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• An introduction to general compute on GPUs 

• Understand how compute is related to 
modern GPU graphics hardware and APIs 

• Learn to identify opportunities to apply 
general compute to graphics 

 

Course Objectives 



• Modern graphics hardware and APIs 
– Shader stages 

– Shader language concepts 

– GPU memory resources 

– Basic hardware architecture concepts 

• Multithreading concepts 
– Atomics and synchronization primitives 

– Memory coherency 

• Real-time rendering techniques 
 

 

 

 

 

 

Assumed Knowledge 



• GPU Architecture 

• Compute Programming Concepts 

• Compute APIs 

– “Augmented graphics” 

– DirectCompute, OpenGL Compute 

– OpenCL, CUDA 

• Use Cases 
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GPU ARCHITECTURE 



Typical GPU 

• The GPU is a multicore processor optimized 
for graphics workloads 
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sampler mySamp; 
Texture2D<float3> myTex; 
float3 lightDir; 
float4 diffuseShader(float3 norm, float2 uv) 
{ 
  float3 kd; 
  kd = myTex.Sample(mySamp, uv); 
  kd *= clamp( dot(lightDir, norm), 0.0, 1.0); 
  return float4(kd, 1.0); 
} 
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SIMD execution and its implications 



SIMD pixel execution 
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Branches 

sampler mySamp; 
Buffer<float> myTex; 
 
float diffuseShader( 
  float threshold, float index) 
{ 
    float brightness = myTex[index]; 
    float output; 
    if( brightness > threshold ) 
        output = threshold; 
    else 
        output = brightness; 
    return output; 
} 

sampler mySamp; 
Buffer<float> myTex; 
 
float diffuseShader( 
  float threshold, float index) 
{ 
    float brightness = myTex[index]; 
    float output; 
    if( brightness > threshold ) 
        output = threshold; 
    else 
        output = brightness; 
    return output; 
} 

sampler mySamp; 
Buffer<float> myTex; 
 
float diffuseShader( 
  float threshold, float index) 
{ 
    float brightness = myTex[index]; 
    float output; 
    if( brightness > threshold ) 
        output = threshold; 
    else 
        output = brightness; 
    return output; 
} 

sampler mySamp; 
Buffer<float> myTex; 
 
float diffuseShader( 
  float threshold, float index) 
{ 
    float brightness = myTex[index]; 
    float output; 
    if( brightness > threshold ) 
        output = threshold; 
    else 
        output = brightness; 
    return output; 
} 

ALU ALU ALU ALU 



Why does this matter for Compute? 

• Graphics code traditionally has relatively short 
shaders on large triangles 
– The level of branch divergence overall will not be high 

 

• With graphics code you can not necessarily 
control it 
– SIMD batches are constructed by the hardware depending on the scene properties. 

 
• For compute you are defining your execution 

space 
– You choose what work is performed by which work item 
– You choose how to structure your algorithm to avoid this divergence 



Throughput execution and latency hiding 



Covering pipeline latency 
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Covering pipeline latency: logical 
vector 
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Covering pipeline latency: ALU 
operations 
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Covering memory latency 
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Covering memory latency: we still stall 
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Covering memory latency: another 
wavefront 
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Latency hiding in the SIMD engine 

Pixel Pixel Pixel Pixel 

ALU ALU ALU ALU 



Latency hiding in the SIMD engine 

Pixel Pixel Pixel Pixel 

ALU ALU ALU ALU 

Pixel Pixel Pixel Pixel 



Latency hiding in the SIMD engine 
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A throughput-oriented SIMD engine 
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A throughput-oriented SIMD engine 
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Adding the memory hierarchy 

• Unlike most CPUs, GPUs do not have vast 
cache hierarchies.  
– Caches on CPUs allow primarily for lower access 

latency 

• Heavy multithreading reduces the latency 
requirement 
– Latency is not an issue, we cover that with other 

threads 

– Total bandwidth still an issue, even with high-
latency high-speed memory interfaces 

