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Fig. 1. Gradient-domain light transport.

Despite the wide adoption in film production and animation industry nowadays, Monte Carlo light transport

simulation is still prone to producing noisy images within short rendering time. Accelerating the convergence

of Monte Carlo rendering without sacrificing its accuracy is by far a challenging task. In this course, we

will learn about gradient-domain light transport simulation, a recent family of techniques in physically

based rendering introduced in the past five years that can accelerate traditional Monte Carlo rendering up to

approximately an order of magnitude based on gradient estimation and image reconstruction. Particularly, we

will introduce the fundamentals of gradient-domain rendering with gradient-domain path tracing, and then

extend the discussion to gradient-domain bidirectional path tracing and photon density estimation. We also

discuss volume rendering in the gradient domain before diving into advanced topics in recent state-of-the-art

papers in this direction. We further discuss tips and tricks in open-source implementations of such algorithms,

and provide ideas for future research directions.
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1 INTRODUCTION
Accurately simulating light transport remains a long standing challenge in computer graphics.

While the high-dimensional rendering integral can be well approximated byMonte Carlo estimation,

existing techniques still take from minutes to hours to output images that are clean to human

perception. Making fast rendering techniques even faster is therefore still an active research topic.

Several recent extensions of conventional rendering methods to the gradient domain have greatly

improved visual convergence [Kettunen et al. 2015; Lehtinen et al. 2013; Manzi et al. 2015] by

exploiting image-space smoothness and path coherency. The seminal work on gradient-domain

Metropolis light transport [Lehtinen et al. 2013] led to gradient-domain variants of uni- and bi-

directional path tracing [Kettunen et al. 2015; Manzi et al. 2015], as well as gradient-domain density

estimation on surfaces [Hua et al. 2017; Sun et al. 2017]. These methods directly estimate image

gradients, instead of pixel intensities, and apply Poisson reconstruction to generate the final image.

Gradient-domain approaches tend to be more efficient than their conventional counterparts since

images tend to be piecewise smooth in many scenes.

This course is an introductory resource about theoretical understanding of gradient-domain

rendering and practical issues and solutions of how to bring traditional rendering algorithms to

the gradient domain. It also serves as a comprehensive technical report about the state-of-the-art

gradient-domain rendering techniques. The course is designed for researchers, developers, students,

and enthusiasts in computer graphics who are intrigued about how to make existing physically

based light transport simulation more efficient.

Audience with basic background about Monte Carlo rendering techniques such as path tracing

or photon mapping is required. Upon the completion of this course, the audience can apply the

knowledge to implement typical gradient-domain light transport algorithms such as gradient-

domain path tracing or gradient-domain photon density estimation in their own renderers.

We will start with a brief revision to basic theories of light transport and traditional rendering

techniques such as path tracing [Kajiya 1986] and photon mapping [Hachisuka and Jensen 2009;

Jensen 2001] at the beginning of the course before diving into basic concepts of gradient-domain

rendering. We will particularly explore gradient-domain path tracing [Kettunen et al. 2015], and

extend the discussion towards bidirectional techniques that includes gradient-domain bidirectional

path tracing [Manzi et al. 2015] and gradient-domain photon density estimation [Hua et al. 2017] and

their combinations [Sun et al. 2017] that uses more sophisticated path exploration techniques [Jakob

and Marschner 2012]. Continuing the success of gradient-domain rendering for surfaces, we then

explore rendering scenes with participating media in the gradient domain [Gruson et al. 2018],

which also often exhibit image-space smoothness despite of an additional dimension in the rendering

integral. Advanced but orthogonal aspects of gradient-domain rendering follow, including more

robust image reconstruction [Manzi et al. 2016b; Rousselle et al. 2016], reusing paths [Bauszat

et al. 2017], temporal rendering [Manzi et al. 2016a], adaptive sampling [Back et al. 2018; Lehtinen

et al. 2013; Manzi et al. 2014] and spectral rendering [Petitjean et al. 2018]. Finally, we will discuss

practical implementation details and potential ideas for future work.
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2 SYLLABUS
1. Opening
(5 minutes) Welcome speech and a brief introduction about the course, its objectives and schedule.

2. Basic theories in light transport
(15 minutes) We give a brief overview about the state-of-the-art Monte Carlo light transport

simulation techniques and highlighted path tracing and photon mapping. This is a warming up

section for those who are not very familiar with rendering before we dive into the technical details

of gradient-domain rendering.

3. Fundamentals of gradient-domain light transport
(30 minutes) The key ideas of gradient-domain rendering is introduced. Particularly, the audience

will learn the concepts of the modified rendering equation for gradient-domain rendering, the shift

mapping function and its Jacobian. Gradient-domain path tracing will be introduced along with the

simple half-vector shift mapping. The classical reconstruction technique using screened Poisson

reconstruction will also be introduced.

Break (10 minutes)

4. Gradient-domain bidirectional light transport
(30 minutes) We continue with the discussion of bidirectional path tracing, progressive photon

mapping, and their combinations in the gradient domain. In this part, more complex shift mapping

techniques will be introduced such as manifold exploration.

5. Gradient-domain volumetric rendering
(30 minutes) Beyond surfaces, we discuss volumetric rendering with the gradient-domain volumet-

ric photon density estimation techniques. More complex concepts in volumetric rendering such as

photon points, beams, and planes are introduced in this section.

Break (10 minutes)

6. Advanced topics in gradient-domain rendering
(30 minutes) We discuss a collection of many advanced techniques in gradient-domain rendering

such as temporal rendering, adaptive rendering, Metropolis light transport, path reuse, spectral

rendering, and improved reconstruction.

7. Practical tips and tricks of implementing gradient-domain rendering
(15 minutes) We discuss practical issues and solutions for implementing gradient-domain rendering

inMitsuba, an open-source physically based renderer. We also share our experience in implementing

a hobby-time gradient-domain renderer from scratch in Rust, a system programming language

designed to prevent segmentation faults.

8. Conclusion and Q&A
(15 minutes) We will summarize the key concepts we learn so far, and brainstorm ideas for future

work.

Estimated total time: 2 hours 50 minutes of presentations and two 10-minute breaks.
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4 COURSE NOTES
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Reference (1 hour)

Light transport simulation in the modern days boils down to solving a rendering 
integral using Monte Carlo estimation. Many different algorithms to estimate image 
pixel values can be used, from path tracing, bidirectional path tracing, to photon 
mapping, virtual point lights, and many others. The common point of such algorithms 
(when they are consistent) is that they will converge to the same image after 
spending long enough rendering time. For example, we render this image of a living 
room in 1 hour.

2



Path tracing (2 min)

1 hour is rather long to produce a clean image. If we only spend two minutes, we 
usually get images with visible noise given such a complex scene. In production of 
feature films, architectural visualization, or animation, making current fast rendering 
faster has been the goal of the computer graphics community in the past decades.

3



Primal Gradient

In this course, we will learn about a family of rendering techniques that can further 
accelerate existing rendering algorithms. We build upon the concept of estimating 
image-space gradients alongside with rendering the original (primal) image. We will 
see that estimating gradients turns out to be a nice and consistent way to make noisy 
images less noisy for many common cases with the same computation effort. 

4



Gradient-domain Path tracing (2 min)

Here is an example. With the same two minutes, gradient-domain rendering can 
deliver cleaner results compared to existing path tracing.
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>13 papers on 

this subject

GRADIENT-DOMAIN RENDERING

In recent years, there have been several top-tier papers published to push the 
direction of gradient-domain rendering forward. This course builds on the materials 
of such papers, from introductory to advanced topics in gradient-domain rendering.
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Binh-Son Hua

(The University of Tokyo)

Matthias Zwicker

(University of Maryland)
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SYLLABUS

Basic theories of light transport

[15 minutes] (Toshiya Hachisuka)

Fundamentals of gradient-domain light transport

[30 minutes] (Matthias Zwicker)

Break [10 minutes]

Here is the syllabus. 
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Gradient-domain bidirectional light transport  

[30 minutes] (Matthias Zwicker & Binh-Son Hua)

Gradient-domain volumetric rendering

[30 minutes] (Toshiya Hachisuka & Adrien Gruson)

Break [10 minutes]

SYLLABUS
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Advanced topics in gradient-domain rendering 

[30 minutes] (Adrien Gruson & Binh-Son Hua)

Practical tips and tricks for implementation 

[15 minutes] (Adrien Gruson)

Conclusion [15 minutes] (Toshiya Hachisuka)

SYLLABUS

10



Enjoy!
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4.2 Basic theories in light transport
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Reflected Radiance



Direct Illumination



Direct + Indirect Illumination



Indirect lighting

• Light can bounce off from other surfaces

•Multiple bounces

• Global illumination

• Other objects affect illumination

• Shadowing is one example

• In contrast to local illumination



Indirect Illumination



Indirect Illumination



Indirect Illumination



Indirect Illumination



Indirect Illumination



Including Indirect Bounce

: Radiance flowing from x to e

: BRDF for the directions l to x to e

: 1st bounce illumination (i.e. direct)



Including Indirect Bounce



Including One Bounce



Including One Bounce



Including One Bounce



Including One Bounce



Including One Bounce



Transport Operator

•We use the following operator

• Input: illumination

• Output: reflected radiance

• Simplifies the notation



Using Transport Operator

• One bounce (i.e., direct)

• Two bounces



Using Transport Operator

• One bounce (i.e., direct)

• Two bounces



Using Transport Operator

• One bounce (i.e., direct)

• Two bounces



Using Transport Operator

• One bounce (i.e., direct)

• Two bounces



Including All Bounces



Including All Bounces

Direct illumination Two bounces Three bounces



Including All Bounces

Direct illumination Two bounces Three bounces

Directly visible light sources



To the Rendering Equation

• Remember the Neumann series



To the Rendering Equation

• Remember the Neumann series



To the Rendering Equation

• Remember the Neumann series



To the Rendering Equation



To the Rendering Equation



To the Rendering Equation



To the Rendering Equation



To the Rendering Equation



To the Rendering Equation



Rendering Equation

• Describe the equilibrium of radiance

• Rendering algorithms = solvers of R.E.

• James Kajiya in 1986

•We learn some solvers in coming lectures

Self-emission
(zero if x is not light source)

BRDF

Radiance distribution (recursive!)



Two Formulations

•We can formulate the rendering equation by

• Integral over directions (hemispherical)

• Integral over surfaces (area)



Area Formulation

• Integral over all surfaces

• Visibility term

• 1 if x and y are mutually visible

• 0 otherwise

• Geometry term



Path Integral Formulation

• Represent a path as a vector

[Veach 1998]



Path Integral Formulation

• Represent a path as a vector

[Veach 1998]



Path Integral Formulation

• Represent a path as a vector

[Veach 1998]



Path Integral Formulation

• Represent a path as a vector

[Veach 1998]



Path Integral Formulation

• Represent a path as a vector

[Veach 1998]

Path throughput
(via the rendering eqn.)



Path Integral Formulation

• Represent a path as a vector

[Veach 1998]

Similar for other lengths



Measurement Equation

• R.E. does not return images

• Describe sensor response, lens effect etc.
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4.3 Fundamentals of gradient-domain light transport
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MOTIVATION

45min30min15min 1h

error / 2 = samples * 4

Gradient-domain rendering is motivated by the slow convergence of Monte Carlo 
light transport algorithms. As can be seen in the rendering of this bathroom scene, 
unconverged images exhibit high frequency noise that can only be reduced by 
increasing rendering time. A well known theory is that to halve the error however we 
have to increase rendering time by 4, which makes this process painfully slow. 

Gradient-domain rendering aims at developing an algorithm that speeds up the 
rendering process and hence reduces the amount of time required to get an image of 
a certain quality.

2



GRADIENT-DOMAIN RENDERING STEPS

3

Poisson 
reconstruction

Primal-domain 
image

Vertical

Horizontal

G
ra

d
ie

n
ts

Step 0

Step 1 Step 2

We ask the question whether doing computation in some other domains, e.g., 
gradients, is more efficient than estimating image pixels directly. If we only estimate 
the gradients by taking finite difference of pixel values, this will not yield any better 
efficiency. And today we will see that by carefully designing the gradient estimation, 
we can do better when rendering in the gradient domain. 

An overview of gradient-domain rendering is shown in this diagram. The main steps 
include (1) estimating the image-space gradients, and (2) perform a Poisson 
reconstruction by taking as input the original image and its estimated gradients.

In step 1, gradient estimation is usually performed by exploring path coherency. This 
results in more accurate gradients than simply taking finite difference directly on the 
original image. In step 2, depending on the norm used in the Poisson reconstruction 
we can have: unbiased results with L2 norm that is subject to visual artifacts, or more 
robust but biased results with L1 norm.

In this section, let’s explore gradient-domain rendering with a simple algorithm: path 
tracing. 

3



4

We drive gradient domain path tracing by a standard path tracer that shoots a 
number of paths through each pixel.

4



5

Base Path

Base Path

Base Path

Base Path

We call these paths base paths. 
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6

Offset Path

Offset PathOffset Path

Offset Path

To obtain the finite difference gradients, we shift each base path to all four 
neighboring pixels. We call these paths offset paths.

6



7

Sampling a base path and shifting it to the four neighbors gives us a throughput 
estimate and four gradient estimates: left, top, right and bottom. These are 
accumulated into their respective buffers.

Let’s now have a look at how to actually construct the offset paths.
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8

Base Path
Offset Path

Mirror Light

Let’s look at a simple scene where we have shot this base path using a standard path 
tracer.

