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OUTLINE

I: (55 min) Introduction to Quaternions:

What are they good for?

Understanding Rotation Sequences!

II a: (15 min) Quaternion Tubing:

Visualizing Framed Space Curves
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...OUTLINE...

II b: (15 min) Quaternion Protein Maps:

Amino Acid Frame Sequences with Quaternions

II c: (20 min) Intro to Dual Quaternions:

Applications to Six-Degrees-of-Freedom
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Part I

Introduction to Quaternions:

...Twisting Belts and Rolling Balls...

Explaining Rotation Sequences with Quaternions
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Where Did Quaternions Come From?

. . . from the discovery of Complex Numbers:

• z = x+ iy Complex numbers = realization

that z2 + 1 = 0 cannot be solved unless you

have an “imaginary” number with i2 = −1.

• Euler’s formula : eiθ = cos θ+ i sin θ

allows you to do most of 2D geometry.
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Hamilton

The first to ask “If you can do 2D geometry with complex numbers, how
might you do 3D geometry?” was William Rowan Hamilton, circa 1840.

Sir William Rowan Hamilton
4 August 1805 — 2 September 1865
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Hamilton’s epiphany: 16 October 1843

“An electric circuit seemed to close; and a spark flashed

forth . . . Nor could I resist the impulse – unphilosophi-

cal as it may have been – to cut with a knife on a stone

of Brougham Bridge, as we passed it, the fundamen-

tal formula with the symbols, i, j, k; namely,

i2 = j2 = k2 = ijk = −1

which contains the Solution of the Problem...”
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...at the site of Hamilton’s carving

The plaque on Broome Bridge in Dublin, Ireland, commem-
orating the legendary location where Hamilton conceived of
the idea of quaternions. (Photo taken July 2012).
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...the author on Broome Bridge...

Yes, I have
actually
been there!
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The Belt Trick
Quaternion Geometry in our daily lives

• Two people hold ends of a belt.

• Twist the belt either 360 degrees or 720 de-

grees.

• Rule: Move belt ends any way you like but do

not change orientation of either end.

• Try to straighten out the belt.
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360 Degree Belt

360 twist: stays twisted, can change DIRECTION!
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720 Degree Belt

720 twist: CAN FLATTEN OUT WHOLE BELT!
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The Beltless Trick
Quaternion Geometry is right in your hand!

• Hold a coffee cup (empty is a good idea) in the

palm of your hand.

• Keeping the cup vertical, user your hand to twist

the handle, first by 360 degrees (painful).

• Now CONTINUE another 360 degrees, for a to-

tal of 720 degrees.

• Your arm is once again STRAIGHT!
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Rolling Ball Puzzle

1. Put a ball on a flat table.
2. Place hand flat on top of the ball
3. Make circular rubbing motion, as though polish-

ing the tabletop.
4. Watch a point on the equator of the ball.
5. small clockwise circles →

equator goes counterclockwise
6. small counterclockwise circles →

equator goes clockwise
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Rolling Ball Scenario
Point of Contact

y axis rotation

x axis rotation

motion

in plane
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Gimbal Lock

Gimbal Lock occurs when a mechanical or com-

puter system experiences an anomaly due to an

(x, y, z)-based orientation control sequence.

• Mechanical systems cannot avoid all possible gim-

bal lock situations .

• Computer orientation interpolation systems can
avoid gimbal-lock-related glitches by using quater-
nion interpolation.
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Mechanical Gimbal Lock: Using x, y, z axes to encode orientation
gives singular situations.

17

Gimbal Lock — Apollo Systems

Red-painted area = Danger of real Gimbal Lock
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2D Rotations

• 2D rotations ↔ complex numbers.

