
GPU-Based Large-Scale
Scientific Visualization
Johanna Beyer, Harvard University
Markus Hadwiger, KAUST

Course Website:
http://johanna-b.github.io/LargeSciVis2018/index.html
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SA '18 Courses, December 04-07, 2018, Tokyo, Japan
ACM 978-1-4503-6026-5/18/12.
10.1145/3277644.3277805

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3277644.3277805&domain=pdf&date_stamp=2018-12-04

Overview of modern GPU techniques for large-scale visualization
• Focus on volume data
Out-of-core techniques leveraging modern GPU features
• Virtual texturing approaches
Display-Aware, Remote and Web-Based Visualization

Course webpage (updated material):
http://johanna-b.github.io/LargeSciVis2018/index.html

State-of-the-Art in GPU-Based Large-Scale Volume Visualization
[J. Beyer, M. Hadwiger, H. Pfister; Computer Graphics Forum, 2015]
https://dl.acm.org/citation.cfm?id=3071497

COURSE OVERVIEW (1)

• Part 1 – Introduction & Basics of Scalable Volume Visualization
Markus Hadwiger [60 min]

• Part 2 – Scalable Volume Visualization Architectures & Applications
Johanna Beyer [45 min]

• Break

COURSE OVERVIEW (2)

• Part 3 – GPU-Based Ray-Guided Volume Rendering Algorithms
Johanna Beyer [60 min]

• Part 4 – Display-Aware Visualization and Processing
Markus Hadwiger [45 min]

• Part 5 – Outlook and Summary
Johanna Beyer, Markus Hadwiger [15 min]

COURSE OVERVIEW (3)

Part 1 -
Introduction & Basics of

Scalable Volume Visualization

Motivation

“In information technology, big data is a collection of data sets so large and
complex that it becomes difficult to process using on-hand database
management tools or traditional data processing applications. The challenges
include capture, curation, storage, search, sharing, analysis, and visualization.”
‘Big Data’ on wikipedia.org

Our interest:
Very large 3D volume data

BIG DATA

Example: Connectomics (neuroscience)

DATA-DRIVEN SCIENCE (E-SCIENCE)

EARTH SCIENCES
Global Climate Models

MEDICINE
Digital Health Records

BIOLOGY
Connectomics

ENGINEERING
Large CFD Simulations

courtesy Stefan Bruckner

VOLUME DATA GROWTH

64x64x400
(SabelIa 1988)

21494x25790x1850
(Hadwiger et al. 2012)

256x256x256
(Krüger 2003)

courtesy Jens Krüger

DATA SIZE EXAMPLES

year paper data set size comments
2002 Guthe et al. 512 x 512 x 999 (500 MB)

2,048 x 1,216 x 1,877 (4.4 GB)
multi-pass, wavelet compression,

streaming from disk
2003 Krüger & Westermann 256 x 256 x 256 (32 MB) single-pass ray-casting
2005 Hadwiger et al. 576 x 352 x 1,536 (594 MB) single-pass ray-casting (bricked)
2006 Ljung 512 x 512 x 628 (314 MB)

512 x 512 x 3396 (1.7 GB)
single-pass ray-casting,

multi-resolution
2008 Gobbetti et al. 2,048 x 1,024 x 1,080 (4.2 GB) ‘ray-guided’ ray-casting with

occlusion queries
2009 Crassin et al. 8,192 x 8,192 x 8,192 (512 GB) ray-guided ray-casting
2011 Engel 8,192 x 8,192 x 16,384 (1 TB) ray-guided ray-casting
2012 Hadwiger et al. 18,000 x 18,000 x 304 (92 GB)

21,494 x 25,790 x 1,850 (955 GB)
ray-guided ray-casting

visualization-driven system
2013 Fogal et al. 1,728 x 1,008 x 1,878 (12.2 GB)

8,192 x 8,192 x 8,192 (512 GB)
ray-guided ray-casting

The Connectome
How is the Mammalian Brain Wired?

Daniel Berger, MIT

The Connectome
How is the Mammalian Brain Wired?

~60 µm3

1 Teravoxel
21,500 x 25,800 x 1,850

Bobby Kasthuri, Harvard

ELECTRON MICROSCOPY (EM) IMAGES

• Huge amount of raw data (terabytes to petabytes)
• Takes months to years to scan, align, segment
• How to visualize and analyze this?

PETAVOXEL MICROSCOPY VOLUMES

Course focus
• (Single) GPUs in standard workstations
• Scalar volume data; single time step
• But a lot applies to more general settings…

Orthogonal techniques (won’t cover details)
• Parallel and distributed rendering, clusters, supercomputers, …
• Compression

COURSE SCOPE

Books
• Real-Time Volume Graphics, Engel et al., 2006
• High-Performance Visualization, Bethel et al., 2012

Surveys
• Parallel Visualization: Wittenbrink ’98, Bartz et al. ‘00, Zhang et al. ’05
• Real Time Interactive Massive Model Visualization: Kasik et al. ‘06
• Vis and Visual Analysis of Multifaceted Scientific Data: Kehrer and Hauser ‘13
• Compressed GPU-Based Volume Rendering: Rodriguez et al. ‘13

RELATED BOOKS AND SURVEYS

Fundamentals

Assign optical properties (color, opacity) via transfer function

VOLUME RENDERING (1)

Ray-casting

VOLUME RENDERING (2)

Traditional HPC, parallel rendering definitions
• Strong scaling (“more nodes are faster for same data”)
• Weak scaling (“more nodes allow larger data”)

Our interest/definition: output sensitivity
• Running time/storage proportional to size of output instead of input

• Computational effort scales with visible data and screen resolution
• Working set independent of original data size

SCALABILITY

Output-sensitive algorithms
• Standard term in (geometry) occlusion culling

Ray-guided volume rendering
• Determine working set via ray-casting
• Actual visibility; not approximate as in traditional occlusion culling

Visualization-driven pipeline
• Drive entire visualization pipeline by actual on-screen visibility

Display-aware techniques
• Image processing, … for current on-screen resolution

SOME TERMINOLOGY

LARGE-SCALE VISUALIZATION PIPELINE

Data Processing Visualization
Image

Filtering Mapping RenderingData
Pre-Processing

LARGE-SCALE VISUALIZATION PIPELINE

Data Processing Visualization
Image

FilteringData
Pre-Processing

Ray-Guided
RenderingData Structures Acceleration

Metadata
On-Demand
Processing

on-demand?