We then generate an offset path, shown in green. It needs to go exactly one pixel 
apart, and this determines the first leg of the offset path.

As we discuss in the paper, the shift is mathematically a change of integration 
variables, so we have a lot of possibilities on how to continue. Intuitively, we want to 
construct offset paths that are as similar as possible to their base paths. This leads to 
small throughput differences which reduces noise significantly. 

8



VERTEX CLASSIFICATION

9
Non-Specular

Base Path
Offset Path

Mirror Light

Non-Specular

Specular

Before we go on, we classify all path vertices as either specular, or non-specular, 
based on a threshold on the roughness of the BRDF. 
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CASE: RECONNECT

10

Non-SpecularNon-Specular

Non-Specular

Base Path
Offset Path

Mirror Light

We distinguish between two cases: 

(1) If both the current base and offset vertices, shown in blue here, are non-specular, 
and the next vertex of the base path, shown in yellow, is also non-specular, then we 
reconnect the offset path to the base path. After this, we let the offset path follow 
the base path until we reach the light.

This leads to paths that are as similar as possible. As a result, the throughput 
difference will be small, because the vertices where the paths differ are non-specular.

(2) However, for highly glossy materials, which we classify as specular, this direct 
reconnection strategy may not work well because the incoming and outgoing 
directions change when we reconnect, which might cause the BRDFs at the 
reconnection segment evaluated to zero.

10



CASE: CONTINUE

11

Base Path
Offset Path

Half-vector
Ideal Reflection

Mirror Light

We address this issue by continuing to trace the offset path if we hit a vertex 
classified as specular.

Assume that we have shot this base path whose first vertex is at a specular surface. In 
this case, the offset path should have a similar BRDF value at the corresponding 
vertex. 

We achieve this by copying the half-vector in local tangent coordinates, and this 
determines the direction of the next path segment.

11



CASE: CONTINUE

12

Base Path
Offset Path

Mirror Light

Non-SpecularNon-Specular

Non-Specular

Half-vector
Ideal Reflection

We continue by duplicating local half-vectors until we encounter two consecutive 
non-specular vertices in the base path, and the offset path is also sitting at a non-
specular vertex. In this configuration we can safely reconnect to the base path.

12



• Path vertex classification to specular and non-

specular.

• Local half-vector copy to generate offset paths

• Poisson reconstruction

SIMPLE MODIFICATION OF PATH 

TRACER

13

Now, this is almost all you need to know to implement your own gradient-domain 
path tracer. 

Let’s see the some results.

13



Results

14

So, let’s look at results.

14



15Path Tracing, 8 spp

Sponza is a simple diffuse scene, lit from above by a large area light.

Rendering with the path tracer in Mitsuba, with 8 samples per pixel, we get heavy 
noise.

15



throughput dydx 16

In equal-time, the gradient-domain sampler outputs the horizontal gradients, the 
vertical gradients, and the throughput image. The throughput image is basically 
similar to an ordinary noisy path traced image.

We then perform a reconstruction to obtain the final result.

16



17Gradient-domain Path Tracing

Here is the result of the reconstruction. 
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Path Tracing, 8 spp

Gradient-domain
Path Tracing

18

Gradient-domain rendering cleans most of the high frequency noise. 
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Path Tracing, 128 spp
19

Gradient-domain
Path Tracing

With sixteen times more samples, the path traced image is still very noisy, but our 
result is essentially ready.

19



Error vs. Time (Sponza)

Plotting relative mean square error against time, we’re almost twelve times faster.

When we saw how well this works, we were really quite surprised.

20



Path Tracing, 8 spp

Gradient-domain
Path Tracing

Sponza you already saw; in this easy scene the method really shines.
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22Path Tracing, 512 spp

The bathroom scene is hard for path tracing, as it’s illuminated from behind a 
window, and this makes shadow rays useless. It also has lots of glossy materials and a 
mirror.

Five hundred samples per pixel are not enough to get a converged image with 
standard path tracing.
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23Gradient-domain Path Tracing

Despite the somewhat complicated light transport, we manage to kill most of the 
high frequency noise.
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Path Tracing, 512 spp
24

Gradient-domain
Path Tracing

Zooming in, we see that we’re doing much better than path tracing, although the 
level of noise is non-uniform as we can see in this highly curved glossy object. We 
discuss this more in the paper.
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Path Tracing, 64 spp
25

Gradient-domain
Path Tracing

Still, with rendering time that’s not enough for standard path tracing to even produce 
an image, we get something recognizable out, which I think is pretty cool.

25



26

Error vs. Time (Bathroom)

In this scene, we are around seven times faster than standard path tracing.
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Path Tracing, 4096 spp Ours, Equal Time
27

The Door scene is designed to be hard for path tracing since all light comes from 
another room through the slightly opened door.

Here too we produce a significantly better image in equal time, despite the 
complexity of the light transport.

The speedup is roughly a factor of five.

27



Path Tracing, 512 spp Ours, Equal Time
28

This Kitchen scene is very challenging for the gradient path tracer with its glossy 
surfaces lit by a small and hard to reach light source.

Still, we again outperform standard path tracing by a factor of five.

28



GRADIENT-DOMAIN RENDERING

29

Poisson 
reconstruction

Primal-domain 
image

Vertical

Horizontal

G
ra

d
ie

n
ts

Step 0

Step 1 Step 2

Shift mapping: exploit coherency to reduce noise in gradients.

Here is a quick recap. It is important to get familiar with the steps as we will keep 
discussing about them in the subsequent sections.

29



Δ x = 𝑓 𝑇 𝑥
𝑑𝑇 𝑥

𝑑𝑥
− 𝑓(𝑥)

COMPUTING GRADIENTS

30

ҧ𝑥

Δ x
1) Δ x ≈ 0

Goals:

2) 𝑇 𝑥 is cheap to evaluate

Let’s keep the explanation of the formula to a few minutes later, and focus on the 
goals first. 

(1) To compute the image-space gradients, an important observation is that in 
general, images are smooth and their gradients are very close to zero. Therefore, we 
want to design an estimator for the gradients such that it outputs values that are very 
close to zero. To do this, the central idea is to rely on a shift mapping function T(x) 
that transforms a base light path x to an offset light path that is highly coherent with 
the base path. This coherency makes the contribution of the base and offset paths to 
be very similar, or their difference (image-space gradients) very small. This results in 
low variance estimation for the gradients. 

(2) The evaluation of shift mapping function T(x) is fast to avoid causing too much 
overhead during gradient estimation.

If we are able to achieve these two goals, gradient-domain rendering algorithm is 
usually very efficient. 
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1) Generate the base path

COMPUTING GRADIENTS
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D

D

Assume a scene as in the diagram. First, we generate a base path in the same way 
that we do for classical rendering.
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2) Generate shift path through neighbor pixel

COMPUTING GRADIENTS

32

 

 

 

 

D

D

Second, we generate a shift path that passing through neighbor pixel. However, as I 
said before we want to make the path coherent as much as we can. So we might 
want to reconnect the shift path to the base path as soon as possible.

Depending on the type of target vertex on the light subpath that we would like to 
connect to, the reconnection process might vary. 
For example, in this diagram, due the specular material on the sphere, we cannot 
reconnect here. The solution here is to extend the shift path until we reach a diffuse 
surface to make this reconnection possible.
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Δ x = 𝑓 𝑇 𝑥
𝑑𝑇 𝑥

𝑑𝑥
− 𝑓(𝑥)

COMPUTING GRADIENTS
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f T x
dT x

dx
: contribution of the shift path

• T x : shift mapping of a path x

•
dT x

dx
: Jacobian due to path density change in the shift

contribution of the 

base path

𝑇(𝑥)𝑥

Let’s now explain the terms in details. T(x) takes a path and output a new path that is 
coherent to the input. The function is deterministic. 

f(x) is the contribution of a path x. 

You can see that one additional term here: the Jacobian. This Jacobian accounts for 
probability change when we shift a base path to create an offset path (the density of 
the base and offset paths are not the same). This value is important to obtain correct 
gradient estimation.
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Gradients

POISSON RECONSTRUCTION

min
𝐿

∇x𝐿 − 𝐺𝑥
∇y𝐿 − 𝐺𝑦

𝑛

𝑛

+ 𝜆 𝐿 − 𝐿𝑝𝑟𝑖𝑚𝑎𝑙 𝑛
𝑛

Primal (regularization term)

Other reconstruction
[Rousselle et al. 2016]

[Manzi et al. 2016]

Here is the formula for Poisson reconstruction. The optimization process finds an 
image that has gradients similar to the input gradients, and at the same time, the 
image has to be somewhat similar to the throughput (primal) image. The primal 
image acts as a regularization. This is the default reconstruction used in several 
papers of gradient-domain rendering so far. Note that we can choose the norm for 
the cost function. For example, the common situation is to set n = 2 for L2 norm 
and n = 1 for L1 norm. 

For L2 norm, the reconstruction is unbiased but contains some dipole artefacts. For 
L1 norm, the reconstruction is biased but the artefacts are minimized. If you need 
more arguments about this, see the seminal paper about gradient-domain 
rendering [Lehtinen et al., 2013].



MULTIPLE IMPORTANCE SAMPLING

35

Now that we know how to shift paths and do reconstruction, let’s take another look 
at the previously described sampling process and see if there is any room for 
improvement. 

A pair of paths that form a gradient sample can be sampled from two directions:

From the left like we just did, or from the right.

Since the path pair can be sampled from two directions, we can apply multiple 
importance sampling between them. 
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Weigh the gradients using balanced heuristics: 

𝑤 𝑥 =
𝑝 𝑥

𝑝 𝑥 + 𝑝 𝑇 𝑥 | 𝑇 𝑥 |

Warning: ensure shift reversibility

MULTIPLE IMPORTANCE SAMPLING

36

Forward: Backward: Combined:

x T(x) T’(y) y

So we can consider two sampling strategies and combine them with multiple 
importance sampling (MIS). 

In general, a path x passing through a pixel could be sampled using the primal-domain 
path sampling strategy at that pixel, or by first sampling the base path y = T(x) at the 
pixel’s neighbor, and apply inverse shift mapping T’ of T to take the base path from 
the neighbor pixel to the current pixel. 

The MIS weight using balanced heuristics can be written as follows. Note that the 
Jacobian is needed to account for probability change.  
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MULTIPLE IMPORTANCE SAMPLING

37

With MISWithout MISL1 with MIS

Here are some results to demonstrate the effectiveness of multiple importance 
sampling. 

The images are reconstructed with L2 reconstruction. It gets rid of many artifacts 
appeared in the reconstruction.

To get rid of the rest of the artifacts, we recommend using the slightly biased L1 
reconstruction.
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MULTIPLE IMPORTANCE SAMPLING

38

Without MIS With MIS

Here is another example.
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ANALYSIS

39

Standard Monte Carlo

Let’s study some analysis on why gradient-domain rendering actually works by 
looking at the entire sampling and reconstruction process. The tool we use here is 
frequency analysis. Let’s begin by reminding ourselves of what happens in standard 
Monte Carlo random sampling.
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40𝑥

𝑝

𝑓Path throughput

For this, let’s observe a 2D setup, with the image along the x-axis, and a path 
dimension along the p-axis. f is the path throughput function. We will obtain the final 
image by integrating over p.
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41𝑥

𝑝

Fourier transform ℱ{𝑓}

𝜔𝑥

𝜔𝑝

𝑓Path throughput

On the right, we see the power spectrum of the throughput function.
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42

Fourier transform ℱ{𝑓}

𝜔𝑥

𝜔𝑝

Slice (𝜔𝑝 = 0)

𝜔𝑥𝑥

𝑝

𝑓Path throughput

To get a better view, let’s concentrate on this horizontal slice.
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Fourier transform ℱ{𝑓}

𝜔𝑥

𝜔𝑝

Slice (𝜔𝑝 = 0)

𝜔𝑥

|𝑓 𝜔𝑥 |2~
1

|𝜔𝑥|2

43

We see that the shape resembles one over frequency squared. This is because the 
final image, just as the throughput function overall, has discontinuities and resembles 
a natural image.

The fact that the energy is heavily concentrated near the low frequencies is going to 
be crucial for us later on.
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Fourier transform ℱ{𝑓}

𝜔𝑥

𝜔𝑝

𝑓

𝑥

𝑝

Slice (𝜔𝑝 = 0)

𝜔𝑥

|𝑓 𝜔𝑥 |2~
1

|𝜔𝑥|2
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Let us now analyze Monte Carlo sampling.

In the primal domain, random sampling multiplies the signal by a forest of random 
Dirac impulses.
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𝑓

𝑥

𝑝

𝜔𝑥

𝜔𝑝

ℱ{𝑓}⋅ 𝑓

45

Each impulse corresponds to the location of one sample.

So what does this look like in the frequency domain? 
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𝑥

𝑝

𝜔𝑥

𝜔𝑝

ℱ{𝑓}⋅ 𝑓

ℱ =
𝑥

𝑝

𝜔𝑥

𝜔𝑝

𝜔𝑥

[Dippé&Wold1985]

46

This  is the Fourier transform of the random samples. It has a strong peak at the DC, 
and uniform random noise everywhere else. The slice on the right shows this more 
clearly.

As we know, multiplication in the primal corresponds to a convolution in the 
frequency domain.
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47𝜔𝑥

𝜔𝑝

ℱ{𝑓}

𝑥

𝑝

ℱ{ } ∗ ℱ{𝑓}⋅ 𝑓

When we do this, we see that this spreads the energy uniformly over the path space 
as white noise. 

