
Compute for Graphics

Karl Hillesland

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2407783.2407787&domain=pdf&date_stamp=2012-11-28

• An introduction to general compute on GPUs

• Understand how compute is related to
modern GPU graphics hardware and APIs

• Learn to identify opportunities to apply
general compute to graphics

Course Objectives

• Modern graphics hardware and APIs
– Shader stages

– Shader language concepts

– GPU memory resources

– Basic hardware architecture concepts

• Multithreading concepts
– Atomics and synchronization primitives

– Memory coherency

• Real-time rendering techniques

Assumed Knowledge

• GPU Architecture

• Compute Programming Concepts

• Compute APIs

– “Augmented graphics”

– DirectCompute, OpenGL Compute

– OpenCL, CUDA

• Use Cases

Outline

GPU ARCHITECTURE

Typical GPU

• The GPU is a multicore processor optimized
for graphics workloads

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Tex

Tex

Tex

Tex

Rasterizer

Output blend

Video decode

Scheduler

Processing pixels

Pixel

Direction of light

Normal at
surface

Processing pixels

Pixel

Direction of light

Normal at
surface

Pixel

Pixel Pixel

Processing pixels

Pixel

Direction of light

Normal at
surface

Pixel

Pixel Pixel
sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv)
{
 float3 kd;
 kd = myTex.Sample(mySamp, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return float4(kd, 1.0);
}

Processing pixels

Pixel

Direction of light

Normal at
surface

Pixel

Pixel Pixel

Pixel Pixel

Pixel Pixel

SIMD execution and its implications

SIMD pixel execution

Pixel Pixel

Pixel Pixel

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv)
{
 float3 kd;
 kd = myTex.Sample(mySamp, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return float4(kd, 1.0);
}

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv)
{
 float3 kd;
 kd = myTex.Sample(mySamp, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return float4(kd, 1.0);
}

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv)
{
 float3 kd;
 kd = myTex.Sample(mySamp, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return float4(kd, 1.0);
}

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv)
{
 float3 kd;
 kd = myTex.Sample(mySamp, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return float4(kd, 1.0);
}

Branches

sampler mySamp;
Buffer<float> myTex;

float diffuseShader(
 float threshold, float index)
{
 float brightness = myTex[index];
 float output;
 if(brightness > threshold)
 output = threshold;
 else
 output = brightness;
 return output;
}

sampler mySamp;
Buffer<float> myTex;

float diffuseShader(
 float threshold, float index)
{
 float brightness = myTex[index];
 float output;
 if(brightness > threshold)
 output = threshold;
 else
 output = brightness;
 return output;
}

sampler mySamp;
Buffer<float> myTex;

float diffuseShader(
 float threshold, float index)
{
 float brightness = myTex[index];
 float output;
 if(brightness > threshold)
 output = threshold;
 else
 output = brightness;
 return output;
}

sampler mySamp;
Buffer<float> myTex;

float diffuseShader(
 float threshold, float index)
{
 float brightness = myTex[index];
 float output;
 if(brightness > threshold)
 output = threshold;
 else
 output = brightness;
 return output;
}

ALU ALU ALU ALU

Why does this matter for Compute?

• Graphics code traditionally has relatively short
shaders on large triangles
– The level of branch divergence overall will not be high

• With graphics code you can not necessarily
control it
– SIMD batches are constructed by the hardware depending on the scene properties.

• For compute you are defining your execution

space
– You choose what work is performed by which work item
– You choose how to structure your algorithm to avoid this divergence

