Understanding Neural Networks Through Deep Visualization. ICML 2015

Inputs that Maximize the Error

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 8

Images from: Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR 2015

“Panda” 55.7% conf. “Gibbon” 99.3% conf.
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SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 9

Course Information (slides/code/comments)

http://geometry.cs.ucl.ac.uk/creativeai/
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Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

CreativeAI: Deep Learning for Graphics

Image Domains

Timetable

2

Niloy Iasonas Paul Nils Tobias

Introduction X X X X X

Theory X X

NN Basics X X

Alternatives to Direct Supervision X

15 min. break

Feature Visualization X

Image Domains X X

3D Domains X X

Motion and Physics X X
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Sketch Simplification

• Learning to Simplify: Fully Convolutional Networks for Rough Sketch 
Cleanup, Simon-Serra et al., 2016

• Deep Extraction of Manga Structural Lines, Li et al., 2017

3

Sketch Simplification: Learning to Simplify

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

4
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Sketch Simplification: Learning to Simplify

• Loss for thin edges saturates easily

• Authors take extra steps to align input and ground truth edges

Pencil: input
Red: ground truth

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

5

Image Decomposition

• A selection of methods:

• Direct Instrinsics, Narihira et al., 2015

• Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition, Zhou et al., 
2015

• Decomposing Single Images for Layered Photo Retouching, Innamorati et al. 2017

6
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Image Decomposition: Decomposing
Single Images for Layered Photo Retouching

7

Colorization

• Concurrent methods:
• Let there be Color!, Iizuka et al., 2016

• Colorful Image Colorization, Zhang et al. 2016

• Learning Representations for Automatic Colorization, Larsson et al., 2016

• Real-Time User-Guided Image Colorization with Learned Deep Priors, Zhang et al. 
2017

8
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Colorization: Let There Be Color!

Let there be Color!: Iizuka et al.

9

Colorization: Colorful Image Colorization

input
direct regression probability distr.

output

Image Credit: Colorful Image Colorization, Zhang et al.

10
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Sketch Simplification

• Learning to Simplify: Fully Convolutional Networks for Rough Sketch 
Cleanup, Simon-Serra et al., 2016

• Deep Extraction of Manga Structural Lines, Li et al., 2017

11

Sketch Simplification: Learning to Simplify

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

12
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Sketch Simplification: Learning to Simplify

• Loss for thin edges saturates easily

• Authors take extra steps to align input and ground truth edges

Pencil: input
Red: ground truth

Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup, Simo-Serra et al.

13

Image Decomposition

• A selection of methods:

• Direct Instrinsics, Narihira et al., 2015

• Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition, Zhou et al., 
2015

• Decomposing Single Images for Layered Photo Retouching, Innamorati et al. 2017

14
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Image Decomposition: Decomposing
Single Images for Layered Photo Retouching

15

Colorization

• Concurrent methods:
• Let there be Color!, Iizuka et al., 2016

• Colorful Image Colorization, Zhang et al. 2016

• Learning Representations for Automatic Colorization, Larsson et al., 2016

• Real-Time User-Guided Image Colorization with Learned Deep Priors, Zhang et al. 
2017

16
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Colorization: Let There Be Color!

Let there be Color!: Iizuka et al.

17

Colorization: Colorful Image Colorization

input
direct regression probability distr.

output

Image Credit: Colorful Image Colorization, Zhang et al.

18
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LDR to HDR Image Reconstruction:

• Concurrently:

• Deep Reverse Tone Mapping, Endo et al. 2017

• HDR image reconstruction from a single exposure using deep CNNs, 
Eilertsen et al. 2017

19

Reflectance Maps

• Paint a sphere as if it is made 
of a material under a certain 
illumination of another 
object in a photo

Deep Reflectance Maps. Rematas et al. CVPR 2015

20
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DeLight

• Factor BRDF and (HDR) Illumination

Reflectance and Natural Illumination from Single-Material Specular Objects Using Deep Learning. Georgoulis et al. PAMI 2017

21

Denoising Renderings

• Concurrent:

• Kernel-Predicting Convolutional Networks 
for Denoising Monte Carlo Renderings, 
Bako et al. 2017

• Interactive Reconstruction of Monte Carlo 
Image Sequences using a Recurrent 
Denoising Autoencoder, Chaitanya et al. 
2017 (more on Autoencoders later)

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al. 