Scalability

Mapping Rendering

Basic Scalability Issues

SCALABILITY ISSUES

Scalability issues Scalable method
Data representation and storage Multi-resolution data structures

Data layout, compression
Work/data partitioning In-core/out-of-core

Parallel, distributed
Work/data reduction Pre-processing

On-demand processing
Streaming
In-situ visualization
Query-based visualization

SCALABILITY ISSUES

Scalability issues Scalable method
Data representation and storage Multi-resolution data structures

Data layout, compression
Work/data partitioning In-core/out-of-core

Parallel, distributed
Work/data reduction Pre-processing

On-demand processing
Streaming
In-situ visualization
Query-based visualization

Additional issues
• Data layout (linear order, Z order, …)
• Compression

DATA REPRESENTATIONS

Data structure Acceleration Out-of-Core Multi-Resolution
Mipmaps - Clipmaps Yes

Uniform bricking Cull bricks (linear) Working set (bricks) No

Hierarch. bricking Cull bricks (hierarch.) Working set (bricks) Bricked mipmap

Octrees Hierarchical traversal Working set (subtree) Yes (interior nodes)

UNIFORM VS. HIERARCHICAL
DECOMPOSITION

uniform grid bricked mipmap

octree

wikipedia.org

Grids
• Uniform or non-uniform

Hierarchical data structures
• Pyramid of uniform grids

• Bricked 2D/3D mipmaps
• Tree structures

• kd-tree, quadtree, octree

Object space (data) decomposition
• Subdivide data domain into small bricks
• Re-orders data for spatial locality
• Each brick is now one unit (culling, paging, loading, …)

BRICKING (1)

What brick size to use?
• Small bricks

+ Good granularity
(better culling efficiency, tighter working set, …)

- More bricks to cull, more overhead for ghost voxels,
one rendering pass per brick is infeasible

• Traditional out-of-core volume rendering: large bricks (e.g., 2563)
• Modern out-of-core volume rendering: small bricks (e.g., 323)

• Task-dependent brick sizes (small for rendering, large for disk/network storage)

BRICKING (2)

Analysis of different brick sizes:
[Fogal et al. 2013]

Duplicate voxels at border (ghost voxels)
• Need at least one voxel overlap
• Large overhead for small bricks

Otherwise costly filtering at brick boundary
• Except with new hardware support: sparse textures

FILTERING AT BRICK BOUNDARIES

Pre-computation might take very long
• Brick on demand? Brick in streaming fashion (e.g., during scanning)?

Different brick sizes for different tasks (storage, rendering)?
• Re-brick to different size on demand?
• Dynamically fix up ghost voxels?

Can also mix 2D and 3D
• E.g., 2D tiling pre-computed, but compute 3D bricks on demand

PRE-COMPUTE ALL BRICKS?

Collection of different resolution levels
• Standard: dyadic pyramids (2:1 resolution reduction)
• Can manually implement arbitrary reduction ratios

Mipmaps
• Isotropic

MULTI-RESOLUTION PYRAMIDS (1)

level 0 level 1 level 2 level 3

3D mipmaps
• Isotropic

MULTI-RESOLUTION PYRAMIDS (2)

level 0
(8x8x8)

level 1
(4x4x4)

level 2
(2x2x2)

level 3
(1x1x1)

Scanned volume data are often anisotropic
• Reduce resolution anisotropically to reach isotropy

MULTI-RESOLUTION PYRAMIDS (3)

level 0
(8x8x4)

level 1
(4x4x4)

level 2
(2x2x2)

level 3
(1x1x1)

Each level is bricked individually
• Use same brick resolution (# voxels) in each level

BRICKING MULTI-RESOLUTION PYRAMIDS (1)

spatial
extent

level 0 level 1 level 2

Virtual memory: Each brick will be a “page”
• “Multi-resolution virtual memory”: every page lives in some resolution level

BRICKING MULTI-RESOLUTION PYRAMIDS (2)

memory
extent

4x4 pages 2x2 pages 1 page

Beware of aspect ratio and partially filled pages
• Reduce total resolution in voxels; compute number of pages (ceil); iterate

BRICKING MULTI-RESOLUTION PYRAMIDS (3)

spatial
extent

4x3 pages 2x2 pages 1 page

Beware of aspect ratio and partially filled pages
• Reduce total resolution in voxels; compute number of pages (ceil); iterate

BRICKING MULTI-RESOLUTION PYRAMIDS (3)

4x3 pages 2x2 pages 1 page

memory
extent

Tail of pyramid
• Below size of single page; can cut off early

BRICKING MULTI-RESOLUTION PYRAMIDS (4)

1 page 1 page 1 page

spatial
extent

Tail of pyramid
• Below size of single page; can cut off early

• GL_ARB_sparse_texture treats tail as single unit
of residency (implementation-dependent definition of tail !)