 



A throughput-oriented SIMD engine 
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A throughput-oriented SIMD engine 
Fetch 

Decode 

Execute 

Local storage/Cache 



The GPU shader cores 



Summary 

• We’ve: 

– looked at the basic principles of the GPU 
architecture in the processor design space 

– seen some of the tradeoffs that lead to GPU 
features 



COMPUTE PROGRAMMING 
CONCEPTS 



Common Compute Concepts 

• Work Distribution 

• Memory Model 

• Thread Identity 

• Synchronization for Data Consistency 

– Same Dispatch 

– Cross-Dispatch 

– Cross-API 

 

 



devices 

Host application invokes a kernel over an index space 
Index space is an N-dimensional range (where N is 1, 2, or 3) 
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Work Distribution 
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Work-Item Work-Item 

Global range is executed over local work-groups 
Each work-group has a collection of work-items addressable via a globally unique id 

Work Distribution 



devices 

NDRange 
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global size x 

Work-Group 
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Work-Item Work-Item 

Work-Item Work-Item 

Work-items share resources in a work-group 
Mitigates communication costs for synchronisation -- group-wise barriers are cheap! 

Work Distribution 



Kernels are executed across a domain of work-items 
Global dimensions define range of computation 

 

Work-items are logically organised into work-groupsLocal 

dimensions define size of work-group 

 

Work-groups are executed in parallelWork-items in a work-group can 

communicate to each other 

Must use synchronisation to coordinate memory access 

Work Distribution 
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Address space hierarchy 
All address spaces are distinct and 

cannot be intermixed 

Memory Model 
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Private:  
private to a single work-item 
 
Local:  
shared within a work-group 
 
Global/Constant:  
globally accessible by any work-item 
 
Host:  
accessible from host application 

Memory Model 



devices 

Data Transfer  
All data movement between address  

spaces must be done explicitly 

 

Applications must move data to/from 

Host / Global  /  Local /  Private 
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devices 
__kernel void square(                                                        

   __global float* input, __global float* output)                                            

{                                                                       

   size_t i = get_global_id(0);                                            

   output[i] = input[i] * input[i];                                 

}                                                                       

 

Built-in methods provide access to index space addresses 
Use the get_global_id() built-in for globally unique addresses   

Use the get_group_id() for the logical group id spanning the ND-range 

Use the get_local_id() for the local work-item address within a work-group 

Thread Identity (Example) 



Shared memory model uses relaxed consistency 
State of memory visible to a work-item is not guaranteed to be consistent  

among all work-items at all times 

 

 

Data Consistency 



If consistency is needed, synchronisation is required 
Synchronisation of memory must be done explicitly across all levels of the  

memory hierarchy in order to get the same data to be visible at any given time 

 

Data Consistency 



Synchronization: Same Dispatch 

• Barriers 

 

 

 

• Atomics 

 



Cross-Job Synchronization 

• Resource dependencies 

– Driver 

– Explicit flushes 

– Barriers 

• Synchronization objects 

 



COMPUTE APIS 



Compute Choices 

• Augmented graphics shaders 

• DirectCompute 

• OpenGL Compute 

• OpenCL 

• CUDA 

• ipsc 

• C++ Amp 



Augmented Graphics 

Data[i] = x 
List.Append(x) 

Scattered write  
(UAV, image_load_store) 



Augmented Graphics 

Data[i] = x 
List.Append(x) 

Synchronized write  
(Append buffer, atomic) 



Augmented Graphics Shaders 

• Scattered writes 

– DirectX Unordered Access View (UAV) 

– OpenGL image load store 

• Global atomics 

• No shared local memory 



DirectCompute/OpenGL Compute 

• Adds local memory concept 

• Easy if you’re already using graphics 

• Uses graphics shader language 

 