• Why? eiθ (x+ iy) =
(

x′ + iy′
)

x′ = x cos θ − y sin θ

y′ = x sin θ+ y cos θ

• Complex numbers are a subspace of quater-

nions — so exploit 2D rotations to introduce us

to quaternions and their geometric meaning.
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Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

θ

T̂

N̂
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Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

θ

N̂
T̂
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Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

θ

N̂ T̂
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Frame Matrix in 2D

This motion is described at each point (or time) by the matrix:

R2(θ) =
[

T̂ N̂
]

=





cos θ − sin θ
sin θ cos θ



 .
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The Belt Trick Says:

There is a Problem...at least in 3D

How do you get cos θ to know about 720 degrees?
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The Belt Trick Says:

There is a Problem...at least in 3D

How do you get cos θ to know about 720 degrees?

Hmmmmm. cos(θ/2) knows about 720 degrees, right?
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Half-Angle Transform:

A Fix for the Problem?

Let a = cos(θ/2), b = sin(θ/2),

(i.e., cos θ = a2 − b2, sin θ = 2ab),

and parameterize 2D rotations as:

R2(a, b) =





a2 − b2 −2ab

2ab a2 − b2



 .

where orthonormality implies

(a2 + b2)2 = 1

which reduces back to a2 + b2 = 1.
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Frame Evolution in 2D

Examine the time-evolution of a 2D frame (on our way to 3D).

First use θ(t) coordinates:

[

T̂ N̂
]

=





cos θ − sin θ
sin θ cos θ



 .

Differentiate to find frame equations:

˙̂T(t) = +κN̂

˙̂N(t) = −κT̂ ,

where κ(t) = dθ/dt is the curvature .
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Frame Evolution in (a, b):

The basis (T̂, N̂) is nasty — Four equations with Three

constraints from orthonormality, but just One true degree of

freedom.

Major Simplification occurs in (a, b) coordinates!!

˙̂T = 2





aȧ− bḃ
aḃ+ bȧ



 = 2





a −b
b a









ȧ
ḃ





28

Frame Evolution in (a, b):

But this formula for ˙̂T is just κN̂, where

κN̂ = κ





−2ab

a2 − b2



 = κ





a −b
b a









−b
a





or

κN̂ = κ





a −b
b a









0 −1
1 0









a
b




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2D Quaternion Frames!

Rearranging terms, both ˙̂T and ˙̂N eqns reduce to




ȧ
ḃ



 =
1

2





0 −κ
+κ 0



 ·




a
b





This is the square root of frame equations.
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2D Quaternions . . .

So one equation in the two “quaternion” variables (a, b) with

the constraint a2+b2 = 1 contains both the frame equations

˙̂T = +κN̂

˙̂N = −κT̂
⇒ this is much better for computer implementation, etc.
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Rotation as Complex Multiplication

If we let (a+ ib) = exp (i θ/2) we see that

rotation is complex multiplication!

“Quaternion Frames” in 2D are just complex numbers, with

Evolution Eqns = derivative of exp (i θ/2)!
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Rotation with no matrices!

Due to an extremely deep reason in Clifford Algebras,

a+ ib = eiθ/2

represents rotations “more nicely” than the matrices R(θ).

(a′ + ib′)(a+ ib) = ei(θ
′+θ)/2 = A+ iB

where if we want the matrix, we write:

R(θ′)R(θ)=R(θ′ + θ)=





A2 −B2 −2AB

2AB A2 −B2




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The Algebra of 2D Rotations

The algebra corresponding to 2D rotations is easy: just com-

plex multiplication!!

(a′, b′) ∗ (a, b) ∼= (a′ + ib′)(a+ ib)

= a′a− b′b+ i(a′b+ ab′)

∼= (a′a− b′b, a′b+ ab′)

= (A, B)

2D Rotations are just complex multiplication , and take you
around the unit circle!
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Quaternion Frames

In 3D, repeat our trick: take square root of the frame, but now

use quaternions:

• Write down the 3D frame.

• Write as double-valued quadratic form.

• Rewrite frame evolution equations linearly

in the new variables.
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The Geometry of 3D Rotations

We begin with a basic fact:

Euler theorem: every 3D frame can be written as a spinning
by θ about a fixed axis n̂, the eigenvector of the rotation ma-
trix:

n̂

θ
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Quaternion Frames . . .