22
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Denoising Renderings:

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al. SIGGRAPH 2017

23

3D Pose Estimation: VNECT

VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera, Mehta et al., SIGGRAPH 2017

skeleton joint heatmap
and 3d positions24
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Object Detection: Fast(er)-RCNN

• Fast/Faster R-CNN
Good speed

Good accuracy

Intuitive

Easy to use

Ross Girshick. “Fast R-CNN”. ICCV 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Mask R-CNN

• Mask R-CNN = Faster R-CNN with FCN on RoIs

Faster R-CNN

FCN on RoI
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Mask R-CNN results on COCO

• 1 keypoint = 1-hot “mask”

• Human pose = 17 masks

• Softmax over spatial locations
• e.g. 562-way softmax on 56x56

Mask R-CNN for Human Keypoint Detection
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Mask R-CNN frame-by-frame

Mask R-CNN frame-by-frame
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I. Kokkinos, UberNet: Training a Universal CNN for Low- Mid- and High-Level Vision, CVPR 2017

https://github.com/jkokkin/UberNet

UberNet: a “universal” network for all tasks

“Inverse graphics”: understand how an image was generated from a scene

If we focus on a single object category: surface-based models

UberNet: 
Universal Network

DensePose: 
Unified model

What is the ultimate vision task?
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R. A. Guler, G. Trigeorgis, E. Antonakos, P. Snape, S. Zafeiriou, I. Kokkinos,

DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild, CVPR 2017

DenseReg: dense image-to-face regression

R. A. Guler, N. Neverova, I. Kokkinos “DensePose: Dense Human Pose Estimation In The Wild”, CVPR’18

DensePose-RCNN: ~25 FPS

DensePose: dense image-to-body correspondence
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SFSNet: incorporating image formation in model

SfSNet: Learning Shape, Reflectance and Illuminance of Faces ‘in the wild' Soumyadip
Sengupta Angjoo Kanazawa Carlos D. Castillo David W. Jacobs, CVPR 2018
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Beyond single frames: end-to-end optical flow

End-to-end Structure From Motion

• DeMoN: Depth and Motion Network for Learning Monocular Stereo, B. Ummenhofer, et al, CVPR 2017

• Unsupervised learning of depth and ego-motion from video, T Zhou, M Brown, N Snavely, DG Lowe, CVPR 2017
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Monocular depth & normal estimation

• D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale 
Convolutional Architecture, ICCV 2015

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 40

Course Information (slides/code/comments)
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Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

CreativeAI: Deep Learning for Graphics

3D Domains

Timetable

2

Niloy Iasonas Paul Nils Tobias

Introduction X X X X X

Theory X X

NN Basics X X

Alternatives to Direct Supervision X

15 min. break

Feature Visualization X

Image Domains X X

3D Domains X X

Motion and Physics X X
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Motivating Applications

3

[Sung et al. 2017]

Deep neural network predicts 
the next best part to add and 

its position to enable non-expert
users to create novel shapes.

CrossLink: Linking Images and 3D Models

4[Heuting et al. 2015]
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Motivating Applications

5

[Zhang et al. 2017]

understanding 3D shapes can benefit image understanding

Motivating Applications: Semantic Scene Understanding

6

[Song et al. 2017]
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Motivating Applications: Semantic Scene Understanding

[Kelly et al. 2017]
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Representation for 3D

• Image-based

• Volumetric

• Point-based

• Surface-based

• Parametric

9

Representation for 3D

• Image-based

• Volumetric

• Point-based

• Surface-based

• Parametric

1
0
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Representation for 3D: Multi-view CNN

1
1

regular image analysis networks

[Kalogerakis et al. 2015]

Representation for 3D: Local Multi-view CNN

1
2

Segmentation
Correspondence
Feature matching
Predicting semantic functions

[Huang et al. 2018]

localized renderings for point-wise features
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• Multiple views are treated as image 
sequence

• An LSTM controls what part of the 
latent representation is updated by 
each view

3D-R2N2 (3D Recurrent Reconstruction Neural Network)

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 13

Choy et al. 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. ECCV 2016

Representation for 3D

• Image-based

• PROS: directly use image networks, good performance

• CONS: rendering is slow and memory-heavy, not very geometric

• Volumetric

• Point-based

• Surface-based

• Parametric

1
4
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Representation for 3D

• Image-based

• Volumetric

• Point-based

• Surface-based

• Parametric

1
5

Representation for 3D: Volumetric

16

[Xiao et al. 2014]