Because we are dealing with random sampling, we are interested in the expected 
error.
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48𝜔𝑥

𝜔𝑝

𝑥

𝑝

Average Case

⋅ 𝑓 ℱ{ } ∗ ℱ{𝑓}

And it is well known that the magnitude of the noise is proportional to the total 
energy of the signal. This shows up as the gray background in the right.
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න ⋅ 𝑓 𝑑𝑝

𝑥

𝑥

𝑝

𝜔𝑥

𝜔𝑝

ℱ{ } ∗ ℱ{𝑓}

Average Case

⋅ 𝑓

49

To get the final image, we accumulate the random samples in each pixel. We end up 
with an estimate of the image with some amount of sampling noise.
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𝑥

𝜔𝑥

𝜔𝑝

ℱ{ } ∗ ℱ{𝑓}

Signal
Noise

න ⋅ 𝑓 𝑑𝑝

50

This is just white noise with standard deviation proportional to the energy of the 
signal.
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𝑥

𝜔𝑥

𝜔𝑝

ℱ{ } ∗ ℱ{𝑓}

Signal
Noise

𝑥

𝜎 ~ 𝑓 2

න ⋅ 𝑓 𝑑𝑝

51

The standard deviation is proportional to the energy of the signal.
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𝜔𝑥𝑥

Signal
Noise

𝑥

52

Signal
Noise

𝜎 ~ 𝑓 2

න ⋅ 𝑓 𝑑𝑝 ℱ{ } ∗ ℱ 𝑓 ቚ
𝜔𝑝=0

The noise shows up in the frequency domain as the red box on the right, which is a 
slice through the gray background from before.

Here, we have derived the well known result that sampling noise is white and its 
magnitude is proportional to the signal’s energy.
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ANALYSIS

53

Standard Monte Carlo
Gradient Sampling

With this knowledge equipped, let’s see what happens when we sample gradients.
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54

𝑓∗ 𝑓 ℱ{𝑓}

𝑥

𝑝

𝜔𝑥

𝜔𝑝
- +

- +

- +

- +

- +

Taking finite differences corresponds to a convolution with a kernel with a positive 
and a negative Dirac.

As we know, convolution corresponds to multiplying the spectra.
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ℱ{𝑓}

𝜔𝑥

𝜔𝑝

∗ 𝑓

𝑥

𝑝

ℱ{ } ⋅ ℱ{𝑓}

ℱ →+-

𝑥

𝑝

𝜔𝑥
𝜔𝑥

𝜔𝑝

The power spectrum of the finite difference kernel is a squared sine, with the period 
of the pixel pitch.

This then multiplies the power spectrum of the signal.

To see clearly what this does, let us again concentrate on this slice.
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56

∗ 𝑓

𝑥

𝑝

Slice (𝜔𝑝 = 0)

𝜔𝑥 𝜔𝑥

𝜔𝑝

ℱ{ } ⋅ ℱ{𝑓}

Let us again concentrate on this slice.

This is where things get interesting.
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57𝜔𝑥

𝜔𝑝

ℱ{ } ⋅ ℱ{𝑓}

ℱ 2

Slice (𝜔𝑝 = 0)

𝜔𝑥

The squared sine, in red, has low values near the origin where most of the energy of 
the throughput signal is. Now, clearly, when we multiply these, most of that energy 
will go away!
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58𝜔𝑥

𝜔𝑝

ℱ{ } ⋅ ℱ{𝑓}

ℱ 2

Slice (𝜔𝑝 = 0)

𝜔𝑥

Slice: ℱ{ } ⋅ ℱ{𝑓}

Most energy gone!

We’re left with the gradient signal whose magnitude is much lower than the original 
signal.

Crucially, as the sampling noise is proportional to the energy, this means sampled 
gradients will have much less noise than the sampled signal itself.
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ANALYSIS

59

Standard Monte Carlo
Gradient Sampling
Reconstruction

However, we’re not really interested in the gradients, but the image we reconstruct 
using them. So let’s go on and see what happens when we do Poisson reconstruction.
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60

Sampled Gradients

𝜔𝑥

Signal
Noise

Here is the spectrum of the sampled gradients again. Let’s zoom in so that we see 
something.
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𝜔𝑥

Sampled GradientsIntegrated Gradients

Signal
Noise

=
1

𝜔𝑥

𝜔𝑥

To reconstruct the final image, we invert the gradient operator, by dividing by its 
power spectrum, the squared sine.

When we do this, the noise in the low frequencies blows up completely, which makes 
intuitive sense, as the gradients do not contain information about the DC.

However, the high frequencies are excellent, with much lower error than before.

Compare this to standard sampling on the right.
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𝜔𝑥𝜔𝑥

Integrated Gradients Standard Monte Carlo

Signal
Noise

Signal
Noise

... on the right. Its level of noise is much worse in the high frequencies, whereas the 
low frequencies are represented better.

Given this, it’s not a stretch to figure out that we should take the high frequencies 
from the integrated gradients, and the low frequencies from standard sampling.
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𝜔𝑥

𝜔𝑥

𝜔𝑥

63

Integrated Gradients

Standard Monte Carlo
𝜔𝑥

𝜔𝑥

෍

Reconstruction

Low 
pass

High 
pass

This simply means applying a high pass filter to the gradient reconstruction, and a low 
pass filter to the regular sampling.

Summing these gives the final reconstruction, which has the best of both worlds, and 
has a much lower level of overall noise than either of the inputs alone.
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෍

High 
pass

Low 
pass
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Integrated Gradients

Standard Monte Carlo

Reconstruction

Concretely, it looks like this.

The standard sampling has lots of noise, whereas the gradient reconstruction has 
good detail but the low frequencies are badly wrong.

High-passing gets rid of the offending low frequencies above, and low-passing gets rid 
of the noise below.

Their sum is much nicer than either alone.
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FourierPrimal

Sc

arg min
𝑿

𝛻𝑿 −
𝑑𝑥
𝑑𝑦 2

2

+ 𝛼2 𝑿 − 𝑓 2
2

65

As an aside, it turns out solving the Screened Poisson problem in the primal domain 
does exactly what I just described.
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Benefits when gradient has low energy in comparison to 

actual signal

• Higher-energy gradients will perform worse

• E.g. complex geometry at subpixel scales

Often a net win!

ANALYSIS CONCLUSIONS

66

So what does this analysis tell us?

To get benefits out of gradient sampling, the throughput function needs to have most 
of its energy at the low frequencies. In the paper we show that it’s precisely the ratio
of the energies of the signal and its gradient that determines efficiency. The less
energy in the gradients, the better.

This tells us that conversely high-energy gradients will perform worse. This happens, 
for instance, if  the image contains really complex geometry like grass or something 
like that at the subpixel level. But a lot of the time, when your scene is modeled in 
reasonable detail, gradients do provide a benefit.
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Introduced gradient-domain path tracing

• 5x to 12x faster than standard path tracing

• Unbiased with L2 Poisson reconstruction

First end-to-end frequency-domain analysis on gradient-

domain rendering

CONCLUSION

67

We introduced gradient-domain path tracing, a relatively simple modification of 
standard path tracing that yields a significant benefit in image quality.

To see the reasons for its initially surprising efficiency, we also presented the first 
end-to-end frequency-domain analysis about gradient-domain rendering.
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• Other gradient-domain methods!

• Adaptive sampling

FUTURE WORK

68

As for future work, we’d like to dynamically analyze the properties of the sampled 
signals to adaptively place more samples where they matter the most.

Also, we believe that many common methods could be improved by introducing 
gradient-domain versions of them. We will explore them in the next section.

68



Light Transport Simulation in the Gradient Domain 135

4.4 Gradient-domain bidirectional light transport

SIGGRAPH Asia 2018 Courses, December 04–07, 2018, Tokyo, Japan



Gradient-domain 

Bidirectional Light Transport

1



PREVIOUS WORK
2

Path tracerGradient-domain
path tracer

Gradient-Domain Path Tracing [Kettunen et al. 2015]

Gradient-domain rendering has been shown to work nicely with path tracing.
To recap, here an example of an image generated with a path tracer compared at 
equal time with the same scene generated with a gradient-domain path tracer. As you 
can see the noise reduction is huge.

Our hope is that by adapting the algorithm to a more broadly used light transport 
algorithms, the usefulness of gradient-domain rendering would increase significantly. 
In this section, we are going to try this idea with bidirectional path tracing and photon 
mapping.
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BIDIRECTIONAL LIGHT TRANSPORT
3

PTG-PTBDPTG-BDPT
Path tracerGradient-

domain
path tracer

Bidirectional
path tracer

Gradient-
domain
bidirectional
path tracer

Gradient-Domain Bidirectional Path Tracing

As we learn so far, gradient-domain path tracing (G-PT) is based on path tracing (PT) 
and PT is notoriously bad at sampling complex specular illumiantion effects like 
caustics. This behaviour is inherited by G-PT. 

Bidirectional path tracing (BDPT) on the other hand is much more stable at sampling 
more difficult illumination effects. So our goal is to develop a new algorithm that 
combines the stability of BDPT and the noise reduction of gradient-domain rendering. 
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Gradient-domain 

Bidirectional Path Tracing

4



Poisson reconstruction

=

Sampling

GRADIENT-DOMAIN RENDERING
5

How are gradients sampled?

Before we talk about the details of this new algorithm, let us briefly discuss how 
gradients are sampled in gradient-domain path tracing such that their noise is 
minimized, since this is crucial for all gradient-domain rendering algorithms.
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GRADIENT-DOMAIN RENDERING
6

Let us look at a schamtic view of a scene with a camera and image plane, some 
diffuse objects and a lightsource. In an ordinary light transport algorithm we try to 
estimate pixel values. We do this by generating light ray samples starting at the eye 
that bounce around in the scene and are eventually connected to a light source. The 
pixel contribution of many such path samples are then used to estimate the pixel 
color. 
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GRADIENT-DOMAIN RENDERING
7

Base path Offset path

Minimize variance by maximizing correlation!

For sampling gradients we look at the difference between two pixels. We sample this 
difference by sampling the difference of two light paths going through adjacent 
pixels, we call these paths base and offset path. Despite both paths being close to 
each other on the image plane, they might still be very different, since at each 
additional bounce the path continues in a randomly chosen direction.
To reduce the variance of the gradient integral we need to make both paths more 
similar. This can be achieved by making both paths strongly correlated!
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GRADIENT-DOMAIN RENDERING
8

Noise cancelled out!

What about specular materials?

We create such correlated pairs of paths by shifting the primary intersection by one 
pixel and by reconnection the shifted path as soon as possible back to the base 
path. Therefore the remainder of the base and offset path will be exactly the same. 
As a consequence, noise introduced by the remainder of the path will be cancelled 
out. (To those familiar with Monte Carlo integration this is an applicaiton of variance 
reduction by common random numbers).

Note that the depicted case only works for diffuse surfaces. To see the generalization 
to specular materials please consult our paper.
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BIDIRECTIONAL PATH TRACING
9

Now that we have the fundamentals of gradient-rendering, let us recap BDPT:

BDPT first traces two subpaths, one from the eye and one from the light, and both 
may be incomplete. By connecting these subpaths we can generate complete light 
paths. Connections can be done between arbitrary pairs of vertices and hence a large 
amount of paths can be generated from two subpaths. 

Note that the overhead per connected path is only one additional ray that must be 
traced which makes this way of sampling very efficient. 

Note that some of the connected paths directly connect to the eye and intersect the 
image plane at a different position. Therefore they may contribute to different pixels 
in the image.
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GRADIENT-DOMAIN BDPT
10

Gradient Sampling

Too expensive!How to compute gradients for set of paths?

When combining this with gradient-domain rendering, the first question that arises is 
how to compute gradients of such a set of paths, since path-samples are not 
generated individually anymore. 

The simplest way is to generate a gradient sample for each connected path by 
creating a offset path individually for each connection strategy. This is however 
prohibitively expensive since the number of connected paths grows quadratically with 
the number of vertices in the subpaths.
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GRADIENT-DOMAIN BDPT
11

Efficient Gradient Sampling

Reuse path segment!

So we need to think about this can be done more efficiently. We need to think about 
whether there are parts of such shifted paths that can be reused between the 
different connected paths. In order to simplify the problem, let us look at subsets of 
the whole set separately.

First, let us look at connection paths that connect to the second or later vertex of the 
eye path. In this example we have only two such paths, but again note that in more 
realistic setups we have much more strategies.

Here the upper path has this offset path. And the lower path has a different offset 
path. 

If we compare both offset paths we see that the parts of the shift that aren’t equal to 
the base path, are actually the same for both connection paths. We can therefore 
compute this shared part of the offset path once and reuse it for all such connection 
strategies.
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GRADIENT-DOMAIN BDPT
12

Efficient Gradient Sampling

Reuse path segment!

Retrace path segment!

Let us now look at connection paths that connect to the primary vertex of the eye 
path.

Here again let us first look at the offset path of the base path at the top, and now at 
the offset path of the base path at the bottom. 
There we see that only the primary ray of the offset path is shared for these paths. 
The ray that reconnects to the basepath must be computed for each such strategy 
separately.
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GRADIENT-DOMAIN BDPT
13

Efficient Gradient Sampling

Without With

Efficient sampling with specular materials?

The last subset of the paths that we look at are light tracing paths; These are stategies 
that connect directly to the eye. This type of paths is important to compute caustics 
and therefore we also want to compute gradient samples for them. 