BRICKING MULTI-RESOLUTION PYRAMIDS (4)

1 page 1 page 1 page

memory
extent

Multi-resolution
• Adapt resolution of data to screen resolution

• Reduce aliasing
• Limit amount of data needed

Acceleration
• Hierarchical empty space skipping
• Start traversal at root

(but different optimized traversal algorithms:
kd-restart, kd-shortstack, etc.)

OCTREES FOR VOLUME RENDERING (1)

Representation
• Full octree

• Every octant in every resolution level
• Sparse octree

• Do not store voxel data of empty nodes

Data structure
• Pointer-based

• Parent node stores pointer(s) to children
• Pointerless

• Array to index full octree directly

OCTREES FOR VOLUME RENDERING (2)

wikipedia.org

SCALABILITY ISSUES

Scalability issues Scalable method
Data representation and storage Multi-resolution data structures

Data layout, compression
Work/data partitioning In-core/out-of-core

Parallel, distributed
Work/data reduction Pre-processing

On-demand processing
Streaming
In-situ visualization
Query-based visualization

• Out-of-core techniques
• Domain decomposition
• Parallel and distributed rendering

WORK/DATA PARTITIONING

Data too large for GPU memory
• Stream volume bricks from CPU to GPU on demand

Data too large for CPU memory
• Stream volume bricks from disk on demand

Data too large for local disk storage
• Stream volume bricks from network storage

OUT-OF-CORE TECHNIQUES (1)

GPU

CPU

disk network

Preparation
• Subdivide spatial domain

• May also be done “virtually”, i.e., data re-ordering may be delayed
• Allocate cache memory (e.g., large 3D cache texture)

Run-Time
• Determine working set
• Page working set into cache memory
• Render from cache memory

OUT-OF-CORE TECHNIQUES (2)

Subdivide image domain (image space)
• “Sort-first rendering” [Molnar, 1994]

• View-dependent

DOMAIN DECOMPOSITION (1)

Subdivide data domain (object space)
• “Sort-last rendering” [Molnar, 1994]

• View-independent

DOMAIN DECOMPOSITION (2)

SORT-FIRST VS. SORT-LAST

sort-first
(image domain)

sort-last
(data domain)

SCALABILITY ISSUES

Scalability issues Scalable method
Data representation and storage Multi-resolution data structures

Data layout, compression
Work/data partitioning In-core/out-of-core

Parallel, distributed
Work/data reduction Pre-processing

On-demand processing
Streaming
In-situ visualization
Query-based visualization

First determine what is visible / needed
Then process only this working set
• Basic processing

• Noise removal and edge detection
• Registration and alignment
• Segmentation, …

• Basic data structure building
• Construct pages/bricks/octree nodes only on demand?

ON-DEMAND PROCESSING

EXAMPLE: 3D BRICK CONSTRUCTION FROM 2D EM
STREAMS

3D Block
Request

[Hadwiger et al., IEEE Vis 2012]

Edge enhancement for EM data
Caching scheme
• Process only currently visible bricks
• Cache result for re-use

GPU Implementation
• CUDA and shared memory for fast computation

Different noise removal and filtering algorithms

EXAMPLE: DENOISING & EDGE
ENHANCEMENT

[Jeong et al., IEEE Vis 2009]
Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets

Registration at screen/brick resolution

EXAMPLE: REGISTRATION & ALIGNMENT

[Beyer et al., CG&A 2013]
Exploring the Connectome – Petascale Volume Visualization of Microscopy Data Streams

Part 2 -
Scalable Volume Visualization
Architectures and Applications

History
Categorization

• Working Set Determination
• Working Set Storage & Access
• Rendering (Ray Traversal)

Ray-Guided Volume Rendering Examples
Summary

PART 2 – SCALABLE ARCHITECTURES &
APPLICATIONS

Texture slicing [Cullip and Neumann ’93, Cabral et al. ’94, Rezk-Salama et al. ‘00]

+ Minimal hardware requirements (can run on WebGL)

- Visual artifacts, less flexibility

HISTORY (1)

GPU ray-casting [Röttger et al. ‘03, Krüger and Westermann ‘03]
+ standard image order approach, embarrassingly parallel
+ supports many performance and quality enhancements

HISTORY (2)

Large data volume rendering
• Octree rendering based on texture-slicing

[LaMar et al. ’99, Weiler et al. ’00, Guthe et al. ’02]
• Bricked single-pass ray-casting

[Hadwiger et al. ’05, Beyer et al. ’07]
• Bricked multi-resolution single-pass ray-casting

[Ljung et al. ’06, Beyer et al. ’08, Jeong et al. ’09]
• Optimized CPU ray-casting [Knoll et al. ’11]

HISTORY (3)

Examples

Octree Rendering and Texture Slicing
• GPU 3D texture mapping with arbitrary

levels of detail
• Consistent interpolation between

adjacent resolution levels
• Adapting slice distance with respect to

desired LOD (needs opacity correction)
• LOD based on user-defined focus point

[Weiler et al., IEEE Symp. Vol Vis 2000]
Level-Of-Detail Volume Rendering via 3D Textures

Working set determination: View frustum

Volume representation: Octree

Rendering: CPU octree traversal, texture slicing

Bricked Single-Pass Ray-Casting
• 3D brick cache for out-of-core volume rendering
• Object space culling and empty space skipping

in ray setup step
• Correct tri-linear interpolation between bricks

[Hadwiger et al., Eurographics 2005]
Real-Time Ray-Casting and Advanced Shading of
Discrete Isosurfaces

Working set determination: Global, view frustum
Volume representation: Single-resolution grid (page table)
Rendering: Bricked single-pass ray-casting

Bricked Multi-Resolution Ray-Casting
• Adaptive object- and image-space sampling

– Adaptive sampling density along ray
– Adaptive image-space sampling, based on statistics for

screen tiles

• Single-pass fragment program
– Correct neighborhood samples for interpolation fetched

in shader

• Transfer function-based LOD selection

[Ljung, Volume Graphics 2006]
Adaptive Sampling in Single Pass, GPU-based Raycasting
of Multiresolution Volumes

Working set determination: Global, view frustum
Volume representation: Multi-resolution grid
Rendering: Bricked single-pass ray-casting

Main questions
• Q1: How is the working set determined?
• Q2: How is the working set stored?
• Q3: How is the rendering done?