DirectCompute 
pCtx->CSSetShader(pCS, 0, 0); 

pCtx->CSSetConstantBuffers( 0, N, ppConstants); 

pCtx->CSSetSamplers( 0, N, ppSamplers); 

pCtx->CSSetShaderResources( 0, N, ppResources ); 

pCtx->CSSetUnorderedAccessViews( 0, N, ppUAVs, pCounts); 

pCtx->Dispatch( nGroupsX, nGroupsY, nGroupsZ ); 

… // No sync required – will flush when used as input 

pCtx->DrawIndexed(…); 

 

• Simple Synchronization at API level 
• UAV ~ render target, so blocks on use as input in later draw 

calls 



Direct Compute 

RWStructuredBuffer<int> linearOutput; 

groupshared int var; 

 

[numthreads(64, 1, 1)] 

void ContrivedSample(  

    uint3 globalIdx : SV_DispatchThreadID,  

    uint3 localIdx : SV_GroupThreadID,  

    uint3 groupIdx : SV_GroupID ) 

{ 

    if(localIdx.x == 0) 

        var = 1; 

 

    GroupMemoryBarrier(); 

      

    linearOutput[globalIdx.x] = var; 

} 
 



OpenGL Compute 

glBindImageTexture(0, texture, 0, GL_FALSE, 

GL_WRITE_ONLY, GL_R32I); 

 

//… and so forth 

 

glUserProgram(program); 

glDispatchCompute(nGroupsX,nGroupsY,nGroupsZ); 

glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); 

… 

glDrawArrays(…) 

  



OpenGL Compute 

layout(r32i) image1D linearOutput; 

shared int var; 

 

layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) 

void ContrivedSample() 

{ 

    const uvec3 localIdx = gl_LocalInvocationID; 

    const uvec3 globalIdx = gl_GlobalInvocationID;     

    const uvec3 groupIdx = gl_WorkGroupID; 

    if(localId.x == 0) 

        var = 1; 

 

    barrier(); 

     

    imageStore(linearOutput, globalIdx.x, var);  

} 



OpenCL 

• Owned by Khronos (like OpenGL) 

• Cross-Platform 

• CPU too 

• Bit more sophisticated than Graphics Compute 



  

cl_int clEnqueueMethod(cl_command_queue, /* command queue */, 

                       ...               /* method specific parameters */, 

                       cl_uint *         /* number of events in wait list */, 

                       const cl_event *  /* event wait list */, 

                       cl_event *        /* returned event */)  

 

All enqueue methods return an error codeMethod returns 

CL_SUCCESS if command was enqueued successfullyAll enqueue methods 

support an event wait-list 

Command will not get executed until all events in list are completeAll enqueue 

methods return an event for the commandReturned event identifies 

the specific command that was enqueued 

 

OpenCL Dispatch 



Basic OpenCL Kernel Example 

devices __kernel void square(                                                        

   __global float* input, __global float* output)                                            

{                                                                       

   size_t i = get_global_id(0);                                            

   output[i] = input[i] * input[i];                                 

}                                                                       



OpenCL /GL Interop 

// Gets GL devices that support contexts 

// Showing Windows/Linux version (Apple also works) 

clGetGLContextInfoKHR( … ) 

 <wgl contexts>,  

 CL_DEVICES_FOR_GL_CONTEXT_KHR, 

 N*sizeof(cl_device_id),  

 cdDeviceID, &size); 

 

cxGPUContext = clCreateContext( 

 <wgl contexts, devices, cl platform>,  

 1, cdDeviceID, NULL, NULL, &ciErrNum); 

cl_event e = clCreateEventFromGLsyncKHR( 



OpenCL /GL Interop 

clGetGLContextInfoKHR(  ) 

clCreateContext(<properties include GL context> ) 

 

buffer = clCreateFromGLBuffer(…) 

image = clCreateFromGLTexture(…) 

image = clCreateFromGLRenderbuffer(…) 

 

clEnqueueAcquireGLObjects(…, &event) 

clEnqueueReleaseGLObjects(…) 

 

event = clCreateEventFromGLsyncKHR( … ) 

 