Since the base paths of light tracing paths contribute to different their offset paths 
might be completely different from each other, therefore we must compute the 
entire offsetpath for each light tracing path from scratch! This is not very efficient, but 
since only a small fraction of all connection strategies are light tracing paths this is 
still affordable.

As a sidenote: Our explanations are only valid for diffuse paths, as soon as specularity 
comes into play, the efficient graident sampling becomes slightly more complicated. 
In general, we have to employ manifold exploration [Jakob et al., 2012] for generating 
the offset path.
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MULTIPLE IMPORTANCE SAMPLING
14

BDPT (without MIS) BDPT (with MIS)

(over the sampling strategies) [Veach and Guibas 1995]

16 samples per pixel

G-BDPT (without MIS) G-BDPT (with MIS)

In 1995, Veach and Guibas described that in BDPT each path can be generated in 
different ways with different sampling strategies. They showed that by weighing these 
strategies in an optimal way, noise can be reduced significantly. If we apply exactly 
the same MIS on gradients we can significantly reduce reconstruciton artefacts of G-
BDPT. However some problems still remain.
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G-BDPT (BDPT-style MIS) G-BDPT (combined MIS) 
[Kettunen- and
Veach-Style]

(over the gradient sampling direction) [Kettunen et al. 2015]

MULTIPLE IMPORTANCE SAMPLING
15

We came up with a way to extend MIS for gradient samples. The main insight here is 
that a gradient sample can be generated in twice as many ways as a ordinary sample. 
This comes from the fact that a gradient from a pixel A to a pixel B can also be 
sampled from pixel B to pixel A with flipped sign (i.e. by reversing the gradient 
direction). When we now use this to extend the classical Veach Style MIS we can 
further reduce reconstruction artefacts. 
However some artefacts remain even then, and this is due to path types that cannot 
benefit from MIS (since they can only be smapled by one strategy). To resolve this 
problem we use the same strategy as previous work.
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RECONSTRUCTION
16

L2 reconstruction L1 reconstruction
Biased

Instead of using a screened poisson reconstruciton that minimizes the L2 error, we 
use a iterative reweighted least square reconstruciton that minimizes the L1 error. 
This yields a reconstruction that is more stable but this comes at the price of bias. 
Despite bias, we found the L1 reconstruciton to yield more nummerically and visually 
pleasing results and used it to generate most our results.
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BDPT, 3minsG-BDPT, 3mins

How well does it work?
17

So now we the final question arises: How well does our new algorithm work? 
In simple scenes like the one here at equal time we get significant noise reduction 
comparable to the previous gradient-domain path tracing algorithm.
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How well does it work?

BDPT, 1hourG-BDPT, 1hour

18

For more complex scenes like Bathroom that has heavy noise even after hours of 
rendering. We also get significant noise reductions. Note that at some of the caustics 
our algorithm isn’t able to completely remove the noise, but in more uniform regions 
it removes it nearly completely.
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How well does it work?

BDPT, 20minsG-BDPT, 20mins

19

The next example is the Door scene. This is a scene that is illuminated indirectly by a 
light source behind the door. There again we see that at equal time our algorithm 
very efficiently removes noise in flat regions. However we also see that in 
geometrically complex regions like the metal teapot, denoising doesn’t work as well. 
This is because this surface has strong bump maps, and because of this it is not 
always possible to find a very similar offset path. Therefore noise cancellation in the 
gradients becomes less effective and also the denoising in the reconstruction 
becomes less effective. However in terms of relative error, G-BDPT is still beneficial 
compared to BDPT by an order of magnitude at equal time.
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How well does it work?
20

BDPT, 3mins

PT, 3mins G-PT, 3mins

G-BDPT, 3mins

x10

x5

Another example is to compare PT and BDPT with and without gradient-domain 
rendering in a simple scene with caustics and indirect illumination.
With PT the scene is resolved very badly and suffers from extensive noise because 
next event estimation fails most of the time.
G-PT successfully removes most noise coming from diffuse interreflections, but fails 
at removing noise from caustics, which are seen as bright outlies in the image. BDPT 
is much better for rendering this scene because it can connect more often to the light 
source and resolve caustics better, but still not as good in  denoising diffuse 
interreflections as G-PT. 

By contrast, G-BDPT has similar denoising functionality as G-PT but also succeeds at 
denoising caustics.

Looking at convergence plots for this scene with compared relMSE over time, we see 
that at equal time G-PT outperforms PT by a factor of 10, but is similar in terms of 
quality as BDPT. G-BDPT now improves upon BDPT again by a factor of 5. 

In general G-BDPT directly outperforms G-PT in scenes where the underlying BDPT 
sampler is better than PT.
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SUMMARY

New algorithm that combines bidirectional path tracing 
with gradient-domain rendering.

• Efficient gradient sampling
• Extended multiple importance sampling

Outperforms BDPT and G-PT in most setups.

21

Key components:

In conclusion: We presented a new algorithm that combines BDPT with gradient 
domain rendering. The algorithm combines the robustness of BDPT with the noise-
reduction of gradient-domain rendering. We showed two key components of the 
implementation: How to efficiently sample gradients and how to extend MIS to 
benefit from all gradient sampling strategies. We showed that our algorithm 
outperforms BDPT and G-PT in most setups.
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Gradient-domain rendering for other 
light transport methods?
• Gradient-domain Photon Mapping  
• Gradient-domain VPLs

Can we sample gradients with even less noise?

FUTURE WORK
22

As future work I want to emphasize that the gradient sampling that we use still 
suffers from noise in more complex setups and we believe that there is room for 
improvement there.

Further we think that our work implies that gradient-domain rendering can be 
applied on a multitude of light transport algorithms besides the one we already tried 
out; for example what about gradient-domain photon mapping or gradient domain 
VPLs? We believe this could further increase the usefulness of gradient-domain 
rendering.
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Gradient-domain 

Photon Density Estimation
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Path-based 
rendering techniques 

(Path tracing)

CLASSICAL RENDERING
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Density-based 
rendering techniques

(Photon mapping)

In the classical rendering, there is two main types of techniques. 

The first one are path-based rendering approach that construct the path 
incrementally from the camera or the light by bouncing over the surfaces.

The second type of rendering technique is density-based rendering techniques which 
have two main steps:
First, several light path are generated from the light source and all their vertices are 
stored inside a spatial data structure. 
Second, a path is generated from the camera and at some point there is a density 
estimation. The density estimation gathers all neighboring light paths and merge 
them to create complete light paths that connect from camera to light.
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Path-based techniques are not robust to specular-diffuse-specular

(SDS) light tranport

SPECULAR-DIFFUSE-SPECULAR PATHS
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DS

It is known that path-based rendering approach have some problem with “specular 
diffuse specular” light transport.

This difficulty is due to the fact that specular material like mirror, restrict the 
bouncing direction. It have some consequence that path-based approach are not 
good to handle this constraint and have a lot of noise in this light transport.

As it is shown in this image, there is a lot of noise on the yellow torus. 
In comparison, density-based technique are more robust to this light transport and 
produce image with much less noise.
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SDS PATHS
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?

DS
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Gradient-domain path-based techniques inherit the 
same limitation of finding SDS paths.

Our goal: to use photon density estimation as the primal 
technique and compute gradient information.

PROBLEM

27

?

The current problem is that all gradient-domain rendering is path-based approach 
and share the same issue on the Specular Diffuse Specular light transport.

Let us look at the example here rendered with bidirectional path tracing (BDPT) with 
the original and gradient-domain version. We can see that the torus is not properly 
rendered. So using different ways of image reconstruction does not really help here: 
L2 have a lot of dipole artifact and L1 have a huge loss of energy.

Inspiring by the fact that photon density estimation is robust to such light transport: 
Stochastic Progressive Photon Mapping (SPPM) [Hachisuka et al., 2009] works really 
well here, our goal in this section is to improve the robustness of gradient-domain 
techniques using photon density estimation as the primal technique.
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Two independent subpaths that compose the base path

PHOTON DENSITY ESTIMATION
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How to define shift mapping for density estimation paths?Hybrid shift mapping

Let’s recap how photon density estimation creates a complete path. We first trace 
two independent subpaths, one from the camera and one from the light. A density 
estimation kernel is centered at the last vertex on the camera subpath, and gather 
energy from the light subpath. The kernel transfers energy from y_s to z_t. 

For gradient-domain rendering, we haven’t seen shift mapping for this type of path 
before. We need a mechanism to shift them.

Here we solve it using a hybrid shift mapping that has two steps.
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STEP 1: SHIFT CAMERA PATH 

29

Half-vector copy 

[Kettunen et al., 2015]

Copy

𝑧𝑖𝑧𝑖
′

𝑧𝑖+1
′ 𝑧𝑖+1

Half-vector

The first step of our shift mapping is to shift the camera path. For clarity, we denote 
vertices starting from the camera on the camera subpath as from z_0 to z_t, and 
vertices starting from the light on the light subpath as from y_0 to y_s. 

Note that similar to the final gathering step in photon mapping, when we generate 
the base camera path, if we encounter not enough smooth surface, we bounce over 
it until reach a diffuse surface. 

Then generating the offset camera path is greatly similar to gradient-domain path 
tracing. The difference here is that we only bounce over not enough smooth surface 
until we hit a diffuse surface instead of a light. To determine the outgoing direction, 
we copy the local half vector from the base path. This scheme is simple and able to 
create coherent offset camera path.

After this first step, we have the offset camera path now. Let’s proceed to the next 
step.

29



 

STEP 2: SHIFT PHOTON LOCATION

30

𝑧𝑡

𝑧𝑡
′

𝑦𝑠

𝑦𝑠
′

𝑦𝑠−1

Copy

During the second step, we want to ensure the shift photon to lie inside photon 
density kernel.

To ensure that we maintain the relative position of the photon to the last vertex on 
the camera path in the shift. This determines the offset photon position.

However, as this procedure cannot ensure that the offset photon to lie on a surface, 
we trace an additional ray from the parent photon to project it to the nearest surface.
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STEP 3: SHIFT THE REST OF THE LIGHT 

PATH

31

 

 

 

 

After we determine the offset photon, we can try to reuse the light path as much as 
we can by reconnecting the offset photon to the parent photon. 

However, in some cases, we have specular materials that make this direct connection 
not possible.

So we need a third and last step to shift the rest of the light path.
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STEP 3: SHIFT THE REST OF THE LIGHT 

PATH
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Case 1: Diffuse parent

 

 

𝑥𝑡

𝑥𝑡
′𝑦𝑠

𝑦𝑠
∗

𝑦𝑠
′

𝑦𝑠−1

Case 2: “Specular” parent

  

 

 

 

Find a valid light path 

using Manifold Exploration 

[Jakob et al. 2012]

In this step, we have two cases. 

The first case is when the parent photon is lying on a diffuse or mostly diffuse surface. 
In case, we can directly do a reconnection.

The second case is when the parent photon is on a specular or nearly specular 
surface. In this case, we have to construct a path between the offset photon location 
and the first diffuse parent, here denoted as y_b. These two points are our 
constraints and we can use manifold exploration [Jakob et al., 2012] to order to 
generate the vertices in between. 
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FINISH!
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After these three steps, we have generated a pair of base and offset path for 
estimating the image-space gradients.
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JACOBIAN

34

For the camera subpath

For shifting in the kernel

For the light subpath

One thing we haven’t mentioned so far is the Jacobian. To recall, the Jacobian is the 
mathematical formulation of the change of measure due to the shift mapping. Having 
a correct Jacobian is important to get correct gradient values. 

The details of the formula could be founded in the corresponding paper [Hua et al., 
2017]. The basic idea is that the Jacobian is the product of the Jacobian for the 
camera subpath, the kernel, and the light subpath, so we will find the Jacobian of 
each part independently. The Jacobian for the camera subpath is mostly similar to the 
Jacobian used in gradient-domain path tracing [Kettunen et al., 2015] which is mainly 
based on half-vector copy. The Jacobian for the light subpath is based on manifold 
exploration [Jakob et al., 2012]. The Jacobian for the kernel shift is the ratio of two 
geometry terms due to the projection of the photon to the surface. 
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Kernel radius reduction as in Stochastic Progressive 

Photon Mapping (SPPM) [Hachisuka et al., 2009]

PROGRESSIVE RENDERING

35

Poisson 
reconstruction

Primal-domain
SPPM
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So now, to summarize, to estimate the gradients, we use a special hybrid shift 
mapping. 

In order to get a consistent estimator, we can use the same reduction rate as 
stochastic progressive photon mapping [Hachisuka et al., 2009].
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Equal-time comparison

• G-BDPT with L1 reconstruction [Manzi et al., 2015]

• Stochastic progressive photon mapping [Hachisuka et al., 2009]

• Our technique with L2 reconstruction

Metric: Relative MSE

RESULTS

36

Let us now see the equal-time comparisons. We will compare with gradient-domain 
bidirectional path tracing with L1 reconstruction. We choose to show L1 
reconstruction as L2 reconstruction has a lot of dipole artefact, and the original 
stochastic progressive photon mapping. 

For our method, we show the results in L2 reconstruction. In fact, we found that if the 
gradients are robust computed, an L2 reconstruction is enough. In this particular 
experiment, we only use L1 in some challenging cases. 

The metric that we will use is relative MSE.
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This is the bathroom scene with 5 minutes of rendering. We can see G-BDPT 
produces clean results for most parts of the image, e.g., the wall that receives a lot of 
diffuse light transport. 