Huge difference between ‘traditional’ and ‘modern’ ray-guided approaches!

CATEGORIZATION

Working set
determination

Full volume Basic culling
(global attributes, view frustum)

Ray-guided /
visualization-driven

Volume data
representation

- Linear
(non-
bricked)

- Single-resolution
grid

- Grid with octree
per brick

- Octree
- Kd-tree
- Multi-

resolution grid

- Octree
- Multi-resolution grid

Rendering
(ray traversal)

- Texture
slicing

- Non-bricked
ray-casting

- CPU octree traversal (multi-pass)
- CPU kd-tree traversal (multi-pass)
- Bricked/virtual texture ray-casting

(single-pass)

- GPU octree traversal
(single-pass)

- Multi-level virtual
texture ray-casting
(single-pass)

Scalability Low Medium High

CATEGORIZATION

Global attribute-based culling (view-independent)
• Cull against transfer function, iso value, enabled objects, etc.

View frustum culling (view-dependent)
• Cull bricks outside the view frustum

Occlusion culling?

Q1: WORKING SET DETERMINATION –
TRADITIONAL

Cull bricks based on attributes; view-independent
• Transfer function
• Iso value
• Enabled segmented objects

Often based on min/max bricks
• Empty space skipping
• Skip loading of ‘empty’ bricks
• Speed up on-demand spatial queries

GLOBAL ATTRIBUTE-BASED CULLING

• Cull all bricks against view frustum
• Cull all occluded bricks

VIEW FRUSTUM, OCCLUSION CULLING

Visibility determined during ray traversal
• Implicit view frustum culling (no extra step required)
• Implicit occlusion culling (no extra steps or occlusion buffers)

Q1: WORKING SET DETERMINATION –
MODERN (1)

Rays determine working set directly
• Each ray writes out list of bricks it requires (intersects) front-to-back
• Use modern OpenGL extensions (GL_ARB_shader_storage_buffer_object, …)

Q1: WORKING SET DETERMINATION –
MODERN (2)

Different possibilities:
• Individual texture for each brick

• OpenGL-managed 3D textures (paging done by OpenGL)
• Pool of brick textures (paging done manually)

• Multiple bricks combined into single texture
• Need to adjust texture coordinates for each brick

Q2: WORKING SET STORAGE -
TRADITIONAL

Shared cache texture for all bricks (“brick pool”)

Q2: WORKING SET STORAGE – MODERN (1)

Caching Strategies
• LRU, MRU

Handling missing bricks
• Skip or substitute lower resolution

Strategies if the working set is too large
• Switch from single-pass to multi-pass rendering
• Interrupt rendering on cache miss (“page fault handling”)

Q2: WORKING SET STORAGE – MODERN (2)

Traverse bricks in front-to-back visibility order
• Order determined on CPU
• Easy to do for grids and trees (recursive)

Render each brick individually
• One rendering pass per brick

Traditional problems
• When to stop? (early ray termination vs. occlusion culling)
• Occlusion culling of each brick usually too conservative

Q3: RENDERING - TRADITIONAL

Preferably single-pass rendering
All rays traversed in front-to-back order
Rays perform dynamic address translation (virtual to physical)
Rays dynamically write out brick usage information

• Missing bricks (“cache misses”)
• Bricks in use (for replacement strategy: LRU/MRU)

Rays dynamically determine required resolution
• Per-sample or per-brick

Q3: RENDERING - MODERN

Similar to CPU virtual memory but in 2D/3D texture space
• Domain decomposition of virtual texture space: pages
• Page table maps from virtual pages to physical pages
• Working set of physical pages stored in cache texture

VIRTUAL TEXTURING

[Kraus and Ertl, Graphics Hardware ’02]
Adaptive Texture Maps

Similar to CPU virtual memory but in 2D/3D texture space
• Domain decomposition of virtual texture space: pages
• Page table maps from virtual pages to physical pages
• Working set of physical pages stored in cache texture

VIRTUAL TEXTURING

cache
virtual image or

volume space

[Hadwiger et al., Eurographics ’05]
Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

Map virtual to physical address
pt_entry = pageTable[virtAddx / brickSize];
physAddx = pt_entry.physAddx + virtAddx % brickSize;

If cache is a texture, need to transform coordinates to texture domain (scale factor)!

ADDRESS TRANSLATION

+

virtual
volume space cache

page table

Tree (quadtree/octree)
• Linked nodes; dynamic traversal

Uniform page tables
• Can do page table mipmap; uniform in each level

Multi-level page tables
• Recursive page structure decoupled from multi-resolution hierarchy

Spatial hashing
• Needs collision handling; hashing function must minimize collisions

ADDRESS TRANSLATION VARIANTS

Adapt tree traversal from ray tracing
• Standard traversal: recursive with stack
• GPU algorithms without or with limited stack

• Use “ropes” between nodes [Havran et al. ’98, Gobbetti et al. ‘08]
• kd-restart, kd-shortstack [Foley and Sugerman ‘05]

TREE TRAVERSAL

courtesy Foley and Sugerman

Tree can be seen as a ‘page table’
• Linked nodes; dynamic traversal
• Nodes contain page table entries

VARIANT 1: TREE TRAVERSAL

“page table hierarchy”
(tree) coupled to
resolution hierarchy!