• Add one dimension to kernels and intermediate outputs:
batches x channels x w x h              batches x channels x d x 
w x h

• Does not scale well to high resolutions
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Representation for 3D: Volumetric Deformation

1
7

[Yumer et al. 2014]

Efficient Volumetric Datastructures

1
8

[Wang et al. 2017]
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Efficient Volumetric Datastructures

1
9

[Hane et al. 2018]

Generator / Decoder

Wang et al. 2017

Encoder

Efficient Volumetric Datastructures

2
0

[Hane et al. 2018]
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Octree Generating Networks

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 21

Tatarchenko et al. Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs.
ICCV 2017

• Input Domain: images, volumetric grids, point clouds

• Output Domain: Meshes

Deep Marching Cubes

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 22

Yiyi Liao et al. Deep Marching Cubes. CVPR 2018
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Learning to Complete 3D Scans

2
3

Input Partial Scan Completed Scan Predicted Semantics

(slide credit: Matthias Niessner)

[Dai et al. 2018]

State-of-the-art 3D Reconstructions

2
4TOG’17 [Dai et al.]: BundleFusion

(slide credit: Matthias Niessner)
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Problem: Incomplete Scan Geometry

2
5

Problem: Incomplete Scan Geometry

2
6
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Learning from Synthetic Data

2
7

Recall: Semantic Scene Understanding

2
8

[Song et al. 2017]

CreativeAI: Deep Learning for Graphics Part 7: 3D Domains

220



Learning to Complete 3D Scans

2
9Scenes from SUNCG [Song et al. 17]

(slide credit: Matthias Niessner)

• PixelCNN [van den Oord 2015, van den Oord 2016, Reed 2017]

• WaveNet [van den Oord 2016]

3
0

Dependent Predictions: Autoregressive Neural Networks

CreativeAI: Deep Learning for Graphics Part 7: 3D Domains

221



3
1[Dai et al. 2018]

Dependent Predictions: Autoregressive Neural Networks

ScanComplete: Completing 3D Scans

3
2

Scans from SUNCG [Song et al. 2017]

Input Completion Ground Truth

[Dai et al. 2018]
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ScanComplete: Completing 3D Scans

3
3

Input Completion Ground Truth

Scans from SUNCG [Song et al. 2017]

Semantics Ground Truth

[Dai et al. 2018]

Geometry Abstraction / Simplification

Learning Shape Abstractions by Assembling Volumetric Primitives, Tulsiani et al. 2016

34
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Geometry Abstraction / Simplification:

35

Learning Shape Abstractions by Assembling Volumetric Primitives, Tulsiani et al. 2016

SplatNet

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 36

Hang Su et al. Splatnet: Sparse lattice networks for point cloud processing. CVPR 2018
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Representation for 3D

• Image-based

• Volumetric

• PROS: modify image networks

• CONS: special layers for hierarchical datastructures, still too coarse

• Point-based

• Surface-based

• Parametric

3
7

Representation for 3D

• Image-based

• Volumetric

• Point-based

• Surface-based

• Parametric

3
8
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• Common representation

• Easy to obtain from meshes, depth scans, laser scans

• Difficulty: invariance to point order

Point Clouds

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 39

point cloud
invariance to all      cases

Point Interpretation

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 40

Samples from
a probability distribution

(Irregular) samples of
a continuous function
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Qi et al. Pointnet: Deep learning on point sets for 3d classification and segmentation. CVPR 2017

PointNet

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 41

feature
vector for the
point cloudfeature

vector for a
pointpoint cloud

order-
independent

order-
independent

symmetric

PointNet for Point Cloud Analysis

4
2
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PointNet for Point Cloud Analysis: PointNet++

4
3

[Qi et al. 2018]

PointNet for Local Point Cloud Analysis

4
4

[Guerrero et al. 2018]
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MCCNN

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 45

Hermosilla et al. Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds. SIGGRAPH Asia 2018

PointNet for Point Cloud Synthesis

4
6

[Su et al. 2017]

Earth Mover Distance as loss function 

generated output needs to be compare to some true shape
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Representation for 3D

• Image-based

• Volumetric

• Point-based

• Surface-based

47

Image Generated Volume Generated Points Generated Surface

Surface models used in engineering (i.e., CAD)
and computer graphics (i.e., meshes)

AtlasNet for Surface Generation

4
8

[Groueix et al. 2018]

condition decoded points on 2D patches
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AtlasNet for Surface Generation