The Matrix R3(θ, n̂) giving 3D rotation by θ about axis n̂ is :










c+ (n1)
2(1 − c) n1n2(1 − c) − sn3 n3n1(1 − c) + sn2

n1n2(1 − c) + sn3 c+ (n2)
2(1 − c) n3n2(1 − c) − sn1

n1n3(1 − c) − sn2 n2n3(1 − c) + sn1 c+ (n3)
2(1 − c)











where c = cos θ, s = sin θ, and n̂ · n̂ = 1.
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Can we find a 720-degree form?

Remember 2D: a2 + b2 = 1
then substitute 1 − c = (a2 + b2) − (a2 − b2) = 2b2

to find the remarkable expression for R(θ, n̂):







a2 − b2 + (n1)
2(2b2) 2b2n1n2 − 2abn3 2b2n3n1 + 2abn2

2b2n1n2 + 2abn3 a2 − b2 + (n2)
2(2b2) 2b2n2n3 − 2abn1

2b2n3n1 − 2abn2 2b2n2n3 + 2abn1 a2 − b2 + (n3)
2(2b2)






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Rotations and Quadratic Polynomials

Remember (n1)
2 + (n2)

2 + (n3)
2 = 1 and a2 + b2 = 1;

letting

q0 = a = cos(θ/2) q = bn̂ = n̂ sin(θ/2)

We find a matrix R3(q)










q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23










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Quaternions and Rotations . . .

HOW does q = (q0, q) represent rotations?

LOOK at

R3(θ, n̂)
?
= R3(q0, q1, q2, q3)

THEN we can verify that choosing

q(θ, n̂) = (cos
θ

2
, n̂ sin

θ

2
)

makes the R3 equation an IDENTITY .
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Quaternions and Rotations . . .

WHAT happens if you do TWO rotations?

EXAMINE the action of two rotations

R(q′)R(q) = R(Q)

EXPRESS in quadratic forms in q and LOOK FOR an analog
of complex multiplication:
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Quaternions and Rotations . . .

RESULT: the following multiplication rule

q′ ∗ q = Q yields exactly the correct 3×3 rotation

matrix R(Q):






















Q0 =
[

q′ ∗ q
]

0
Q1 =

[

q′ ∗ q
]

1
Q2 =

[

q′ ∗ q
]

2
Q3 =

[

q′ ∗ q
]

3























=























q′0q0 − q′1q1 − q′2q2 − q′3q3
q′0q1 + q′1q0 + q′2q3 − q′3q2
q′0q2 + q′2q0 + q′3q1 − q′1q3
q′0q3 + q′3q0 + q′1q2 − q′2q1























This is Quaternion Multiplication.
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Algebra of Quaternions

= 3D Rotations!

2D rotation matrices are represented

by complex multiplication

3D rotation matrices are represented

by quaternion multiplication
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Algebraic 2D/3D Rotations

Therefore in 3D, the 2D complex multiplication

(a′, b′) ∗ (a, b) = (a′a− b′b, a′b+ ab′)

is replaced by 4D quaternion multiplication:

q′ ∗ q = (q′0q0 − q′1q1 − q′2q2 − q′3q3,

q′0q1 + q′1q0 + q′2q3 − q′3q2,

q′0q2 + q′2q0 + q′3q1 − q′1q3,

q′0q3 + q′3q0 + q′1q2 − q′2q1)
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Algebra of Quaternions . . .

The equation is easier to remember by dividing it

into a scalar piece q0 and a vector piece ~q:

q′ ∗ q = (q′0q0 − ~q′ ·~q,

q′0~q + q0
~q′ + ~q′ ×~q)
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Now we can SEE quaternions!

Since (q0)
2 + q · q = 1 then

q0 =
√

1 − q · q

Plot just the 3D vector: q = (qx, qy, qz)

q0 is KNOWN! We can also use any other triple:
the fourth component is dependent .

DEMO
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We can now make a Quaternion Picture of each of our

favorite tricks

• 360◦ Belt Trick in Quaternion Form. DEMO:

• 720◦ Belt Trick in Quaternion Form.