Tree can be seen as a ‘page table’
• Linked nodes; dynamic traversal
• Nodes contain page table entries

VARIANT 1: TREE TRAVERSAL

does not require full tree!

Only feasible when page table is not too large (depends on brick size)
• For “medium-sized” volumes or “large” page/brick sizes

VARIANT 2: UNIFORM PAGE TABLES

requires full-size page table!

Only feasible when page table is not too large (depends on brick size)
• For “medium-sized” volumes or “large” page/brick sizes

Can do page table for each resolution level (page table mipmap)
• Uniform in each level

VARIANT 2: UNIFORM PAGE TABLES

Only feasible when page table is not too large (depends on brick size)
• For “medium-sized” volumes or “large” page/brick sizes

Can do page table for each resolution level (page table mipmap)
• Uniform in each level

VARIANT 2: UNIFORM PAGE TABLES

• Uniform page tables (mipmaps) managed in hardware
• Query for page residency in fragment shader
• Fragment shader decides how to handle missing pages

• OpenGL sparse textures (GL_ARB_sparse_texture)

VARIANT 2B: HARDWARE PAGE TABLES

Virtualize page tables recursively
• Same idea as in CPU multi-level page tables
• Pages of page table entries like pages of voxels

Recursive page table hierarchy
• Decoupled from data resolution levels !
• # page table levels << # data resolution levels

VARIANT 3: MULTI-LEVEL PAGE TABLES

data
(virtual)

page table
(virtual)

page directory
(top-level page table)

multi-resolution
page directory

[Hadwiger et al., 2012]

MULTI-LEVEL PAGE TABLES: MULTI-
RESOLUTION

resolution size resolution
hierarchy

page table
hierarchy page directory

32,000 x 32,000 x 4,000 4 TB 11 levels 2 levels 32 x 32 x 4

128,000 x 128,000 x 16,000 196 TB 13 levels 2 levels 128 x 128 x 16

512,000 x 512,000 x 64,000 15 PB 15 levels 3 levels 16 x 16 x 2

2,000,000 x 2,000,000 x 250,000 888 PB 17 levels 3 levels 64 x 64 x 8

voxel blocks: 323 voxels

MULTI-LEVEL PAGE TABLES: SCALABILITY

page table blocks: 323 page table entries

Instead of virtualizing page table, put entries into hash table
• Hashing function maps virtual brick to page table entry
• Hash table size is maximum working set size

VARIANT 4: SPATIAL HASHING (1)

working set

Hashing function
• Map (x, y, z) or (x, y, z, lod) of brick to 1D index
• x*p1 xor y*p2 xor z*p3 modulo # hash table rows
• p1, p2, p3 are large prime numbers

Hashing function must minimize collisions
• Collision handling expensive (linear search, link traversal)

Missing bricks: linear search through hash table row

VARIANT 4: SPATIAL HASHING (2)

Working set determination on GPU
• Ray-guided / visualization-driven approaches

Prefer single-pass rendering
• Entire traversal on GPU
• Use small brick sizes
• Multi-pass only when working set too large for single pass

Virtual texturing
• Powerful paradigm with very good scalability

RAY-GUIDED VOLUME RENDERING (1)

With octree traversal (kd-restart)
• Gigavoxels [Crassin et al., 2009]

• Gigavoxel isosurface and volume rendering

• Tera-CVR [Engel, 2011]

• Teravoxel volume rendering with dynamic transfer functions

Virtual texturing instead of tree traversal
• Petascale volume exploration of microscopy streams [Hadwiger

et al., 2012]

• Visualization-driven pipeline, including data construction

• ImageVis3D [Fogal et al., 2013]

• Analysis of different settings (brick size, …)

RAY-GUIDED VOLUME RENDERING (2)

Examples

Data structure:

• Octree with ropes

• Pointers to 8 children, 6 neighbors and volume data

• Active subtree stored in

spatial index structure and

texture pool on GPU

EARLY ‘RAY-GUIDED’ OCTREE RAY-CASTING (1)

Working set determination: Interleaved occlusion

queries

Volume representation: Octree

Rendering: GPU octree traversal

[Gobbetti et al., The Visual Computer, 2008]

A single-pass GPU ray casting framework

for interactive out-of-core rendering of

massive volumetric datasets

Rendering:
• Stackless GPU octree traversal (rope tree)

Culling:
• Culling on CPU (global transfer function, iso-value, view frustum)

• Only nodes that were marked as visible in previous rendering pass refined
• Occlusion queries to check bounding box of node against depth of last

sample during raycasting

EARLY ‘RAY-GUIDED’ OCTREE RAY-CASTING (2)

Working set determination: Interleaved occlusion
queries

Volume representation: Octree
Rendering: GPU octree traversal

[Gobbetti et al., The Visual Computer, 2008]
A single-pass GPU ray casting framework for
interactive out-of-core rendering of massive
volumetric datasets

Data structure:
• N3 tree + multi-resolution volume
• Subtree stored on GPU in node/brick pool

• Node: 1 pointer to children, 1 pointer to
volume brick

• Children stored together in node pool

RAY-GUIDED OCTREE RAY-CASTING (1)

Working set determination: Ray-guided
Volume representation: Octree
Rendering: GPU octree traversal