Throughput execution and latency hiding

Covering pipeline latency

Stall

Instruction 0

Instruction 1

Lanes 0-3

Covering pipeline latency: logical
vector

Lanes 0-3 Lanes 4-7

Stall

Stall

Lanes 8-11 Lanes 12-15

Stall

Stall

Instruction 0

Instruction 1

Covering pipeline latency: ALU
operations

Lanes 0-3 Instruction 0

Lanes 4-7 Instruction 0

Lanes 8-11 Instruction 0

Lanes 12-15 Instruction 0

Lanes 0-3 Instruction 1

Lanes 4-7 Instruction 1

Lanes 8-11 Instruction 1

Lanes 12-15 Instruction 1

Covering memory latency
Instruction 0

Instruction 1

Stall

Lanes 0-3

Covering memory latency: we still stall
Lanes 0-3 Lanes 4-7

Stall

Stall

Lanes 8-11 Lanes 12-15

Stall

Stall

Instruction 0

Instruction 1

Covering memory latency: another
wavefront

Instruction 1

Instruction 0

Lanes 0-3 Lanes 4-7 Lanes 8-11 Lanes 12-15

Instruction 0

Latency hiding in the SIMD engine

Pixel Pixel Pixel Pixel

ALU ALU ALU ALU

Latency hiding in the SIMD engine

Pixel Pixel Pixel Pixel

ALU ALU ALU ALU

Pixel Pixel Pixel Pixel

Latency hiding in the SIMD engine

Pixel Pixel Pixel Pixel

ALU ALU ALU ALU

A throughput-oriented SIMD engine

Pixel Pixel Pixel Pixel

ALU ALU ALU ALU

Pixel Pixel Pixel Pixel

A throughput-oriented SIMD engine

Pixel Pixel Pixel Pixel

ALU ALU ALU ALU

Pixel Pixel Pixel Pixel

State

State

Adding the memory hierarchy

• Unlike most CPUs, GPUs do not have vast
cache hierarchies.
– Caches on CPUs allow primarily for lower access

latency

• Heavy multithreading reduces the latency
requirement
– Latency is not an issue, we cover that with other

threads

– Total bandwidth still an issue, even with high-
latency high-speed memory interfaces

A throughput-oriented SIMD engine

Pixel Pixel Pixel Pixel

ALU ALU ALU ALU

Pixel Pixel Pixel Pixel

State

State

Fetch

Decode

Execute

Local storage/Cache

A throughput-oriented SIMD engine
Fetch

Decode

Execute

Local storage/Cache

The GPU shader cores

Summary

• We’ve:

– looked at the basic principles of the GPU
architecture in the processor design space

– seen some of the tradeoffs that lead to GPU
features

COMPUTE PROGRAMMING
CONCEPTS

Common Compute Concepts

• Work Distribution

• Memory Model

• Thread Identity

• Synchronization for Data Consistency

– Same Dispatch

– Cross-Dispatch

– Cross-API

devices

Host application invokes a kernel over an index space
Index space is an N-dimensional range (where N is 1, 2, or 3)

NDRange

global size y

global size x

Work Distribution

devices

NDRange

global size y

global size x

Work-Group

local size x

local size y

Work-Item Work-Item

Work-Item Work-Item

Global range is executed over local work-groups
Each work-group has a collection of work-items addressable via a globally unique id

Work Distribution

devices

NDRange

global size y

global size x

Work-Group

local size x

local size y

Work-Item Work-Item

Work-Item Work-Item

Work-items share resources in a work-group
Mitigates communication costs for synchronisation -- group-wise barriers are cheap!

Work Distribution

Kernels are executed across a domain of work-items
Global dimensions define range of computation

Work-items are logically organised into work-groupsLocal

dimensions define size of work-group

Work-groups are executed in parallelWork-items in a work-group can

communicate to each other

Must use synchronisation to coordinate memory access

Work Distribution

devices

 device

 host

host memory

global / constant memory

local memory local memory

 compute unit 0

 compute unit N

private

memory

private

memory

private

memory

private

memory

work-item

0

work-item

M

work-item

0

work-item

M

Address space hierarchy
All address spaces are distinct and

cannot be intermixed

Memory Model

devices

 device

 host

host memory

global / constant memory

local memory local memory

 compute unit 0

 compute unit N

private

memory

private

memory

private

memory

private

memory

work-item

0

work-item

M

work-item

0

work-item

M

Private:
private to a single work-item

Local:
shared within a work-group

Global/Constant:
globally accessible by any work-item

Host:
accessible from host application

Memory Model

devices

Data Transfer
All data movement between address

spaces must be done explicitly

Applications must move data to/from

Host / Global / Local / Private

 device

 host

host memory

global / constant memory

local memory local memory

 compute unit 0

 compute unit N

private

memory

private

memory

private

memory

private

memory

work-item

0

work-item

M

work-item

0

work-item

M

Memory Model

devices
__kernel void square(

 __global float* input, __global float* output)

{

 size_t i = get_global_id(0);

 output[i] = input[i] * input[i];