However, for complex light transport, like the specular trash bin with the glossy floor 
or the caustic, G-BDPT have a lot of noise (see the zoom-in patches). It is due to the 
fact that BDPT cannot really handle efficiently these paths.
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In comparison, SPPM produces more noise in all image parts. This is especially true 
for the diffuse/diffuse light transport where the photon are incoherent and produce a 
lot of noise.
By contrast, for the complex light transport, this technique doesn’t have any “spike” 
problem compared to G-BDPT with L1 reconstruction.
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In gradient-domain photon density estimation (G-PM – just to make it shorter than G-
SPPM), most of the noise is gone. It is especially visible for diffuse/diffuse light 
transport where we get similar results compare to G-BDPT.

This technique also works well for the specular light transport regions. With the extra 
denoising capability due to gradients and reconstruction, we are also better than 
SPPM.
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Compare to the reference image, our technique is quite similar but only requires 5 
minutes of rendering. 
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Let us see the convergence plot. SPPM and G-BDPT have the same convergence.
It is due to the fact that SPPM is better for complex light transport but G-BDPT have a 
better handling of diffuse/diffuse light transport.

In G-PM, as it robustly handles all light transport, we get great quality improvement.
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Here is another example with SDS paths dominates the light transport. 
In this case, we expect that G-BDPT fails except for simple refraction or direct lighting. 
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In comparison, as the scene have a lot of SDS path, SPPM handles them quite well 
despite some uniform noise in the image.
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G-PM makes it possible to remove all the noise in the SDS path and direct path 
(second and third column). 

However, for the difficult caustic (first column), the noise is slightly higher as here the 
light path are complicated and manifold exploration failed to generate the correct 
offset light path. The results is slightly worse than classical SPPM in this region.
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Despite that, G-PM is still the closest to the reference. 
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In terms of convergence, G-PM still improves over SPPM. 
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Sponza
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The Crytek Sponza scene is a diffuse scene where there is not specular material. In 
this scene, G-BDPT doesn’t have any issue to handle diffuse/diffuse light transport 
and generate a good image rapidly. As SPPM doesn’t ensure stratification, the noise is 
high as the distribution of photon is not uniform. However, our technique makes it 
possible to filter the noise and give a good speedup in term of relative MSE. However, 
G-BDPT does a better job here as it has a better stratification and sampling strategy.
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NUMBER OF ITERATIONS
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0

1
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4

Bathroom Torus Bookshelf Veach-lamp Sponza

Overhead vs SPPM

Here is a crude measurement of overhead by counting the number of photon pass in 
G-PM and SPPM. We see that the overhead is between 1.3 to 3.3, meaning that we 
pay more cost in each photon pass in G-PM for gradient computation. In return, we 
achieve better convergence as shown before. 

In fact, a costly step in gradient computation is manifold exploration that generates 
the specular and glossy vertex chains. The variation of the overhead is due to the 
percentage of this manifold exploration in shift mapping (see Torus scene).
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Gather photon on glossy surfaces

LIMITATIONS
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Idea: VCM/UPS [Georgiev et al. 2013, Hachisuka et al. 2013] in the gradient domain

A limitation of G-PM is that it is not as strong as G-BDPT in handling glossy surfaces. A 
possible solution is to make gradient-domain vertex connection and merging to unify 
G-BDPT and G-PM into a single framework. 
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Non-uniform photon distribution

LIMITATIONS

50Idea: MCMC to distribute photons [Hachisuka et al. 2011, Gruson et al. 2016]

Another limitation is that photon distribution is random which limits energy 
contribution in highly occluded regions. Using Markov chain Monte Carlo techniques 
to distribute the photons could be a possible solution to focus photons to important 
areas. 
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Photon density estimation in the gradient domain is now 

possible with a hybrid shift mapping.

Take-home message:

• Good throughput and coherent gradients leads to convergence 

boost.

• The robustness of the primal path sampling method is important 

to handle complex light transport.

SUMMARY

51
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Gradient-domain 

Vertex Connection and Merging

Let us now do a quick look at combining gradient-domain bidirectional path tracing 
and photon density estimation into the same framework. 
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BDPT PATHS

Figures courtesy of Sun et al. [2017]

BDPT performs vertex-vertex connection to establish a complete path. 
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GRADIENT-DOMAIN BDPT

Figures courtesy of Sun et al. [2017]

G-BDPT further classifies each vertex to be connectable or unconnectable. Only 
connectable pair of vertices are considered in shift mapping. 

Consider an example camera subpath starting from the eye. As in the figure, the first 
connectable vertex is z_b and the second connectable vertex is z_c. 

First, we generate the offset camera path such that the base and offset camera path 
shares the same connectable z_c vertex. This can be done either by performing a 
manifold exploration between z_b and z_c if necessary. 

After that, each pair of connectable vertices between the light and camera subpath
are considered to form complete paths. Shift mapping is then performed. 
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VERTEX CONNECTION AND 

MERGING (VCM)

Figures courtesy of Sun et al. [2017]

Vertex connection and merging unifies Monte Carlo and density estimation paths into 
the same (extended) path space [Georgiev et al. and Hachisuka et al., 2012]. 
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GRADIENT-DOMAIN VCM

Figures courtesy of Sun et al. [2017]

Let us now consider density estimation on top of G-BDPT to achieve G-VCM. Similar 
to G-BDPT, we will only perform density estimation at connectable vertices. (Density 
estimation is also known as vertex merging in VCM). 

As in the figure, the first connectable vertex is z_b and the second connectable vertex 
is z_c. Therefore, the density estimation can occur at or after z_c (case 1), and at z_b
(case 2). 

Following G-BDPT, we generate the offset camera path such that the base and offset 
camera path shares the same connectable z_c vertex. 

Given the base and offset camera path, let us now handle the density estimation:

Case 1: if the density estimation event happens at z_c, the offset light subpath is the 
same as the base light subpath. This is almost similar to G-BDPT except that the event 
between z_c and y_{s+1} is now a vertex merging instead of vertex connection. 

Case 2: if the density estimation event happens at z_b, the shift mapping is similar to 
gradient-domain photon density estimation. 
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The remaining issue in this algorithm is to support multiple importance sampling 
weights that consider both density-based and Monte Carlo based paths. See the 
papers by Georgiev et al. and Hachisuka et al. [2012] and Sun et al. [2017] for the 
maths.
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More robustness to handle complex light transport paths 

with: 

• Bidirectional path tracing

• Photon density estimation

• Their combinations

The gradient-domain version of such algorithms shows 

even better performance. 

CONCLUSION

57

In this section, we explored two bidirectional light transport algorithms for gradient-
domain rendering: bidirectional path tracing and photon density estimation. A 
combination of them is also possible with gradient-domain vertex connection and 
merging. 

We show that adding gradient estimation and image reconstruction to such 
algorithms show a boost in convergence.
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Theoretical analysis of convergence rate

Simpler implementation

Other algorithms

• Gradient-domain VPLs?

• Other variants of bidirectional path tracing, e.g., stochastic 

connection.

FUTURE WORK
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4.5 Gradient-domain volumetric rendering
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Volume Rendering 

in the Gradient Domain
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Motivation

Surface and Volume interaction

In this work, we are interested in rendering this type of scenes where we have 
complex light transport with the presence of participating media.

1



Motivation

Volume interaction only

More specifically, we are interested only in improving the rendering performance of 
the participating media part.

2



Participating Media

• We assumed light interacts only with surfaces

• Relaxing this assumption = participating media

• Light can interact with any point in the space 

So far we only assumed light interactions with surfaces. Let’s do a recap of rendering 
with participating media in the primal domain before going back to gradient-domain 
rendering. 
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Types of Interactions

• Light (ray) can change its direction and intensity at any point 
in participating media

• Three types of interactions

• Absorption

• Scattering

• Emission

4



Setting

• Consider a small cube of participating media

What we want

5



Absorption

Absorption coefficient
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Scattering (out)

Scattering coefficient
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Extinction

Extinction coefficient
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Transmittance

• Reduction of energy due to extinction 
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Transmittance

• Reduction of energy due to extinction 
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Transmittance

• Reduction of energy due to extinction 

Differential equation

11



Transmittance

• Reduction of energy due to extinction 

Differential equation

Solution

Transmittance
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Transmittance

The integral can be solved by Monte Carlo integration
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Beer-Lambert Law

• If the media is homogeneous

• Spatially uniform extinction coefficient
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Scattering (in)
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Scattering (in)

Phase function
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Phase Function

• Directional probability density of scattering

Commonly expressed as
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Phase Function

• Henyey-Greenstein phase function

• Scattering due to a small sphere

• Anisotropy

• Isotropic

• Forward scattering       

• Backward scattering                   (rare)
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Emission

• Volumetric light such as fire
Emission
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Volume Rendering Equation

• Add two equations
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Volume Rendering Equation

• Add two equations
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Volume Rendering Equation

• Add two equations
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Volume Rendering Equation

• Add two equations

Transmitted light

In-scattered light
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Volume Rendering Equation
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Volume Rendering Equation
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Volume Rendering Equation
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Volume Rendering Equation
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Volume Rendering Equation
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Volume Rendering Equation
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Rendering Participating Media

• Solve the volume rendering equation

• Essentially the same as surfaces

• Based on Monte Carlo sampling

• New: sample distance (not only direction)
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Surface Only
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Surface Only
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Surface Only
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Surface Only
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In Volume
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In Volume
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In Volume

37



In Volume

Distance sampling
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In Volume
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Sampling a Path

• Sample the direction 

• If the ray intersects

• Surface - proceed as usual

• Volume - sample the distance

• Multiply the transmittance
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Sampling a Path

• Surface

• Volume
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Sampling a Path

• Surface

• Volume

Directional sampling
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Sampling a Path

• Surface

• Volume

Directional sampling
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Sampling a Path

• Surface

• Volume
Distance sampling
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Sampling a Path

• Surface

• Volume

45



Expand              recursively

Sampling a Path

• Surface

• Volume Sample direction and distance

Sample direction

46



Distance Sampling

• Exponential

• Importance sampling transmittance

• Works well for homogeneous media

• Woodcock tracking

• Exponential sampling for heterogenous media

• Uses max. extinction + multiple exp. samples

Standard 
procedure!
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Distance Sampling

• If sampled distance is

• Closer than the closest surface intersection

• Use volume scattering

• Farther than the closest surface intersection

• Use surface scattering
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Path Integration

• Sample distance + consider transmittance
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Path Integration

• Sample distance + consider transmittance
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Path Integration

• Sample distance + consider transmittance
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Path Integration

• Sample distance + consider transmittance
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Path Integration

• Sample distance + consider transmittance
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Path Integration

• Sample distance + consider transmittance
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Path Integration

• Sample distance + consider transmittance

55



Path Integration
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Photon Density Estimation

• Store photons in space to get volume density
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Photon Density Estimation

• Store photons in space to get volume density
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Photon Density Estimation

• Store photons in space to get volume density
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Photon Density Estimation

• Store photons in space to get volume density
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Photon Density Estimation

• Store photons in space to get volume density
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Photon Density Estimation

• Store photons in space to get volume density

“Efficient Simulation of Light Transport In Scenes with Participating Media using Photon Maps” by Jensen and 
Christensen
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Beams

• Consider ray segments as basic elements
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Beams

• Consider ray segments as basic elements
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Beams

• Consider ray segments as basic elements
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Beams

• Consider ray segments as basic elements
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Beams

• Consider ray segments as basic elements

“Virtual Ray Lights for Rendering Scenes with Participating Media” by Novak et al.
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Beams

• Consider ray segments as basic elements

“Progressive Photon Beams” by Jarosz et al.
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Classical rendering with volumes

VOLUMETRIC RENDERING

69

• Volumetric Path Tracing

• Volumetric Bidirectional 
Path Tracing 
[Lafortune et al. 1996]

• Volumetric Photon 
Mapping 
[Jensen et al. 1998]

Specialized techniques

• Beam Radiance Estimate 
[Jarosz et al. 2008]

• Photon Beams 
[Jarosz et al. 2011]

• Photon Planes & Volumes 
[Bitterli et al. 2017]

For computing volume interaction, there are two family of techniques. The first type 
includes the rendering techniques taken from surface rendering and extended to 
support participating media rendering like volumetric path tracing, volumetric 
bidirectional path tracing or volumetric photon mapping. 

The second type are specialized rendering techniques that take advantage of the 
higher integration inside the volume like beam radiance estimate, photon beams, and 
photon planes.
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Here are the results for a smoky kitchen scene with 5 minutes of rendering. This 
scene have been rendered with different photon density estimators. For this 
particular scene, photon beams provide the best result for the same rendering 
time.



Can we do better?

Our idea: 
Volumetric rendering in gradient domain

Given this best results for this particular scene, can we do better? One possibility is 
to exploit the smoothness in the image space. To do so our idea is to introduce 
volumetric rendering in the gradient domain.



PREVIOUS WORK

Gradient-domain 
Rendering

PT
G-PT 

[Kettunen et al. 2015]

BDPT

PM

G-BDPT 

[Manzi et al. 2015]

G-PM 

[Hua et al. 2017]

Shift Mapping

Half Vector Copy

Manifold Exploration
[Jakob et al. 2012]

Hybrid Shift

“Classical” 
Rendering

So far we have explored light transport algorithms to render surfaces in the gradient 
domain. Depending on the rendering technique, different shift mapping operators are 
used. For example, for path tracing, Kettunen et al. [2015] proposed to use half 
vector copy as shift mapping. For bidirectional path tracing, Manzi et al. [2015] 
proposed to use manifold exploration. Finally, in Hua et al. [2017] have proposed a 
hybrid shift mapping to bring photon density estimation into gradient domain. Note 
that all these techniques are only for surface rendering and does not handle 
participating media rendering.