[Crassin et al., ACM SIGGRAPH i3D, 2009]
GigaVoxels: Ray-Guided Streaming for Efficient and
Detailed Voxel Rendering

Rendering:
• Stackless GPU octree traversal (Kd-restart)
• 3 mipmap levels for correct filtering
• Missing data substituted by lower-res data
Culling:
• Multiple render targets write out data usage

• Exploits temporal and spatial coherence

RAY-GUIDED OCTREE RAY-CASTING (2)

Working set determination: Ray-guided
Volume representation: Octree
Rendering: GPU octree traversal

[Crassin et al., ACM SIGGRAPH i3D, 2009]
GigaVoxels: Ray-Guided Streaming for Efficient and
Detailed Voxel Rendering

Data structure:
• On-the-fly reconstruction of bricks
• Stored on disk in 2D multi-resolution grid

(supports highly anisotropic data)
• Multi-level multi-resolution page table on GPU
• Larger bricks for disk access, smaller bricks for

rendering

RAY-GUIDED MULTI-LEVEL
PAGETABLE RAY-CASTING (1)

Working set determination: Ray-guided
Volume representation: Multi-resolution grid
Rendering: Multi-level virtual texture ray-casting

[Hadwiger et al., IEEE SciVis 2012]
Interactive Volume Exploration of Petascale Microscopy Data
Streams Using a Visualization-Driven Virtual Memory Approach

Rendering:
• Multi-level virtual texture ray-casting
• LOD chosen per individual sample
• Data reconstruction triggered by ray-caster
Culling:
• GPU hash table to report missing blocks

• Exploits temporal and spatial coherence

RAY-GUIDED MULTI-LEVEL
PAGETABLE RAY-CASTING (2)

Working set determination: Ray-guided

Volume representation: Multi-resolution grid
Rendering: Multi-level virtual texture ray-casting

[Hadwiger et al., IEEE SciVis 2012]
Interactive Volume Exploration of Petascale Microscopy Data
Streams Using a Visualization-Driven Virtual Memory Approach

Implementation differences:
• Lock-free hash table, pagetable lookup only per brick
• Fallback for multi-pass rendering

Analysis:
• Many detailed performance numbers (see paper)
• Working set size: typically lower than GPU memory
• Brick size: larger on disk (>= 643), smaller for rendering (163, 323)

RAY-GUIDED MULTI-LEVEL
PAGETABLE RAY-CASTING - ANALYSIS

Working set determination: Ray-guided
Volume representation: Multi-resolution grid
Rendering: (Multi-level) virtual texture ray-casting

[Fogal et al., IEEE LDAV 2013]
An Analysis of Scalable GPU-Based Ray-Guided
Volume Rendering

Summary

Many volumes larger than GPU memory
• Determine, manage, and render working set of visible bricks efficiently

SUMMARY (1)

Data Processing Visualization
Image

FilteringData
Pre-Processing Mapping Rendering

Traditional approaches
• Limited scalability
• Visibility determination on CPU
• Often had to use multi-pass approaches

Modern approaches
• High scalability (output sensitive)
• Visibility determination (working set) on GPU
• Dynamic traversal of multi-resolution structures on GPU

SUMMARY (2)

Orthogonal approaches
• Parallel and distributed visualization
• Clusters, in-situ setups, client/server systems

Future challenges
• Web-based visualization
• Raw data storage

SUMMARY (3)

Part 3 -
GPU-Based Ray-Guided

Volume Rendering Algorithms &
Efficient Empty Space Skipping

Large volumes, finely detailed structures, many segmented objects

connectomics electron microscopy volume
21,000 x 25,000 x 2,000 > 1 teravoxels > 4,000 objects

MOTIVATION

no skipping

non-empty space

sampling whole volume

no skipping

look-up overhead:
none

look-ups

sampling whole volume

non-empty space

octree skipping

look-up overhead:
high

look-ups

SparseLeap

look-up overhead:
small

look-ups

Octree

SparseLeap

Track volume occupancy
• Occupancy histogram tree

Extract nested occupancy
• Occupancy geometry

Rasterize occupancy
• Ray segment lists

Empty space skipping: Linear list traversal

SPARSELEAP PIPELINE

Track volume occupancy
• Occupancy histogram tree

Extract nested occupancy
• Occupancy geometry

Rasterize occupancy
• Ray segment lists

Empty space skipping: Linear list traversal

SPARSELEAP PIPELINE

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

Track volume occupancy
• Occupancy histogram tree

Extract nested occupancy
• Occupancy geometry

Rasterize occupancy
• Ray segment lists

Empty space skipping: Linear list traversal

SPARSELEAP PIPELINE
Occupancy Geometry

Output:

L0

L1

L2 smaller boxes
override
larger boxes

?
?

?

?
?

?

?
?

?

Track volume occupancy
• Occupancy histogram tree

Extract nested occupancy
• Occupancy geometry

Rasterize occupancy
• Ray segment lists

Empty space skipping: Linear list traversal

SPARSELEAP PIPELINE

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Track volume occupancy
• Occupancy histogram tree

Extract nested occupancy
• Occupancy geometry

Rasterize occupancy
• Ray segment lists

Empty space skipping: Linear list traversal

SPARSELEAP PIPELINE

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Occupancy classes

Node count in each
class over whole subtree

OCCUPANCY HISTOGRAM TREE

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

Occupancy classes

Node count in each
class over whole subtree

OCCUPANCY HISTOGRAM TREE

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

*

* enables deferred culling

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

Occupancy classes

Node count in each
class over whole subtree

build bottom-up

OCCUPANCY HISTOGRAM TREE

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

* enables deferred culling

*

Occupancy classes

Node count in each
class over whole subtree

build bottom-up

OCCUPANCY HISTOGRAM TREE

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

??? empty
non-empty unknown

Occupancy HistogramTree (CPU)

?