}

Built-in methods provide access to index space addresses
Use the get_global_id() built-in for globally unique addresses

Use the get_group_id() for the logical group id spanning the ND-range

Use the get_local_id() for the local work-item address within a work-group

Thread Identity (Example)

Shared memory model uses relaxed consistency
State of memory visible to a work-item is not guaranteed to be consistent

among all work-items at all times

Data Consistency

If consistency is needed, synchronisation is required
Synchronisation of memory must be done explicitly across all levels of the

memory hierarchy in order to get the same data to be visible at any given time

Data Consistency

Synchronization: Same Dispatch

• Barriers

• Atomics

Cross-Job Synchronization

• Resource dependencies

– Driver

– Explicit flushes

– Barriers

• Synchronization objects

COMPUTE APIS

Compute Choices

• Augmented graphics shaders

• DirectCompute

• OpenGL Compute

• OpenCL

• CUDA

• ipsc

• C++ Amp

Augmented Graphics

Data[i] = x
List.Append(x)

Scattered write
(UAV, image_load_store)

Augmented Graphics

Data[i] = x
List.Append(x)

Synchronized write
(Append buffer, atomic)

Augmented Graphics Shaders

• Scattered writes

– DirectX Unordered Access View (UAV)

– OpenGL image load store

• Global atomics

• No shared local memory

DirectCompute/OpenGL Compute

• Adds local memory concept

• Easy if you’re already using graphics

• Uses graphics shader language

DirectCompute
pCtx->CSSetShader(pCS, 0, 0);

pCtx->CSSetConstantBuffers(0, N, ppConstants);

pCtx->CSSetSamplers(0, N, ppSamplers);

pCtx->CSSetShaderResources(0, N, ppResources);

pCtx->CSSetUnorderedAccessViews(0, N, ppUAVs, pCounts);

pCtx->Dispatch(nGroupsX, nGroupsY, nGroupsZ);

… // No sync required – will flush when used as input

pCtx->DrawIndexed(…);

• Simple Synchronization at API level
• UAV ~ render target, so blocks on use as input in later draw

calls

Direct Compute

RWStructuredBuffer<int> linearOutput;

groupshared int var;

[numthreads(64, 1, 1)]

void ContrivedSample(

 uint3 globalIdx : SV_DispatchThreadID,

 uint3 localIdx : SV_GroupThreadID,

 uint3 groupIdx : SV_GroupID)

{

 if(localIdx.x == 0)

 var = 1;

 GroupMemoryBarrier();

 linearOutput[globalIdx.x] = var;

}

OpenGL Compute

glBindImageTexture(0, texture, 0, GL_FALSE,

GL_WRITE_ONLY, GL_R32I);

//… and so forth

glUserProgram(program);

glDispatchCompute(nGroupsX,nGroupsY,nGroupsZ);

glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

…

glDrawArrays(…)

OpenGL Compute

layout(r32i) image1D linearOutput;

shared int var;

layout(local_size_x = 64, local_size_y = 1, local_size_z = 1)

void ContrivedSample()

{

 const uvec3 localIdx = gl_LocalInvocationID;

 const uvec3 globalIdx = gl_GlobalInvocationID;

 const uvec3 groupIdx = gl_WorkGroupID;

 if(localId.x == 0)

 var = 1;

 barrier();

 imageStore(linearOutput, globalIdx.x, var);

}

OpenCL

• Owned by Khronos (like OpenGL)

• Cross-Platform

• CPU too

• Bit more sophisticated than Graphics Compute

cl_int clEnqueueMethod(cl_command_queue, /* command queue */,

 ... /* method specific parameters */,

 cl_uint * /* number of events in wait list */,

 const cl_event * /* event wait list */,

 cl_event * /* returned event */)

All enqueue methods return an error codeMethod returns

CL_SUCCESS if command was enqueued successfullyAll enqueue methods

support an event wait-list

Command will not get executed until all events in list are completeAll enqueue

methods return an event for the commandReturned event identifies

the specific command that was enqueued

OpenCL Dispatch

Basic OpenCL Kernel Example

devices __kernel void square(

 __global float* input, __global float* output)

{

 size_t i = get_global_id(0);

 output[i] = input[i] * input[i];