• Rolling Ball in Quaternion Form. DEMO:

• Gimbal Lock in Quaternion Form.
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360◦ Belt Trick in Quaternion Form
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720◦ Belt Trick in Quaternion Form
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Rolling Ball in Quaternion Form
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q vector-only plot. (q0, qx, qz) plot
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Gimbal Lock in Quaternion Form

Quaternion Plot of the remaining orientation degrees
of freedom of R(θ, x̂) · R(φ, ŷ) · R(ψ, ẑ) at φ = 0

and φ = π/6
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Gimbal Lock in Quaternion Form, contd

Choosing φ and plotting the remaining orientation
degrees in the rotation sequence

R(θ, x̂) · R(φ, ŷ) · R(ψ, ẑ), we see degrees of
freedom decrease from TWO to ONE as φ→ π/2
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Quaternion Interpolations

• Shoemake (Siggraph ’85) proposed using quaternions in-

stead of Euler angles to get smooth frame interpolations

without Gimbal Lock :

BEST CHOICE: Animate objects and cameras using ro-

tations represented on S3 by quaternions
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Interpolating on Spheres

General quaternion spherical interpolation employs the “SLERP,”

a constant angular velocity transition between two directions,

q̂1 and q̂2:

q̂12(t) = Slerp(q̂1, q̂2, t)

= q̂1
sin((1 − t)θ)

sin(θ)
+ q̂2

sin(tθ)

sin(θ)

where cos θ = q̂1 · q̂2.
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Plane Interpolations

In Euclidean space, these three basic cubic splines look like
this:
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Bezier Catmull-Rom Uniform B

The differences are in the derivatives: Bezier has to start
matching all over at every fourth point; Catmull-Rom matches
the first derivative; and B-spline is the cadillac, matching all
derivatives but no control points.
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Spherical Interpolations
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Quaternion Interpolations
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Exp Form of Quaternion Rotations

In Hamilton’s notation, we can generalize the 2D equation

a+ ib = eiθ/2

Just set

q = (q0, q1, q2, q3)

= q0 + iq1 + jq2 + kq3

= e(I·n̂θ/2)

with q0 = cos(θ/2) and ~q = n̂ sin(θ/2) and I = (i, j,k),
with i2 = j2 = k2 = −1, and i ∗ j = k (cyclic),
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Cute Quaternion Tricks!

Square Roots are cool..
A quaternion p is the square root of a quaternion q if

p ∗ p = q .

A hint: remember that if c = cos θ, and γ = cos(θ2), then

γ =

√

√

√

√

1 + c

2
=

1 + c
√

2(1 + c)
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Cute Quaternion Tricks...

Suppose we now look at 1 + q = (1 + q0,q). Then

(1 + q) ∗ (1 + q) =
(

(1 + q0)
2 − q · q, 2q(1 + q0)

)

= 2(1 + q0) q

Dividing through by 2(1 + q0), we find the square root:

p =
√
q =

1 + q
√

2(1 + q0)
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Tricks, contd: Lining up â and b̂

A common rotation task is to line up two directions, â and b̂.

There is a simple quaternion form for this operation. Let

â · b̂ = cos θ = c , â × b̂ = n̂ sin θ

where we assume sin θ > 0. Then we can compute the

rotation from â to b̂ using, again, the half-angle formula:

R(â, b̂) = (cos(θ/2), n̂ sin(θ/2))

=







√

√

√

√

1 + c

2
, â × b̂

√

√

√

√

1

2(1 + c)







where we also used sin θ = 2cos(θ/2) sin(θ/2).
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Clifford Algebras

• All Rotations in any dimension are represented
by two reflections using Clifford Algebra:
A and B define the perpendicular directions to two re-

flection planes, A · A = B · B = 1.

• Create Rotation Matrix R and solve for the Quater-

nion, and you amazingly get THIS:

q(A, B) = (A · B, A × B)
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Clifford Algebra Quaternion Form . . .