 



OpenCL /GL Interop 



OpenCL/DX Interop 

// Showing D3D11, also D3D9 and D3D10 

clGetDeviceIDsFromD3D11KHR(  ) 

clCreateContext(<properties include DX device> ) 

 

buffer = clCreateFromD3D11Buffer(…) 

image = clCreateFromD3D11Texture2D(…) 

image = clCreateFromD3D11Texture3D(…) 

 

clEnqueueAcquireD3D11Objects(…, &event) 

clEnqueueReleaseD3D11Objects(…) 

 

clCreateEventFromGLsyncKHR( … ) 

 

 



CUDA 

• CPU invokation 

square<<<64,1>>>(input, output); 

• Kernel 
 

__global__ void square(float* input, float* output) 

{ 

 int i = blockIdx.x; 

 output[i] = input[i] * input[i];  

} 



CUDA Interop 

//GL 

cudaGLSetGLDevice() 

cudaGLRegisterBuffer() 

cudaGLRegisterImage() // texture/renderbuffer 

 

//DX 

cudaD3D11GetDevice(&dev,adapter); 

D3D11CreateDeviceAndSwapChain(adapter,…,&d3dDevice,…) 

cudaD3D11SetDirect3DDevice(d3dDevice) 

cudaGraphicsD3D11RegisterResource() 



• Overview 

• In Games 

• Filtering 

– PS vs Compute 

• Culling (lights, geometry) 

• Back-end physics 

 

Use Cases 



• Highly data parallel 

• Output already going to GPU 

– Culling 

– “Cosmetic” physics 

• Don’t add roundtrips 

 

Candidates – CPU Tasks 



• Easier programming model 

• Local memory usage 

• Watch out for switching cost 

Candidates – From other shaders 



In Games (That I Know of) 

• Post Effects and Filtering 

– Probably most common 

• Light Culling 

– Tile Deferred: Frostbite and plenty others 

– Forward+: Dirt Showdown (Forward+) 

• Variable Bit-Rate Texture Decompression 
(EGSR 2011) 

– Civilization V 

 



• Convert from PS 

• Saves redundant compute 

• Following Slides from talks by Jon Story and 
Bill Billodeau at GDC 2011 (Thanks!) 

– Seperable Filtering 

– Application: SSAO 

– Application: DOF 

 

 

Filtering 



• Two 1D sampling instead of full 2D 

• Classically performed by the Pixel Shader 

• Source image over-sampling increases with 
kernel size 

– Shader is usually TEX instruction limited 

• In practice also “good enough” for non-
separable 

• Often used for bilateral cases 

Separable Filters 



Typical Pipeline Steps 

Reads = 2 * width * pixels 



– Use the TGSM as a cache to reduce TEX and ALU 
ops 

– Make sure thread group size is a multiple of 64 

Basic CS Version 

........... 

128 threads load 128 texels 

128 – ( Kernel Radius * 2 ) threads compute results 

Kernel Radius 

Redundant compute threads  



– Should ensure that all threads in a group have 
useful work to do – wherever possible 

– Redundant threads will not be reassigned work 
from another group 

– This would involve alot of redundancy for a large 
kernel diameter 

 

Avoid Redundant Threads 



– Possible to cache TGSM reads on General Purpose 
Registers (GPRs) 

Multiple Pixels per Thread 

Compute threads not a multiple of 64   

........... 

32 threads compute 128 results 

32 threads load 128 texels 
Kernel Radius * 2 threads 

load 1 extra texel each 



– Process multiple lines per thread group 

• Thread group size is back to a multiple of 64 

• Better than one long line (2 or 4 works well ) 

– Improved texture cache efficiency 

 

2D Thread Groups 

........... 

........... 