}

OpenCL /GL Interop

// Gets GL devices that support contexts

// Showing Windows/Linux version (Apple also works)

clGetGLContextInfoKHR(…)

 <wgl contexts>,

 CL_DEVICES_FOR_GL_CONTEXT_KHR,

 N*sizeof(cl_device_id),

 cdDeviceID, &size);

cxGPUContext = clCreateContext(

 <wgl contexts, devices, cl platform>,

 1, cdDeviceID, NULL, NULL, &ciErrNum);

cl_event e = clCreateEventFromGLsyncKHR(

OpenCL /GL Interop

clGetGLContextInfoKHR()

clCreateContext(<properties include GL context>)

buffer = clCreateFromGLBuffer(…)

image = clCreateFromGLTexture(…)

image = clCreateFromGLRenderbuffer(…)

clEnqueueAcquireGLObjects(…, &event)

clEnqueueReleaseGLObjects(…)

event = clCreateEventFromGLsyncKHR(…)

OpenCL /GL Interop

OpenCL/DX Interop

// Showing D3D11, also D3D9 and D3D10

clGetDeviceIDsFromD3D11KHR()

clCreateContext(<properties include DX device>)

buffer = clCreateFromD3D11Buffer(…)

image = clCreateFromD3D11Texture2D(…)

image = clCreateFromD3D11Texture3D(…)

clEnqueueAcquireD3D11Objects(…, &event)

clEnqueueReleaseD3D11Objects(…)

clCreateEventFromGLsyncKHR(…)

CUDA

• CPU invokation

square<<<64,1>>>(input, output);

• Kernel

__global__ void square(float* input, float* output)

{

 int i = blockIdx.x;

 output[i] = input[i] * input[i];

}

CUDA Interop

//GL

cudaGLSetGLDevice()

cudaGLRegisterBuffer()

cudaGLRegisterImage() // texture/renderbuffer

//DX

cudaD3D11GetDevice(&dev,adapter);

D3D11CreateDeviceAndSwapChain(adapter,…,&d3dDevice,…)

cudaD3D11SetDirect3DDevice(d3dDevice)

cudaGraphicsD3D11RegisterResource()

• Overview

• In Games

• Filtering

– PS vs Compute

• Culling (lights, geometry)

• Back-end physics

Use Cases

• Highly data parallel

• Output already going to GPU

– Culling

– “Cosmetic” physics

• Don’t add roundtrips

Candidates – CPU Tasks

• Easier programming model

• Local memory usage

• Watch out for switching cost

Candidates – From other shaders

In Games (That I Know of)

• Post Effects and Filtering

– Probably most common

• Light Culling

– Tile Deferred: Frostbite and plenty others

– Forward+: Dirt Showdown (Forward+)

• Variable Bit-Rate Texture Decompression
(EGSR 2011)

– Civilization V

• Convert from PS

• Saves redundant compute

• Following Slides from talks by Jon Story and
Bill Billodeau at GDC 2011 (Thanks!)

– Seperable Filtering

– Application: SSAO

– Application: DOF

Filtering

• Two 1D sampling instead of full 2D

• Classically performed by the Pixel Shader

• Source image over-sampling increases with
kernel size

– Shader is usually TEX instruction limited

• In practice also “good enough” for non-
separable

• Often used for bilateral cases

Separable Filters

Typical Pipeline Steps

Reads = 2 * width * pixels

– Use the TGSM as a cache to reduce TEX and ALU
ops

– Make sure thread group size is a multiple of 64

Basic CS Version

...........

128 threads load 128 texels

128 – (Kernel Radius * 2) threads compute results

Kernel Radius

Redundant compute threads 

– Should ensure that all threads in a group have
useful work to do – wherever possible

– Redundant threads will not be reassigned work
from another group

– This would involve alot of redundancy for a large
kernel diameter

Avoid Redundant Threads

– Possible to cache TGSM reads on General Purpose
Registers (GPRs)

Multiple Pixels per Thread

Compute threads not a multiple of 64 

...........

32 threads compute 128 results

32 threads load 128 texels
Kernel Radius * 2 threads

load 1 extra texel each

– Process multiple lines per thread group

• Thread group size is back to a multiple of 64

• Better than one long line (2 or 4 works well)

– Improved texture cache efficiency

2D Thread Groups

...........

...........