Why is this a quaternion form?

q · q = (A · B)2 + (A × B) · (A × B)

= (A · A) (B · B)

≡ 1

If Quaternions are like the Square Roots of Ro-
tations, then Clifford Algebras are like the Square
Roots of Quaternions!
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Key to Quaternion Intuition

Fundamental Intuition: We know

q0 = cos(θ/2), ~q = n̂ sin(θ/2)

We also know that any coordinate frame M can be written
as M = R(θ, n̂).

Therefore

~q points exactly along the axis we have to rotate

around to go from identity I to M , and the length of

~q tells us how much to rotate.
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Summarize Quaternion Properties

• Unit four-vector. Take q = (q0, q1, q2, q3) = (q0, ~q) to

obey constraint q · q = 1.

• Multiplication rule. The quaternion product q and p is

q ∗ p = (q0p0 − ~q · ~p, q0~p + p0~q + ~q × ~p),

or, alternatively,














[q ∗ p]0
[q ∗ p]1
[q ∗ p]2
[q ∗ p]3















=















q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 + q2p0 + q3p1 − q1p3
q0p3 + q3p0 + q1p2 − q2p1














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Quaternion Summary . . .

• Rotation Correspondence. The unit quaternions q and

−q correspond to a single 3D rotation R3:











q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23











If

q = (cos
θ

2
, n̂ sin

θ

2
) ,

with n̂ a unit 3-vector, n̂ · n̂ = 1. Then R(θ, n̂) is usual 3D
rotation by θ in the plane ⊥ to n̂.
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SUMMARY

• Quaternions represent 3D frames

• Quaternion multiplication represents 3D rotation

• Quaternions are points on a hypersphere

• Quaternions paths can be visualized with 3D display

• Belt Trick, Rolling Ball, and Gimbal Lock can be un-

derstood as Quaternion Paths.
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Quaternion Applications

Part II

Tubing, Bioinformatics, and Dual
Quaternions

1

OUTLINE

• Quaternion Curves and Tubing: generalize the Frenet

Frame, make quaternion map of all tubings , optimize for

any tubing task.

• Quaternions in Bioinformatics: use quaternion frames

to create GLOBAL orientation descriptions and statistics

for any protein’s amino acid structure.

• Dual Quaternions: Introduction to a generalization of

quaternions that supports translation as well as rotation.

2

Part II a: Tubing

What Do Quaternions Have to do with Tubing??

∗ Basic Idea: Every point on a curve can be as-
signed a frame – sort of like a roller-coaster car
running on a roller-coaster track.

∗ We FIX one direction , generally the tangent to
the curve.
∗ The remaining two directions define a swept-
out tube (which can have any cross-section you
like, typically a circle).

3

What are Frames used For?

• Our application: Attach tubes and textures to thickened

lines.

• ...also... Move objects and object parts in an animated

scene.

• Move the camera generating the rendered viewpoint of

the scene.

• Compare shapes of similar curves.

• Collect orientation data of moving object (e.g., a joint),

etc. etc.

4

Examine Framing of Curves

A
A

A
A

AK

The (3,5) torus knot.

• Line drawing ≈ useless.

• Tubing using parallel transport : nice, but not periodic.

• Closeup of the non-periodic mismatch.

5

Example of Tubing Problems on Curves

A
A

A
A

A
A

A
A

A
A
AK

Closeup of the non-periodic mismatch.

Can’t apply texture.
6



More Tubing Issues on Curves. . .

Tubings of the 2,3 torus knot based on Frenet-Serret, Geodesic Refer-
ence, and Parallel Transport frames. Issues: FS: singular, excess twist.
GR: singular point, PT: non-periodic.

7

General Solution:
Invariant Quaternion Frames

REMARKS:

• Ambiguity of Frame. We have freedom to choose a “gauge,” i.e.,
any additional rotation around tangent vector, at any curve point.

• Circles in q space. “Gauge freedom” generates great circles in S3

quaternion space. Need 4π radians to get full quaternion circle.

• Gauge-invariant swept tube. Sweeping entire set of circles (≈ dual
to tangent vector) in q-space gives invariant picture of ALL frame
possibilities.

• Best paths in tube. Minimal length in S3 is PT frame! Other
choices include minimal acceleration, constant rotation, etc. . . .