???

*

* enables deferred culling

Traverse histogram tree top-down
Pick majority class in each node

OCCUPANCY GEOMETRY

???

Traverse histogram tree top-down
Pick majority class in each node

Emit box on class change

OCCUPANCY GEOMETRY

class
change:

no class
change:

??

???

Traverse histogram tree top-down
Pick majority class in each node

Emit box on class change

OCCUPANCY GEOMETRY

class
change:

no class
change:

??

???

Traverse histogram tree top-down
Pick majority class in each node

Emit box on class change

OCCUPANCY GEOMETRY

???

class
change:

no class
change:

??

Traverse histogram tree top-down
Pick majority class in each node

Emit box on class change

OCCUPANCY GEOMETRY

???

class
change:

no class
change:

??

Traverse histogram tree top-down
Pick majority class in each node

Emit box on class change

OCCUPANCY GEOMETRY

???

class
change:

no class
change:

??

Traverse histogram tree top-down
Pick majority class in each node

Emit box on class change

OCCUPANCY GEOMETRY

???

class
change:

no class
change:

??

extracted
geometry

OCCUPANCY GEOMETRY

???

?
?

?

?
?

?
?

?

?

?
?

?

?
?

?
?

?

?

?
?

?

?
?

?
?

?

?

extracted
geometry

OCCUPANCY GEOMETRY

???

?
?

?

?
?

?
?

?

?

?
?

?

?
?

?
?

?

?

?
?

?

?
?

?
?

?

?

smaller boxes
override larger boxes

flattened

occupancy

extracted
geometry

OCCUPANCY GEOMETRY

?
?

?

?
?

?
?

?

?

?
?

?

?
?

?
?

?

?

?
?

?

?
?

?
?

?

?

?
?

?

?
?

?
?

?

?

?
?

?

?
?

?
?

?

?

octree
subdivision

COMPARISON

occupancy
geometry

COMPARISON

occupancy geometry

RASTERIZATION: OVERVIEW

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

occupancy geometry rasterize front-to-back

merge consecutive segments
of same occupancy class

RASTERIZATION: OVERVIEW

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

occupancy geometry rasterize front-to-back ray segment lists

merge consecutive segments
of same occupancy class

RASTERIZATION: OVERVIEW

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Linear traversal of ray segment list

Deferred culling for large volumes:
Occupancy class unknown

RAY-CASTING

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

Rasterization (GPU)

Ray Segment List

screen pixels per-pixel linked list

Output:Ray Segment Generation (GPU)

non-empty emptyunknown

?
?

?

?
?

?

occupancy class
unknown

causes
occupancy miss

DEFERRED CULLING

RESULTS: DEPTH COMPLEXITY more sparse

less sparse

more sparse less sparse

RESULTS: DEPTH COMPLEXITY more sparse

less sparse

more sparse less sparse

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

RESULTS: PERFORMANCE

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

more sparse

less sparse

more sparse

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

RESULTS: PERFORMANCE

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

more sparse

less sparse

more sparse

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

RESULTS: PERFORMANCE

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

more sparse

less sparse

more sparse

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

RESULTS: PERFORMANCE

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

more sparse

less sparse

more sparse less sparse

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

RESULTS: PERFORMANCE

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

more sparse

less sparse

more sparse less sparse

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

RESULTS: PERFORMANCE

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

block size
323 163 83 43

block size

fp
s

323 163 83 43

SparseLeap ERT
SparseLeap

Octree ERT
Octree

no skipping ERT
no skipping

Sparse Volume Dense Volume

more sparse

less sparse

more sparse less sparse

Cost of empty space skipping moved out of ray-casting loop

Attractive alternative for complex volumes

Memory consumption (GPU)
• Occupancy geometry: very low; much lower than octree storage
• Lists: depends on screen resolution and average depth complexity

SUMMARY

Part 4 -
Display-Aware Visualization and

Processing

MOTIVATION
goal:

perform computations
at output resolution

<1 megapixel visible
250 megapixels

resolution level 0

resolution level 3

DISPLAY-AWARE IMAGE OPERATIONS

• Dyadic image pyramids
• Mipmaps [Williams 1983]: texture mapping (standard on GPUs)
• Gaussian/Laplacian pyramids [Burt and Adelson 1983]: image processing/compression

IMAGE PYRAMIDS

level 0 level 1 level 2 level 3

• Dyadic image pyramids
• Mipmaps [Williams 1983]: texture mapping (standard on GPUs)
• Gaussian/Laplacian pyramids [Burt and Adelson 1983]: image processing/compression

IMAGE PYRAMIDS

level 0 level 1 level 2 level 3

• Dyadic image pyramids
• Mipmaps [Williams 1983]: texture mapping (standard on GPUs)
• Gaussian/Laplacian pyramids [Burt and Adelson 1983]: image processing/compression

IMAGE PYRAMIDS

level 0 level 1 level 2 level 3

• Dyadic image pyramids
• Mipmaps [Williams 1983]: texture mapping (standard on GPUs)
• Gaussian/Laplacian pyramids [Burt and Adelson 1983]: image processing/compression
• Sparse pdf maps [Hadwiger et al. 2012]

IMAGE PYRAMIDS

level 0 level 1 level 2 level 3

Laplacian pyramid

• Dyadic image pyramids
• Mipmaps [Williams 1983]: texture mapping (standard on GPUs)
• Gaussian/Laplacian pyramids [Burt and Adelson 1983]: image processing/compression
• Sparse pdf maps [Hadwiger et al. 2012]