PREVIOUS WORK
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Volumetric

PT, BDPT, PM

Specialized techniques

BRE, Photon Beams, …

Gradient-domain 
Rendering Shift Mapping

?

“Classical” 
Rendering

In this work, we are interested in bringing volume rendering into gradient-domain. 
For that, we need to design a shift mapping operator that take into consideration the 
distance sampling inside the media. We also this shift mapping operator efficient.
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SHIFT MAPPING
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Volumetric

PT, BDPT, PM

Specialized techniques

BRE, Photon Beams, …

Gradient-domain 
Rendering Shift Mapping

Volumetric

G-PT, G-BDPT

G-VPM
G-BRE

G-Photon Beams
G-Photon Planes

Our shift mapping 
operators

“Classical” 
Rendering

In this work, we have explored a wide variety of gradient-domain rendering technique 
for the volume. Due to time constraints, we will only focus on volumetric photon 
mapping, beam radiance estimate, and photon beams.
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VOLUMETRIC PHOTON MAPPING
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Diffuse

Fresnel boundary

Medium

In the presence of participating media, it is now necessary to consider the 
transmittance of the path in the volume. In this case, we have the participating media 
coated by a specular boundary like glass. When we generate sub-paths from the light, 
some photon scatters inside the medium. Imaging that we have done this process 
several time, then we will have a number of photons inside the participating media.
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VOLUMETRIC PHOTON MAPPING

76

Medium

Diffuse

Fresnel boundary

After generated enough volume photons, we starting to trace a camera subpath. 
During the tracing, we do not consider interactions with the volume and stop bounce 
over the surface after we hit a enough rough surface. After that, we pick an segment 
of the subpath that is inside the smoke and sample an random distance on it. This 
sampled distance is used to determine the location on the ray of the 3D photon 
density estimation kernel. In this example, the photon density estimation only 
gathers one light subpath.
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VOLUMETRIC PHOTON MAPPING

77

Diffuse

Medium

Fresnel boundary

These two subpaths form an complete path due to the kernel. For simplicity, let’s 
now focus only on how to shift this complete path.
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GRADIENT-DOMAIN VOLUMETRIC 

PHOTON MAPPING

78

Diffuse

Medium

Fresnel boundary

First, we will shift the camera subpath. To do so, an offset camera subpath is 
generated at the neighbor pixel with half-vector copy to make the offset path as 
similar as possible as the base path. Note that during this generation, we do not
consider interactions with the volume.
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GRADIENT-DOMAIN VOLUMETRIC 

PHOTON MAPPING

79

Diffuse

Medium

Fresnel boundary

Then we need to decide where to perform the density estimation on the offset 
sensor path. We have tried several approach during this project and the simplest 
approach have been working the best in general: we just copy the distance sampled 
on the base path to the sensor path. This offset distance is used to place the offset 
photon density kernel. We also uses the same radius for base and offset kernel. Now 
we have completely shift the sensor subpath. Let’s now see how to shift the light 
subpath.
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GRADIENT-DOMAIN VOLUMETRIC 

PHOTON MAPPING

80

Diffuse

Medium

Fresnel boundary

So, to shift the light subpath, we need first to deduce the position of the offset 
photon inside the offset density kernel. After finding this position, we generate the 
offset light subpath by reusing the base light subpath as soon as possible. For 
example, here we can directly reconnecting to the parent photon of the base light 
subpath.
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GRADIENT-DOMAIN VOLUMETRIC 

PHOTON MAPPING

81

Diffuse

Manifold Exploration

[Jakob et al. 2012]

Medium

Fresnel boundary

Sometimes the reconnection procedure to the base light subpath might be more 
complicated. For example, we can have another light subpath where the parent’s 
photon is on the specular boundary. To shift this path, we need to reconnected to a 
deeper vertex. We achieve this by using manifold exploration [Jakob et al., 2012].
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DENSITY ESTIMATION PATHS

82

Volumetric Photon 
Mapping (3D)

Beam Radiance 
Estimates (2D)

Photon Beams
(1D)

So far we have been talking only about volumetric photon mapping and how to shift a 
complete path. However, what’s about other rendering techniques like beam 
radiance estimate and photon beams.
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DENSITY ESTIMATION PATHS

83

Volumetric Photon 
Mapping (3D)

Beam Radiance 
Estimates (2D)

Photon Beams
(1D)

Which shift mapping operation can be used to brings these technique into gradient-
domain? The answer in short: the shift mapping operator for other techniques are 
similar to the volumetric photon mapping case. Only the kernel constraints changes 
the shift mapping operator. 
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PHOTON BEAM WITH 1D KERNEL

84

For example the photon beam with 1D kernel is a challenging case. Using 1D kernel 
introduces complex geometry constrains. When shifting the photon beam, we need 
to maintain these constraints. We also want to keep the sampled distance and kernel 
distance. We proposed a geometrical shift mapping based on projection and 
translation which is able to satisfy all these conditions. At the end we are able to 
generate a shift photon beam that satisfy all these constrains. For a detail 
explanation, please refer to the paper [Gruson et al., 2018].
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DENSITY ESTIMATION PATHS

85

Volumetric Photon 
Mapping (3D)

Beam Radiance 
Estimates (2D)

Photon Beams
(1D)

So due to the kernel dimensionality, shift mapping, especially for photon beam, is 
rather complicated and is difficult to generalize when we use manifold exploration. So 
to address these issue, we proposed to use …
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FAVORING 3D KERNELS

86

Volumetric Photon 
Mapping (3D)

Beam Radiance 
Estimates (3D)

Photon Beams
(3D)

[Hachisuka et al. 2017] 
Extended Path Integral Formulation for Volumetric Transport

… the technique by Hachisuka et al. [2017] which allows us to increase the photon 
density kernel dimensionality to 3D kernel for all these techniques. Using 3D kernel 
makes the shift mapping simpler at the cost of adding a bit of bias due to an higher 
dimensional kernel.
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EXPLOITING KERNEL OVERLAPS

87

Simple Shift

But with this 3D kernel, we can take advantage to the kernel overlap. Indeed, when 
we collect photons from the base sensor path, we usually need to shift all of them to 
cover the space of the offset kernel. However, this strategy does not take to 
consideration that photon that are inside the overlapping region.
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EXPLOITING KERNEL OVERLAPS

88

don’t shift

Mixed ShiftSimple Shift

So, our idea is to reuse photons inside the overlapping region. By doing that we can 
save computation on shifting the light subpath. 
For remaining photons we need a special way to handle them. In general, we have to 
shift such photons to the non-overlapped regions to ensure shift reversibility. 

We call this shift mapping “mixed shift”, which is a combination of simple shift and 
the special treatment of photons in the overlapped region.
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89

5 minutes

Now let’s look at some results. Here, again, the results for the smoky kitchen scene 
with 5 minutes of rendering. These are the results of different rendering 
techniques without gradient computation (primal-domain techniques). 

Now let’s look at gradient-domain counterpart.
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5 minutes

It is easy to see that gradient-domain techniques outperform the primal-domain
rendering with a wide margin in the same amount of rendering time. (For best 
view, please flip back and forth.)
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Another visualization: we visualize the relative MSE with pseudo colors. Here are 
the error maps of primal-domain techniques.
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And here are the error maps of gradient-domain techniques. In this case, more 
blue means less errors.



KITCHEN SCENE
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Here is the convergence of the different rendering techniques in term of relative MSE. 
Notation: VPM for Volumetric photon mapping, BRE for Beam Radiance estimate and 
Beam for photon beam. In this scene, the performance of the different gradient-
domain techniques is almost the same.
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BIAS VS. VARIANCE
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We can do another analysis inside this scene by considering bias and variance for 
primal and gradient-domain beam radiance estimate. In this slide P means primal and 
G means gradient. In this experiment, we visualize the error that is the sum of the 
bias and the variance. 
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BIAS VS. VARIANCE
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So, for a small enough radius, the variance dominates and gradient-domain technique 
reduce this variance effectively. However, …
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BIAS VS. VARIANCE
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as we start to increase the radius, the proportion of bias increase, ….

96



BIAS VS. VARIANCE
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… as we can see inside the error map around the light source.
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BIAS VS. VARIANCE
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With an extreme big radius, the bias dominates, gradient-domain is only effective at 
early iterations. 
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BIAS VS. VARIANCE

99

P  G P  G

x1

x2

x3

x6

Lo
g(

R
el

at
iv

e 
M

SE
)

60 300 1800

BRE G-BREP P GG P G

However, with a reasonable radius, the performance of gradient-domain technique is 
not affected with radius changes, which is not the case for the primal-domain 
technique.
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Orange juice

Moderately 

dense medium

Anisotropic 

phase function

G = 0.5

Milk

Very dense 

medium

Anisotropic 

phase function

G = 0.7

GLASSES

Here is another challenging scene where we have two media inside glasses. The 
orange juice is moderately dense and have a slightly anisotropic phase function. The 
milk is very dense and is more anisotropic. We expect to have more noise in the milk 
region.
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As we can see for primal-domain techniques, the noise level is pretty high. The milk 
regions across the different technique is more noisy than the orange juice part. Note 
that photon beams performs quite well on the orange juice but perform worst on the 
milk.
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Here are the results of gradient-domain rendering. 

Using gradient-domain improve significantly the orange juice part and moderately the 
milk part. The less improvement for the milk is due to higher anisotropic phase 
function and denser medium. Moreover, the gradient-domain photon beams in the 
milk region have even less performance due to the shifting cost and the fact that 
many photon beams are not relevant to shift.
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• More efficient shift mapping for directional phase function

FUTURE WORK

103

For future work, first, we want to have a more efficient shift mapping that handle 
better participating media with anisotropic phase function. To evaluate the current 
shift mapping, we have done an experiment on the laser scene where we have 
several versions of this scene and had increased the phase function directionality. 
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• More efficient shift mapping for directional phase function

FUTURE WORK

104

And these are the results of our different gradient-domain rendering techniques 
where we plot the relative gain in term of error between the primal and the gradient-
domain rendering technique. For example, gradient-domain volume photon mapping 
have more than 20 times less error compared to primal-domain for isotropic phase 
function. However, having strong directionality in the phase function reduce the 
performance of gradient-domain. Changing the shift mapping operator by taking 
advantage of more freedom inside the volume may lead to more efficient shift 
mapping operator for this particular case. 

104



• Heterogenous media for realistic smoke and cloud

FUTURE WORK

105

Another point that we want to explore is how to handle heterogenous participating 
media properly. You can found here an early result of gradient-domain beam radiance 
estimate for cloud rendering. In this result, we have used ray marching inside the 
volume to evaluate the transmittance and sample the distance. This transmittance 
evaluation is costly and biased. Making possible to uses other methods for evaluating 
the transmittance like delta tracking and take care of the change of density inside the 
shift mapping design is an interesting avenue for future work.
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The first gradient-domain formulation for volumetric 

rendering

• Density estimators with several kernel dimensions 

(1D/2D/3D)

• Take advantage to the spatial relaxation, e.g., mixed shift

Gradient-domain volume rendering with density estimators 

tends to perform better than path-based integrators. 

CONCLUSION

106

To conclude the talk, we presented the first gradient-domain formulation for 
volumetric rendering. This formulation support multiples density estimators with 
several kernel dimensions. Moreover, this technique, when it is possible, take 
advantage the spatial relaxation inside the volume to speedup the computation. 
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Advanced Topics in 

Gradient-domain 

Rendering

We have now gained enough background to discuss the state of the arts in gradient-
domain rendering. We will explain more advanced topics that have not been covered 
so far. Most of these works are orthogonal and can be built on top of the gradient-
domain rendering algorithms that you learn. Let’s start.
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1) Higher dimensional integrals

2) Robust reconstruction

3) Non-uniform base and offset pixels

4) Adaptive sampling

ADVANCED TOPICS

We categorize the topics into 4 sections. First, we will see an extension of the 
gradient-domain formulation of higher dimensional integration. Then we will see 
more robust image reconstructions. After that, we will look at different ways to make 
pixel pairs to compute gradients. Finally, we will talk about adaptive sampling in the 
gradient domain.
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Higher dimensional integrals

3



2D image

HIGHER DIMENSIONAL INTEGRALS

Sequence of

2D images

So, so far we have been interested in rendering independent images. However, 
usually, especially for movie production, we need to compute a sequence of images. 
The question is how to extended gradient-domain approaches to support animations 
and take advantage of the temporal dimension. 
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TEMPORAL DOMAIN
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Independent

Independent

Independent

A naïve extension to support a sequence of images is to treat each image (or frame) 
independently. For each frame, we can compute primal and gradient values, and 
apply a Poisson reconstruction. This simple approach generates ...
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1# TEMPORAL DOMAIN

Gradient-domain path tracing
[Kettunen et al. 2015]

… this kind of results. We can see that, individually, the Poisson reconstruction 
generates quite smooth images for each frame. However, as the reconstruction is 
independent, low-frequency noise is visible when playing the animation. One way to 
reduce this artifact is to take into account the temporal domain and do the 
reconstruction across multiple frames.
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TEMPORAL DOMAIN 

Color Image Spatial Gradients Reconstruction

Temporal gradient-domain path tracing [Manzi et al. 2016]

To add temporal domain to gradient-domain rendering, we need to perform the 
reconstruction on several frames at a time. For memory cost, we only consider a 
small window of consecutive frames.  However, some important information is 
missing here.
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TEMPORAL DOMAIN 

Temporal GradientsColor Image Spatial Gradients Reconstruction

3D2D

Temporal gradient-domain path tracing [Manzi et al. 2016]

Indeed, we need to know the temporal gradients between frames. Moreover, as we 
perform the reconstruction on different images at the same time, we need to do a 3D 
Poisson reconstruction. We will not detail the reconstruction part and only show how 
to compute these temporal gradients.
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Computing: (dx, dy)

TEMPORAL DOMAIN

Base

Frame t

Pixel: (x, y)

Offset

Frame t

Pixel: (x+1, y)Shift mapping

Remember, when we were computing image-space gradient, we have a base path at 
the frame T at the position x and y, and we want to generate an offset path inside the 
same frame but at the location x+1 and y. To do so, we apply shift mapping as what 
we have learnt so far.
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Computing: (dt)

RANDOM NUMBER REPLAY

Scene of frame t+1 

NOT available yet at time t 
Base

Frame: t

Pixel: (x, y)

Offset

Frame: t+1

Pixel: (x, y)

(𝑟1, 𝑟2, 𝑟3, 𝑟4, … ) (𝑟1, 𝑟2, 𝑟3, 𝑟4, … )

Copy random numbers

However, when we are computing the gradient in the temporal domain, we want to 
shift a base path at frame t and generates an offset path at the frame t+1. The 
problem is that to create this offset path we need to store two scenes in the memory. 
Moreover, due to the object movement, it is difficult to track spatial information from 
frame t to frame t+1.