8

Geometric Construction of Space of Frames:

• R(θ, T̂) leaves T̂ invariant, but doesn’t have T̂ as Last

Column.

• Use Geodesic Reference to construct one instance of

such a frame: R(ẑ · T̂, ẑ × T̂).

9

Geometric Construction of Space of Frames:

q(θ, T̂)∗q(ẑ·T̂, ẑ×T̂) generates the correct family of quater-
nion curves:

T

T
^

^^

^

x

z

z

10

Invariant Quaternion Frames . . .
Invariant frame for trefoil knot:

∗ Left: Red fan = tangents; Magenta arc = tangent map;
Green vectors = geodesic reference starting points.
∗ Right: Short segment of invariant space.
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Invariant Quaternion Frames . . .

The Whole Tubing Frame Space of the (2,3) Torus Knot!

12



3D Curves: Frenet and PT Frames

Now give more details of 3D frames: Classic Moving Frame:








T′(t)
N′(t)
B′(t)









=









0 k1(t) k2(t)
−k1(t) 0 σ(t)
−k2(t) −σ(t) 0

















T(t)
N(t)
B(t)









.

Serret-Frenet frame: k2 = 0, k1 = κ(t) is the curvature,

and σ(t) = τ(t) is the classical torsion. LOCAL.

Parallel Transport frame (Bishop): σ = 0 to get minimal turn-

ing. NON-LOCAL = an INTEGRAL.
13

3D curve frames, contd

Frenet frame is locally defined, e.g., by

B(t) =
x′(t) × x′′(t)

‖x′(t) × x′′(t)‖

but has problems on the “roof.”

N

N

B

T

T

B

B

NB

???

N
T

T
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3D curve frames, contd

Bishop’s Parallel Transport frame is integrated over whole
curve, non-local, but no problems on “roof:”

N1

N1

N1
N1

N1

N2

N2

N2

N2

N2

T

T

T

T

T
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3D curve frames, contd

Geodesic Reference Frame is the frame found by tilting North
Pole of “canonical frame” along a great circle until it points in
desired direction (tangent for curves, normal for surfaces).

MAIN VALUE: A foolproof reference frame for sliding rings.

16

Sample Curve Tubings and their Frames

Frenet Geodesic Reference Parallel Transport

Easily see PT has least “Twist,”but lacks periodicity.

17

Conclusion: Quaternion Tubing

Observations:

• Tubing and Quaternion Frame Space. Any path of frames on this
space can be used to solve the tubing problem.

• Minimality. The PT frame appears to be unique frame with minimum
total rotation.

• Distributed Twist. A conventional compromise distributes a user-
desired boundary twist uniformly across vertex frames: This is best
done using uniform Quaternion distances between uniformly spa-
tially sampled frames.

• Hybrids. On closed curves, Frenet frame is periodic, PT is not. Add
fixed angular increment throughout to make PT periodic.

• Initial angular velocity. Can give the frame an arbitrary number
of twists using σ 6= 0. Minimal tangential acceleration version corre-
sponds to quaternion treatment by Barr, Currin, Gabriel, and Hughes
(Siggraph 92).

18



PART II b: Quaternion Protein Frames

• AMINO ACIDS in proteins are oriented structures.

• Exactly HOW they are oriented of great biological in-

terest. Usual Ramachandran-frame method is local.

Thus one cannot measure global orientation similar-

ities or statistics.

• Quaternions fix this — global similarities can

be displayed.

19

Example: Quaternion Protein Frame Statistics

Quaternion maps for NMR data describing 10 different observed geome-
tries for the protein YvyC from Bacillus subtilis, 2HC5. (left) The collection
of alternative geometries. (right) Quaternion maps showing the orientation
space geometry spreads for each individual amino acid.

20

Basic Background: Orientation Frames in
Bioinformatics

• Proteins are important. The entire machinery of life depends on
the geometry of proteins, which control the chemical reactions of
metabolism.

• Proteins are long chains of frames. Proteins consist of hundreds,
or even thousands, of amino acids with well-defined orientation frames
arranged in a sequence, but with very complicated 3D geometry.