Kernel Radius 

64 threads compute 256 results 

64 threads load 256 texels 

Kernel Radius * 4 threads 
load 1 extra texel each 



– Kernel diameter needs to be > N to see a 
DirectCompute win 

• Otherwise the overhead cancels out the advantage 

– The larger the kernel diameter the greater the win 

– Large kernels also require more TGSM 

 

Kernel Diameter 



Bilateral SSAO  
Depth + Normals 

HDAO buffer 

* = 

Original Scene Final Scene 



– HDAO at full resolution is expensive 

– Running at half resolution captures more 
occlusion – and is obviously much faster 

– Problem: Artifacts are introduced when combined 
with the full resolution scene 

 

 

Perform at Half Resolution 



Bilateral Dilate & Blur 

HDAO buffer doesn‘t match 
with scene 

A bilateral dilate & blur 
fixes the issue 



New Pipeline... 

Bilinear Upsample Intermediate UAV Dilated & Blurred 

Horizontal Pass Vertical Pass 

½ Res Still much faster than performing at full res! 



Pixel Shader vs DirectCompute 

*Tested on a range of 2011 AMD and NVIDIA DX11 HW, DirectCompute is 
between ~2.53x to ~3.17x faster than the Pixel Shader 



– Many techniques exist to solve this problem 

– A common technique is to figure out how blurry a 
pixel should be 

• Often called the Cirle of Confusion (CoC) 

– A Gaussian blur weighted by CoC is a pretty 
efficient way to implement this effect 

 

Depth of Field 



– Combined Gaussian Blur and CoC weighting isn’t a 
separable filter, but we can still use a separate 
horizontal and vertical 1D pass 

• The result is acceptable in most cases 

Treat as Seperable 

Intermediate UAV 

CoC 

Horizontal Pass Vertical Pass 



Pixel Shader vs DirectCompute 

*Tested on a range of 2011 AMD and NVIDIA DX11 HW, DirectCompute is 
between ~1.48x to ~1.86x faster than the Pixel Shader 



• Lights 

– Tile-Based Deferred 

– Forward+ 

• Geometry Culling 

Culling 



Forward+ Use 



Forward+ 

• Depth prepass 

– Fills z buffer 

• Prevent overdraw for shading 

• Used to calculate position for light culling 

• Light culling 

– Culls light per tile basis 

– Input: z buffer, light buffer 

– Output: light list per tile 

• Shading 

– Geometry is rendered 

– Pixel shader 

• Iterate through light list calculated in light culling 

• Evaluates materials for the lights 

1 

2 

3 

[1,2,3] [1] [2,3] 



Light Culling Detail 

• Single compute shader 

• A thread group is executed per tile 

• Calculate Z extent 

• Build frustum 

• 64 lights are culled in parallel 

• Overlapped light indices are 
accumulated in TLS 

• Export 

– One atomic add 

– Write light indices to a contiguous 
memory ( Linked list) 



Leo Pipeline 



• Hair 

• Cloth 

• Deformation 

Back-end Physics 



Real-time hair simulation 

• Using DirectX compute shader, around 20K hair strands (1/5 of real human 
hair) can be simulated in less than 1 millisecond per frame.  

• To preserve various hair styles, we developed global and local shape 
constraint methods which simulate bending and twisting effects. 

• We exploits vertex-level parallel process to utilize GPU architecture.   

• Various hair conditions such as wet can be simulated interactively. 



Real-time hair simulation 

• A strand is simulated as a polyline 
with local frames attached to each 
vertex. 

• Global shape constraints are applied 
to each vertex and make them to 
return to the initial global position.  

• Local shape constraints make vertices 
to return to initial local position w.r.t 
local frame.  

• With both constraints, hair shapes 
can be maintained without tangling 
in weird shapes during fast moving 
gameplay.  
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Algorithm : Hair simulation outline 

1 load hair data 

2 precompute rest-state values 

3 while simulation running do 

4  compute forces such as gravity or wind 

5  integrate 

6  apply global shape constraints 

7  while iteration do 

8 apply local shape constraints 

9  apply edge length constraints 

1

0 

 collision handling 



Updated Slides 

http://developer.amd.com/Resources/documentation/
presentations 
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