Our solution here is to only store one scene in the memory and rely on a simpler shift 
mapping. The idea is to capture the random numbers that generate the base paths in 
frame t, and when the scene for frame t+1 is loaded, we generate the offset paths by 
replaying such random numbers. This brings a certain level of path coherence, while 
still keeping memory usage efficient. 
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TEMPORAL DOMAIN

1
1

Implementation:

Frame 𝑡 + 1

Seed 𝑠 + 2

Seed 𝑠 + 1 Seed 𝑠 + 2

Frame 𝑡 + 2

…Seed 𝑠 − 1

Frame 𝑡 − 2

…

Frame 𝑡 − 1

Seed 𝑠 − 1

Seed 𝑠

Frame 𝑡

Seed 𝑠

Seed 𝑠 + 1

N/2 
samples

N/2 
samples

Frame 𝑡 + 1, 
seed 𝑠 + 1

Frame 𝑡, 
seed 𝑠 + 1

- =

Temporal gradient

Very simple to 

implement!

But how to implement this random number replay? In fact it is pretty easy! For each 
frame we compute two images at half the sampling count with different seeds. In the 
next frame we again compute two images but make sure that one of them shares the 
seeds of one of the images in the previous frame. We continue this process for all the 
frames. Two images of adjacent frame with same random numbers will have strong 
correlations. Moreover, as no transformation is involved, we can directly take the 
difference between these two images to produce the temporal gradient. 
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Temporal G-PT (32spp) G-PT, (equal time)
[Kettunen et al. 2015]

Time to look at some results. Here we can see the comparison between temporal G-
PT and G-PT with independent reconstruction. We can see that leverage the 
information of the temporal gradients improve the results in term of reconstruction 
stability.

12



TEMPORAL DOMAIN

Path tracing
G-PT

[Kettunen et al. 2015]

All at equal computation time!

Temporal G-PT

This is another scene where we also show path tracing results. All these results are 
equal time. Again, temporal G-PT performs the best.
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2D image

HIGHER DIMENSIONAL INTEGRALS

Sequence of

2D images

Spectral 

rendering

R G B

So we just saw how to extend gradient-domain to a sequence of images by taking 
into consideration the temporal domain. However, these images are still using RGB as 
their internal image representation. What about spectral rendering? Indeed, in 
spectral rendering, we need to estimate the distribution of energy across 
wavelengths for a given pixel. As you can guess, we can use a gradient-domain idea to 
better estimate this distribution compared to conventional rendering techniques.
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SPECTRAL DOMAIN

Image space 

gradients

Spectral gradients

In image-space gradients, we were computing the difference of the base path 
generated at a given pixel location to their neighbors. The idea in spectral-domain 
rendering is, within the same pixel, compute the gradient inside the wavelength 
space. For that, we need to define a new shift mapping to generate the gradients in 
the wavelength dimension.
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SPECTRAL DOMAIN

Spectral Gradient Sampling for Path Tracing 

[Petitjean et al. 2018]

CC by fdecomite

Base path

Offset path

Offset and
Base path

The shift mapping proposed by Petitjean and colleague is similar to that in gradient-
domain path tracing. Indeed, it relies on half vector copy and diffuse reconnection. 
However, the difference is the condition of performing the shift mapping. Indeed, as 
it is within a pixel, the offset and the base path start inside the same pixel. The 
divergence between these two paths only occurs when we encounter a dispersive 
object (for example a glass object).  When the paths are diverging, half-vector copy is 
used to keep them coherent. The offset path is merged back to the base path when 
diffuse reconnection is applicable. Divergence can occur multiple times on the path 
when several diffractive objects is encounter during tracing. 
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SPECTRAL DOMAIN

R

G

B

1D Poisson 

reconstruction

Samples and 

gradients
Reconstructed

distribution

Spectral Gradient Sampling for Path Tracing 

[Petitjean et al. 2018]

After getting the samples for a different wavelength and their gradient, a 1D Poisson 
reconstruction is performed to reconstruct the wavelength distribution. Then this 
reconstructed distribution can be converted back to RGB for viewing on a 
conventional display.
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SPECTRAL DOMAIN

Spectral Gradient Sampling for Path Tracing 

[Petitjean et al. 2018]

Let’s look at some results. Note, here; we are only interested in the color noise and 
not the noise across pixels as we only perform a 1D reconstruction to smooth out 
noise in the wavelength distribution. Compared to the non-gradient technique, their 
method can achieve variance reduction thanks to their specialized shift mapping and 
1D Poisson reconstruction. Note that if we combine spatial gradient and wavelength 
gradient using a 3D Poisson reconstruction, we should be able to clean out the noise 
across pixels. This is left as a future work.
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2D image

HIGHER DIMENSIONAL INTEGRALS

Sequence of

2D images

Spectral 

rendering

R G B

This concludes the first part about extending of gradient-domain rendering to higher 
dimensional integrals. We can see an emerging pattern here: a new domain, new 
shift mapping, new Poisson reconstruction.
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Robust Reconstruction

Let’s now explore more robust reconstruction. The traditional Poisson reconstruction 
works well for gradient-domain rendering, but its implementation requires solving a 
linear equation (L2-norm reconstruction) or an iterative reweighted least square (L1-
norm reconstruction). We will see that simpler reconstruction exists. 
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L2-NORM POISSON RECONSTRUCTION

𝐼 = argminI
𝐻𝑑𝑥𝐼
𝐻𝑑𝑦𝐼

−
𝐺𝑥
𝐺𝑦

2

2

+ 𝛼 𝐼 − 𝑃 2
2

Gradient term Primal term

Here is Poisson reconstruction . It takes the primal image P and the image-space 
gradients (Gx, Gy) to reconstruct a final image I. The L2 formula opts to minimize the 
difference of a gradient-based term and a primal-based term. Here H is the finite 
difference operator. This last term is also called a regularization term and the alpha 
parameter controls how strong the output should favor similarity to the primal or 
gradients. 

This problem is a least squared minimization problem and iterative solvers like 
conjugate gradients can be applied directly.

21



Image-space control variate [Rousselle et al., 2016]

• Reformulate reconstruction as an iterative process:

CONTROL VARIATE

𝐹𝑝
𝑖+1 =

1

5
𝐹𝑝
𝑖 +

1

5
𝐹𝑙
𝑖 + 𝑋𝑙 +⋯

Next iteration
value

Pixel value Pixel value
on left

Gradient
left --> current

A simpler approach has been proposed recently by Rousselle and colleague. They 
reformulate the reconstruction problem as an iterative reconstruction.  
The key idea is that a pixel value could be well approximated by its neighbor pixel 
values compensated by the gradients. 

At i-th iteration, the value of pixel p (F_p) is an average of itself and its neighbors (F_l) 
compensated by the gradients between p and l (X_l). Averaging all these values using 
uniform weights gives the pixel value for the next iteration. The weight is 1/5 in this 
case due to 4 neighbors and 1 center pixel. 
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CONTROL VARIATE VS. POISSON

Iterative reconstruction L2-norm Poisson solver

(Noisy inputs)Iteration = 0 Alpha =∞
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One question is about the number of iterations that we should use. In fact, the 
number of iteration is related to the alpha parameter used inside a L2 Poisson solver.
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CONTROL VARIATE VS. POISSON

Iterative reconstruction L2-norm Poisson solver

Iteration = 1 Alpha = 0.94
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More iteration we do, lower the alpha will be.
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CONTROL VARIATE VS. POISSON

Iterative reconstruction L2-norm Poisson solver

Iteration = 5 Alpha = 0.54
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You can observe that the two solver converge to the same solution when they relies 
more on the gradient informations.
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CONTROL VARIATE VS. POISSON

Iterative reconstruction L2-norm Poisson solver

Iteration = 34 Alpha = 0.2
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Note that this current iterative reconstruction is not a screened Poisson 
reconstruction. Please refer the paper to more discussion about this particular point. 
Despite that, this reconstruction have similar properties to a Poisson reconstruction.
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CONTROL VARIATE VS. POISSON

Control variate L2-norm Poisson 

reconstruction

Let us look at this comparison. Uniform control variate and L2 reconstruction 
generates very similar results.
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CONTROL VARIATE VS. POISSON

Control variate L2-norm Poisson 

reconstruction

Here are the insets. 
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Uniform reconstruction

WEIGHTED RECONSTRUCTION

𝐹𝑝
𝑖+1 =

1

5
𝐹𝑝
𝑖 +

1

5
𝐹𝑙
𝑖 + 𝑋𝑙 +⋯

Weighted reconstruction

𝐹𝑝
𝑖+1 = 𝑤𝑝

𝑖 𝐹𝑝
𝑖 + 𝑤𝑙

𝑖 𝐹𝑙
𝑖 + 𝑋𝑙 +⋯

𝑤𝑝
𝑖 : based on 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒−1

It is possible to optimize the weights for control variates. Usually, the artefacts in the 
L2-norm Poisson reconstruction is due to high variance primal or gradient values. 
Using a weight that inversely proportional to the variance can weight down 
problematic gradients and reduce the reconstruction artefacts. 

This weighted reconstruction produces images similar (or better) than L1-norm 
reconstruction.
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WEIGHTED RECONSTRUCTION

Uniform Weighted

𝑤𝑝
𝑖 : based on variance. Reduce at each iteration.

Here is the comparison between uniform and weighted reconstruction where the 
weights are inversely proportional to the estimated variance of the primal pixels. We 
used an online variance estimation. 

For the exact formula of the weights, please see the paper [Rousselle et al., 2016].
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WEIGHTED RECONSTRUCTION

Uniform Weighted

𝑤𝑝
𝑖 : based on variance. Reduce at each iteration.

We see that weighting down problematic gradients removes the dipole artefacts and 
leads to better image quality.
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WEIGHTED RECONSTRUCTION

L1 Weighted

𝑤𝑝
𝑖 : based on variance. Reduce at each iteration.

Compared to an L1 reconstruction, a weighted reconstruction seems a bit noiser in 
this case. However, if we visual the errors…

32



WEIGHTED RECONSTRUCTION

L1 Weighted

Negative error Positive error

… we can see that L1 reco nstruction suffer from a large energy loss. In comparison, 
the weighted reconstruction has more uniform error patterns.
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Normal buffer Albedo buffer

Example features
Normals, textures, positions, etc.

UTILIZING FEATURE BUFFERS

Another idea that have been explored is to use the features maps to guide the 
reconstruction. As features maps, we can have normal vectors, surface albedos and 
so on.
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Robust Denoising using Feature and Color Information 

[Rousselle et al., 2013]

DENOISING WITH FEATURE BUFFERS

Path tracing 55s Denoising 57s

These information is usually used in post-process denoising techniques to filter noise 
in path tracing. These techniques are applied directly on the primal image. They do 
not use the estimated gradients from shift mapping that usually have less variance 
compared to the primal.
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UTILIZING FEATURE BUFFERS

Candidate
reconstructions

Selection 
map

Input: Base image, gradients 
and features

Output

Different α, β, kc

parameters
Error 

estimation

Regularizing Image Reconstruction for Gradient‐Domain 

Rendering with Feature Patches [Manzi et al. 2016]

Manzi et al. have explored this combination of gradient-domain and denoising 
techniques. The authors perform a constraint Poisson reconstruction based on the 
feature map information. 

Their algorithms have different parameters that produce potentially different images 
with less or more bias. It is in general quite difficult to know in advance the optimal 
parameters. To address this, they perform the reconstruction with multiple 
parameter set and combines them using a selection map. This selection map picks 
the best technique in term of variance/bias pixelwise. 
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RESULTS

ReferenceAdvance 
recons.
0.00126

PT + RDFC
(denoising)

0.00142

G-PT (L1)
0.00662

PT
0.05527

The results shows that compared to denoising technique, this new technique can 
achieve better reconstruction. Moreover, this technique is able to remove the 
problematic fireflies in the L1 reconstruction. 

However, the optimization was quite slow. Accelerating it will make it more useful in 
practice.