4
9

Latent representation can be 
inferred from images or point clouds

condition decoded points on 2D patches

[Groueix et al. 2018]

AtlasNet for Surface Generation

5
0

Latent representation can be 
inferred from images or point clouds

Quad Mesh is generated by 
mapping a regular grid in 
2D domain to 3D points

[Groueix et al. 2018]
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AtlasNet for Surface Generation

5
1

Latent representation can be 
inferred from images or point clouds

BONUS: natural space to store
textures for CG

Texture Transfer

5
2

[Wang et al. 2016]
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Parameterization for Surface Analysis

map 3D surface to 2D domain

5
3

[Maron et al. 2017]

Parameterization for Surface Analysis

5
4

map 3D surface to 2D domain

[Maron et al. 2017]
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Parameterization for Surface Analysis

• Map 3D surface to 2D domain

•One such mapping: flat torus (seamless => 
translation-invariant)

•Many mappings exists: sample a few and 
average result

•Which functions to map? 
XYZ, normals, curvature, …

5
5

[Maron et al. 2017]

Parameterization for Surface Analysis

5
6

[Maron et al. 2017]
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Other Parameterizations

5
7

[Sinha et al. 2017]

Geometry Image Metric Alignment

[Ezuz et al. 2017]

Other Parameterizations

5
8

parameterize in spectral domaingeodesic discs

CreativeAI: Deep Learning for Graphics Part 7: 3D Domains

235



Other Parameterizations

5
9

[Masci et al. 2015]

Discrete Laplacian

6
0

(slide credit: Michael Bronstein)
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Transferring Correspondence

6
1

[Monti et al. 2016]

Spectral Methods

6
2

(slide credit: Michael Bronstein)
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SyncSpecCNN

6
3

[Yi et al. 2017]

3D volumes form Xrays

Single-Image Tomography: 3D Volumes from 2D Cranial X-Rays. Henzler et al. EG 2018

64
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Representation for 3D

• Image-based

• Volumetric

• Point-based

• Surface-based

6
5

Parametric

Procedural Parameter Estimation

Interactive Sketching of Urban Procedural Models, Nishida et al. 2016

66
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Procedural Parameter Estimation:
Interactive Sketching of Urban Procedural Models

Interactive Sketching of Urban Procedural Models, Nishida et al.

67
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Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel

UCL UCL/Facebook UCL TU Munich UCL

CreativeAI: Deep Learning for Graphics

Motion and Physics

Timetable

2

Niloy Iasonas Paul Nils Tobias

Introduction X X X X X

Theory X X

NN Basics X X

Alternatives to Direct Supervision X

15 min. break

Feature Visualization X

Image Domains X X

3D Domains X X

Motion and Physics X X
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3

Long et. al 2017 Schenck et. al 2017Tompson et. al 2017

(slide credit: Nils Thuerey)Deep Learning for Fluids

4

Latent-space encoding

Temporal prediction

Volumetric decoding

[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, arXiv 2018]

(slide credit: Nils Thuerey)
High Resolution Simulation of Liquids
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5Examples from training data set, 643

(slide credit: Nils Thuerey)

High Resolution Simulation 
of Liquids

6

Further Examples, 1283

[Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow, arXiv 2018]

(slide credit: Nils Thuerey)
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7

Goal: Infer high-resolution configuration from low-resolution data

Example input

dummy!dummy!

Example target (4x)

[tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow , SIGGRAPH 2018]

Down-sample

(slide credit: Nils Thuerey)

Architecture Overview

8

dummy!dummy!

(slide credit: Nils Thuerey)
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dummy!dummy!

Architecture Overview

9

(slide credit: Nils Thuerey)

dummy!dummy!

“Loss” for generator

Architecture Overview

10

(slide credit: Nils Thuerey)
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dummy!dummy!

Advection encoded in loss for G

Architecture Overview

11

(slide credit: Nils Thuerey)

Three Dimensional Examples

1
2

tempoGANInput Target
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Learning Rolling Motion

1
3

Learning Rolling Motion

1
4
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1
5

Image resolution: 128x128

Nicholas Watters, Andrea Tacchetti, Theophane Weber, Razvan Pascanu, Peter Battaglia, Daniel Zoran (DeepMind): Visual Interaction Networks, NIPS 2017

ours

SIGGRAPH Asia Course CreativeAI: Deep Learning for Graphics 16

Course Information (slides/code/comments)
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