Kernel Radius

64 threads compute 256 results

64 threads load 256 texels

Kernel Radius * 4 threads
load 1 extra texel each

– Kernel diameter needs to be > N to see a
DirectCompute win

• Otherwise the overhead cancels out the advantage

– The larger the kernel diameter the greater the win

– Large kernels also require more TGSM

Kernel Diameter

Bilateral SSAO
Depth + Normals

HDAO buffer

* =

Original Scene Final Scene

– HDAO at full resolution is expensive

– Running at half resolution captures more
occlusion – and is obviously much faster

– Problem: Artifacts are introduced when combined
with the full resolution scene

Perform at Half Resolution

Bilateral Dilate & Blur

HDAO buffer doesn‘t match
with scene

A bilateral dilate & blur
fixes the issue

New Pipeline...

Bilinear Upsample Intermediate UAV Dilated & Blurred

Horizontal Pass Vertical Pass

½ Res Still much faster than performing at full res!

Pixel Shader vs DirectCompute

*Tested on a range of 2011 AMD and NVIDIA DX11 HW, DirectCompute is
between ~2.53x to ~3.17x faster than the Pixel Shader

– Many techniques exist to solve this problem

– A common technique is to figure out how blurry a
pixel should be

• Often called the Cirle of Confusion (CoC)

– A Gaussian blur weighted by CoC is a pretty
efficient way to implement this effect

Depth of Field

– Combined Gaussian Blur and CoC weighting isn’t a
separable filter, but we can still use a separate
horizontal and vertical 1D pass

• The result is acceptable in most cases

Treat as Seperable

Intermediate UAV

CoC

Horizontal Pass Vertical Pass

Pixel Shader vs DirectCompute

*Tested on a range of 2011 AMD and NVIDIA DX11 HW, DirectCompute is
between ~1.48x to ~1.86x faster than the Pixel Shader

• Lights

– Tile-Based Deferred

– Forward+

• Geometry Culling

Culling

Forward+ Use

Forward+

• Depth prepass

– Fills z buffer

• Prevent overdraw for shading

• Used to calculate position for light culling

• Light culling

– Culls light per tile basis

– Input: z buffer, light buffer

– Output: light list per tile

• Shading

– Geometry is rendered

– Pixel shader

• Iterate through light list calculated in light culling

• Evaluates materials for the lights

1

2

3

[1,2,3] [1] [2,3]

Light Culling Detail

• Single compute shader

• A thread group is executed per tile

• Calculate Z extent

• Build frustum

• 64 lights are culled in parallel

• Overlapped light indices are
accumulated in TLS

• Export

– One atomic add

– Write light indices to a contiguous
memory ( Linked list)

Leo Pipeline

• Hair

• Cloth

• Deformation

Back-end Physics

Real-time hair simulation

• Using DirectX compute shader, around 20K hair strands (1/5 of real human
hair) can be simulated in less than 1 millisecond per frame.

• To preserve various hair styles, we developed global and local shape
constraint methods which simulate bending and twisting effects.

• We exploits vertex-level parallel process to utilize GPU architecture.

• Various hair conditions such as wet can be simulated interactively.

Real-time hair simulation

• A strand is simulated as a polyline
with local frames attached to each
vertex.

• Global shape constraints are applied
to each vertex and make them to
return to the initial global position.

• Local shape constraints make vertices
to return to initial local position w.r.t
local frame.

• With both constraints, hair shapes
can be maintained without tangling
in weird shapes during fast moving
gameplay.

i

i-1

i+1
xi yi

zi

w
xw

yw

zw

xi-1

yi-1

zi-1

xi+1

yi+1

zi+1

Algorithm : Hair simulation outline

1 load hair data

2 precompute rest-state values

3 while simulation running do

4 compute forces such as gravity or wind

5 integrate

6 apply global shape constraints

7 while iteration do

8 apply local shape constraints

9 apply edge length constraints

1

0

 collision handling

Updated Slides

http://developer.amd.com/Resources/documentation/
presentations

http://developer.amd.com/Resources/documentation/presentations
http://developer.amd.com/Resources/documentation/presentations

Thank-Yous

• Mike Houston, Ofer Rosenberg

• Justin Hensley, Derek Gertsmann

• Jon Story, Bill Bilodeau

• Takahiro Harada, Jay McKee

• Dongsoo Han