37



Non-Uniform Base and Offset Pixels

Traditional gradient-domain rendering assumes a uniform pixel grid where base and 
offset pixels are sampled horizontally and vertically. In fact, this is just for 
convenience in the implementation, and this pattern might not fit well to actual 
structures in the image. Let’s explore more advanced techniques that leverage non-
uniform base and offset pixels.
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BIGGER KERNELS

Bigger groupsCross shape

In gradient-domain, we usually use cross shape finite difference where we shift the 
center pixel to 4 pixels neighbors. However, gradient-domain rendering can also work 
with other tiles shapes. For example, we can generate overlapping tiles by extending 
only one side and perform the shift mapping over all the pixels inside the same tile. 
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Gradient-Domain Path Reusing [Bauszat et al., 2017]

• Make the connection between gradient-domain and 

path reuse [Bekaert et al. 2002]

• Uses overlapping square tiles and perform a Poisson 

reconstruction

PATH REUSING

Poisson reconstruction

This is the approached proposed by gradient-domain path reusing. In fact, shifting 
path inside a tile have been explored in path reuse before. This paper brings two new 
ideas: 
1) The shift mapping operator used in gradient-domain rendering to shift the path. 
Before this, path reuse was not efficient on specular or glossy surfaces.
2) The overlapping of the tiles and the Poisson reconstruction process can reduce the 
image artefacts introduced by the path correlation.
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PATH REUSING
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Figure courtesy of Bauszat et al. [2017] 

One question is what is the tile size we should use? Inside their paper, the authors 
have done a small experiment on two scenes by plotting the relative error when 
increasing the tile size. We can see that small tile size have the largest error. However, 
at a certain point, too big tile did not bring any benefits. 

However, this plot does not include the rendering time. If we take into account the 
rendering time and display the efficiency, we have another curves. This curves said 
that using too big tiles is not the good idea. The reason is that bigger tiles means 
more shift mapping be performed which is costly. 

The optimal size is a tile around 6 to 7 pixels.
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PATH REUSING

Path 
tracing

Path 
reusing

G-PT 
cross

G-PT 
tile (6)

Reference

Figure courtesy of Bauszat et al. [2017] 

Here are some results about this technique. We can see their methods can achieve 
better results compared to classical G-PT with cross shape and primal-domain path 
reusing. Note that inside this paper the authors use a Russian Roulette to select the 
path to shift. Please refer to the paper for more details.
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NON-CONTIGUOUS PIXELS

Bigger groups Non-contiguousCross shape

So far we only consider axis-aligned kernels. In general, the kernels can have arbitrary 
shapes.
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SAMPLING EDGES

L2 reconstruction at edges has bumpy artefacts

This is motivated by the fact that conventional shift mapping usually have issues with 
geometrical edges.
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SAMPLING EDGES

Shift mapping performance depends on the integral correlation

High correlation

Low variance gradients

Low correlation

High variance gradients

The reason of this problem is due to high variance inside the gradients. Indeed, when 
two pixels see the similar area, their integral are very similar. In this case shift 
mapping operator can perform low variance estimate of the gradient value. However, 
if now we are at the edge, the two primary points can end up to be very far away. 
This is problematic as their integral will be very different and correlate these two 
pixels will leads to high variance gradients.
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SAMPLING EDGES

Improved Sampling for Gradient-Domain Metropolis 

Light Transport [Manzi et al. 2014]

Textures Normals Depth

min( , , )best(𝑛, )

The idea of Manzi et al. [2014] is to detect similar pixel values using features maps. 
This is similar to what has been used in image-space denoising techniques as they 
assume that feature buffers in general are very similar to the final image. 

To define the kernel shape, the authors proposed the following way. For each pixel 
we look at a window of the different feature maps. For each feature map, a weight is 
computed similar to denoising methods. Then the weights are concatenated and the 
N best pixels are extracted. These pixels will be used to determine where to shift the 
path.
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SAMPLING EDGES

Old gradients Generalized 

gradients

For MIS, the pairs need to be reversible

(More complexity in the implementation)

This is a comparison between old gradients and this generalized gradient formulation. 
We can see that this generalized gradient formulation works much better on the 
edges. Note that in case of MIS usage, the shift mapping need to be reversible. So 
extra care need to be done here. Moreover, as the gradient does not have structure 
anymore, the reconstruction algorithm might be a little bit more complex to 
implement. For details, please refer to the paper.
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Adaptive Sampling

Now let’s talk about the last point of this state of the art for gradient-domain 
techniques: adaptive sampling.
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ADAPTIVE SAMPLING

Primal Gradients

Dense values

Variance: Non-uniform

Sparse values

Variance: Highly non-uniform

Adaptive sampling is a classical approach for primal rendering techniques. Indeed, the 
energy inside the primal is usually dense but the variance is not uniform. For faster 
convergence, we want to concentrate samples to the area of higher error to improve 
the efficiency. 

In gradient-domain rendering, as we also estimate the gradients, we can apply 
adaptive sampling. A simple approach that works well is to adaptively sample pixels 
that has high variance in primal-domain value estimation or gradient value 
estimation. 

49



ADAPTIVE GRADIENT-DOMAIN 

PATH TRACING

Uniform sampling Adaptive sampling

Uniform control variate reconstruction [Rousselle et al., 2016]

These are results of gradient-domain path tracing using uniform sampling and 
adaptive sampling. The reconstruction is done with uniform control variate (similar to 
L2-norm Poisson reconstruction). The image looks quite the same at first, however, 
when we zoom on edges regions …
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ADAPTIVE GRADIENT-DOMAIN 

PATH TRACING

Uniform sampling Adaptive sampling

Uniform control variate reconstruction [Rousselle et al., 2016]

… we can see that adaptive sampling reduces the artefacts compared to uniform 
sampling. Note that the effect that we get is similar to non-contiguous kernel as this 
technique reduce the variances inside problematic gradients.
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Target function 𝑇 𝑥 = 𝛼𝐹 + 𝐺𝑥 + |𝐺𝑦|

ADAPTIVE SAMPLING WITH MCMC

Sampling densityPrimal

Gradients

Gradient-Domain Metropolis Light Transport [Lehtinen et al., 2013]

For adaptive sampling, we can also rely on MCMC sampling. MCMC techniques are 
known to be able to produce samples that follow a target distribution. If this target 
distribution was proportional to our path throughput and the gradients, we can 
achieve quite good importance sampling. 

Using gradient-domain rendering and MCMC has been explored in the seminal paper 
by Lehtinen et al. [2013]. This method focus the samples on the gradients.
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ADAPTIVE SAMPLING WITH MCMC

Sampling densityPrimal

Gradients

Gradient-Domain Metropolis Light Transport [Lehtinen et al., 2013]

Automatic

importance sampling

Unpredictable results

(MCMC problems)

However, implementing MCMC can be tricky to do. It also comes with major 
drawback such as unpredictable convergence, sudden fireflies and so on.
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Gradient MLT, 512 spp Gradient PT, 512 spp
54

Let’s see an example. Standard Metropolis generally does better than standard path
tracing when light transport is extremely challenging. However, its convergence is 
unpredictable and non-uniform as seen in the splotchiness in the error image on the 
left. While Gradient Metropolis generally improves the situation, it unfortunately 
inherits the convergence issues. 

In contrast, well-implemented standard path tracing beats MLT in easy transport 
situations, and converges predictably. 
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1) Higher dimensional integrals

2) Robust reconstruction

3) Non-uniform base and offset pixels

4) Adaptive sampling

SUMMARY

Let’s conclude this section. We talked about various topics in advanced gradient-
domain rendering Note that many of the techniques can be combined. It would be 
interesting to see more advanced techniques coming in the near future. 
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Tips and Tricks for 

Gradient-domain 

Rendering 

Implementation
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PATH TRACING

2

Base Path

Mirror Light

As a typical implementation, a path tracer progressively bounces a path from the 
camera until it hits the light. 
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ON THE FLY 

SHIFT MAPPING

3

Base Path
Offset Path

Mirror Light

Non-SpecularNon-Specular

Non-Specular

Half-vector
Ideal Reflection

One of the straightforward strategy to integrate gradient sampling into existing path 
tracers is to perform shift mapping every time a vertex on the base path is sampled. 
This is the strategy used in the original gradient-domain path tracing implementation. 

Some housekeeping has to be added, such as tracking path states to know whether 
the offset path is already reconnected to the base path. When it is reconnected, we 
simply continue the converged path until it hits the light. 
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Weigh the gradients using balanced heuristics: 

𝑤 𝑥 =
𝑝 𝑥

𝑝 𝑥 + 𝑝 𝑇 𝑥 | 𝑇 𝑥 |
=

1

1 +
𝑝 𝑇 𝑥
𝑝(𝑥)

𝑇 𝑥

MULTIPLE IMPORTANCE SAMPLING

4

Forward: Backward: Combined:

x T(x) T’(y
)

y

For MIS, it is also worth storing pdf ratios as in bidirectional path tracing to avoid 
floating point accuracy issues.
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CACHED PATHS 

SHIFT MAPPING

5

Base Path
Offset Path

Mirror Light

Non-SpecularNon-Specular

Non-Specular

Half-vector
Ideal Reflection

A second strategy is to cache all necessary information during base path generation, 
and utilize them for shift mapping after the base path is generated. This is more 
general and cleaner as it helps one to separate gradient-domain implementation from 
the actual path tracing implementation. While there are some small overheads due 
to extra path storage, it is more manageable when a path tracer becomes 
complicated, e.g., those that handles surface and volume rendering at the same time.

The current implementation of gradient-domain photon density estimation also 
stores all light subpaths that used to generate the photons. 
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RUSSIAN ROULETTE

6

Base Path
Offset Path

Mirror Light

A further possible optimization from storing the base paths is that we can perform an 
extra Russian roulette to decide whether we should perform shift mapping to 
generate the offset path or not. This is helpful in cases when the base path does not 
contribute much energy, and tracing offset paths become wasteful. 

Note that Russian roulette is a random process, and it comes with a cost of extra 
variance in the gradients. 
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• Replay random samples from the base path to 

generate the offset path [Manzi et al., 2016].

• Simple, no need to manipulate geometry except 

tracing to generate path.

• Offset path less coherent.

YET ANOTHER SHIFT MAPPING

Another shift mapping that could be useful for practical implementation is to replay 
the random numbers sampled on the base path to generate the offset path. This 
strategy is simple to implement. However, the offset paths might not be as coherent 
to shift mapping that manipulates path geometry explicitly such as half-vector copy 
or manifold exploration. 

This shift mapping is used for temporal gradient-domain path tracing [Manzi et al., 
2016], and could be helpful for making the gradient-domain version of primary-
sample space Metropolis light transport (PSSMLT). 
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• When shift fails, revert to compute finite 

difference of pixel values given by the 

neighboring base paths

• Simply set the contribution of the offset 

path to 0 and MIS weight to 1

HANDLING SHIFT FAILS

In the implementation, a lot of times we have to deal with shift fail, i.e., when the 
offset path is invalid. This requires us to revert to computing the gradients using the 
finite difference of the base path and the neighbor base path. 

For convenience, in the implementation we can simply return offset path contribution 
as zero with MIS weight as 1. When forward and backward shift mapping is 
guaranteed, the end result (on average) is the mentioned finite difference. 

Note that in case of adaptive sampling, make sure the number of paths in the current 
and neighbor pixel is equal. 
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• Modify existing renderers

• Implement from scratch

HIGH-LEVEL CHANGES

The first approach is what we has been doing: modify Mitsuba, the open-source 
research oriented renderers to include new path integrators that performs shift 
mapping and image-space reconstruction. 

This can be implemented as a direct code change or a plugin to existing renderers. 
For plugin, this requires the renderers to store and pass to the plugin necessary light 
path information for computing gradients. This approach has some overheads but is 
needed if one does not have access to entire path tracer implementations. The shift 
mapping approach that replays random numbers might be simpler to implement in 
this case. 

There has been some attempts of the second approach, such as the 500+-line 
gradient-domain path tracers by Tzu-Mao Li. We also reimplement a gradient-domain 
path tracers from scratch in Rust, a programming language that is made to avoid 
segmentation faults. 
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The Next Frontier

1



• Gradient-domain virtual point lights and 

scalable many lights rendering.

• Gradient-domain photon density 

estimation in splatting style.

POTENTIAL RESEARCH IDEAS

There requires further investigation to bring even more integrators to the gradient 
domain. 

2



• Unifying points, beams, and other 

integrators for volumetric rendering into 

a single gradient-domain integrator, i.e., 

gradient-domain UPBP.

• Rendering heterogeneous media with 

gradient-domain techniques.

POTENTIAL RESEARCH IDEAS

Volumetric rendering also deserves more studies, particularly for heterogeneous 
media such as rendering cloud, fire, cloth and fabrics.

3



• Robust shift mapping and reconstruction.

• Integrate path guiding.

• Very low sample count gradient-domain 

rendering.

• Combine image-space denoisers with 

gradient-domain rendering.

POTENTIAL RESEARCH IDEAS

There is also a need to make gradient-domain rendering itself more robust. More 
evaluation of its performance and comparing to path guiding and other machine 
learning based denoisers that are becoming more common in the industry is an 
important task.
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• Simpler implementation of gradient-

domain bidirectional techniques.

• Gradient-domain rendering in production.

• Accelerating gradient-domain rendering 

on the GPU and for real-time applications.

POTENTIAL RESEARCH IDEAS

Bringing gradient-domain techniques to production requires significant changes in 
existing renderers. Researches of techniques to implement gradient-domain 
rendering as a plugin onto existing renderers will be very useful. 
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