IMAGE PYRAMIDS

level 0 level 1 level 2 level 3

ANTI-ALIASING IN IMAGE PYRAMIDS

level 0

ANTI-ALIASING IN IMAGE PYRAMIDS

level 0 level 4

ANTI-ALIASING IN IMAGE PYRAMIDS

level 4level 0

ANTI-ALIASING IN IMAGE PYRAMIDS

level 0 level 4, standardlevel 4

ANTI-ALIASING IN IMAGE PYRAMIDS

level 0 level 4, sparse pdf mapslevel 4, standard level 4, ground truth

Apply non-linear operation to each pixel
• Color map or non-linear contrast adjustment
• Bilateral filtering: range weight
• Smoothed local histogram filtering [Kass and Solomon 2010]

• Local Laplacian filtering [Paris et al. 2011]: point-wise, non-linear re-mapping

NON-LINEAR IMAGE OPERATORS

input pixel value

output pixel value

Compute Laplacian pyramid coefficient
• Adjust local contrast via point-wise non-linearity; then downsample

Same as local color mapping, then downsampling
• Cannot apply the re-mapping function to the downsampled image!
• Need to compute ground truth (pyramid!) or proper “anti-aliasing”

LOCAL LAPLACIAN FILTERING [PARIS ET AL.
2011]

σ σ σ σ

output pixel

μ μ

input pixel

• Night Scene Panorama: 47,908 x 7,531 pixels (361 Mpixels)

• Every downsampled
pixel results from the
entire pyramid above it

• Sparse PDF maps allow
direct computation!

LOCAL LAPLACIAN FILTERING: SCALABILITY

Sparse PDF Maps: Concept

Represent distribution of pixel values in footprint in original image

SPARSE PDF MAPS

SPARSE PDF MAPS

level 2

Represent distribution of pixel values in footprint in original image

SPARSE PDF MAPS

level 2

level 0

Represent distribution of pixel values in footprint in original image

SPARSE PDF MAPS

level 2

level 0

Represent distribution of pixel values in footprint in original image

SPARSE PDF MAPS

level 2

Represent distribution of pixel values in footprint in original image

Apply non-linear operation

EXAMPLE 1: DOWNSAMPLED IMAGE

level 0 level 2

EXAMPLE 2: COLOR MAPPING

level 0

color map

EXAMPLE 2: COLOR MAPPING

level 0

color map

level 2

plus: bilateral filtering, local Laplacian filtering in linear time, …

INTERACTIVE GIGAPIXEL FILTERING

Sparse PDF Map Computation

PIPELINE

STEP 1: DENSE PDF MAP

is similar to a pyramid of bilateral grids [Chen et al. 2007]

DENSE PDF MAP COMPUTATION

STEP 2: SPARSE PDF MAP

SPARSE REPRESENTATION

Compute via Matching Pursuit [Mallat and Zhang 1993]

SPARSE REPRESENTATION

SPARSE REPRESENTATION

SPARSE REPRESENTATION

SPARSE REPRESENTATION

SPATIAL AND RANGE COHERENCE

GREEDY APPROXIMATION

Spatial filter : 5 x 5
1 coefficient chunk
(# coefficients == 1 * # pixels)

Spatial filter : 3 x 3
1-3 coefficient chunks
(# coefficients == 1-3 * # pixels)

GREEDY APPROXIMATION

sPDF-Maps Data Structure

SPDF-MAPS DATA STRUCTURE

conceptual index image coefficient image

SPDF-MAPS DATA STRUCTURE

conceptual index image coefficient image

Display-Aware Gigapixel Image
Processing

• Out-of-Core Processing
• Divide data into smaller tiles, process each tile independently (e.g., 256x256)
• Image operations are performed only on requested sub-tiles (display-aware)
• Rendering based on tiled data, using GPU-based virtual memory approach

GIGAPIXEL IMAGE PROCESSING

• Display-aware image viewing

GIGAPIXEL IMAGE PROCESSING

viewport

visible tile

• GPU-based virtual memory architecture [Hadwiger et al. 2012]

GIGAPIXEL IMAGE PROCESSING

Image Reconstruction

IMAGE RECONSTRUCTION

• Key idea # 1
Use instead of

• Key idea # 2
Pre-convolve with :

COLOR MAPPING

• Pre-convolve color map (with range kernel)
• For each pixel go over its coefficients
• Apply color map to coefficient and sum up

(not spatially convolved yet!)
• One spatial convolution in the end

Results

NASA Blue Marble bathymetry: 21,601 x 10,801 pixels (233 Mpixels)

COLOR MAPPING GIGAPIXEL IMAGES

details enhanced

details enhanced original

original details reduced

details reduced

GIGAPIXEL LOCAL LAPLACIAN FILTERING

original

details reduced

details enhanced

original

details reduced

details enhanced

Display-aware processing with flexible new image pyramid (spdf map)
• Consistent, sparse representation of pixel footprint pdfs
Unified evaluation of many important non-linear image operations
• Local Laplacian filtering for gigapixel images
Efficient CUDA implementation
Pre-computation costly, but only performed once
Run time storage and computation similar to standard pyramids

Hadwiger, Sicat, Beyer, Krüger, Möller,
Sparse PDF Maps for Non-Linear Multi-Resolution Image Operations,
Siggraph Asia 2012

SUMMARY

THANK YOU!

Johanna Beyer, Harvard University
Markus Hadwiger, KAUST

Course Website:
http://johanna-b.github.io/LargeSciVis2018/index.html