• Traditional orientation tools describing proteins are pri mitive.
The Ramachandran plot relates amino acid n to amino acid n ± 1

— that’s it!

• Ramachandran statistics are impossible. With only local informa-
tion, you can’t compare distant active sites, or gather statistics on
non-rigid protein orientation distribution.

21

New Progress: Quaternion Frames in
Proteomics

• The PDB has massive protein geometry data. We can mine that
data to construct precise, amino-acid-residue by amino-acid-residue,
orientation frame labels.

• Amino acid quaternion frames. It is straightforward to convert the
PDB geometry to quaternion frame sequences.

• Using our quaternion display tricks, global information about
residue alignment is directly visualizable.

• Our just-published JMGM paper applies quaternions to many
proteomics problems. For additional information, see A. Hanson
and S. Thakur, Journal of Molecular Graphics and Modelling, “Quater-
nion Maps of Global Protein Structure.” (Fall 2012).

22

Basic Procedure

• Library of 20 amino acids. Proteins link these together with peptide
bonds: a C’–OH unit on one end sees an NH2–Cα on the other side,
and joins together as C’–NH–Cα, kicking off a water, H2O.

• Pick Three Atoms. Any three noncollinear atoms are sufficient to
define a quaternion frame, but some are more useful for specific pur-
poses than others.

• Compute Quaternion Frames for the whole protein.

• View frame sequence on the quaternion sphere. Global compar-
isons as well as local comparisons can be made with a sequence of
quaternion frames.

• Study the map. The map itself can be used to perform orientation
statistics and similarities unobtainable by other methods.

23

Basis of an Amino Acid Orientation Frame

Amino acid geometry showing the computation of our default d is-
crete frame based on the direction from the C α to the neighboring C
and N atoms. The frame vectors X (red), Y (green), and Z (blue) are
superimposed on the basic amino acid unit structure.

24



Amino Acid Orientation Frames for Neighbors

Drop shadow geometry for two adjacent residues. C-N peptide bond
is in orange tint. C α-frames are defined for distinct residues, alter-
native P-frame includes the linking peptide bond.

25

Basis of the Amino Acid P-frame

The coordinates of the P-frame definition; the frame cen-
tered on the C carbon, and extending to the nitrogen on
the neighboring residue.

26

Basic Geometric Structures:

• Alpha Helix. One of the most common structures is the

Alpha Helix, formed when sequences of residues relax

into a low-energy state that coils them into a spiral.

• Beta Sheet. Another common structure is essentially se-

quence of residues related to each other by 180-degree

flips, giving the geometric appearance of a “sheet” —

really a very flat ellipse.

27

Model of an Alpha Helix

(a) A helix defined by the parametric equation

(r cos(t), r sin(t), pt) .

(b) A set of frames on the helical curve defined by the
Frenet-Serret equation. Note the relation of the identity
frame at bottom left to the first actual helix frame.

28

(a) (b)
Model of an Alpha Helix 29

Alpha Helix Quaternion Map

(a) (b)
The quaternion maps for a helix defined by the paramet-
ric equation (r cos(t), r sin(t), pt). (a) xyz map. (b) wyz
map. Red dot is the identity frame.
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Beta Sheet Model

(a) (b)
(a) A beta sheet modeled by the parametric equation

(cos(t), 0.1 sin(t), 0.5t)

(b) A set of Frenet-Serret frames at roughly the expected pla ces on
the equation of the curve. Note the relation of the identity f rame at
foreground to the first actual sampled frame.

31

Beta Sheet Quaternion Map

(a) (b)
A beta sheet modeled by the parametric equation
(cos(t), 0.1 sin(t), 0.5t). (a) xyz map. (b) wyz map.
Red dot is identity frame.

32

Example: Beta Sheet Quaternion Map

Protein structure of 2HC5 and a quaternion map of its
beta sheet structure. Neighboring frames are given match-
ing quaternion signs in this map.

33

Example: Quaternion NMR Frame Statistics

Quaternion maps for NMR data describing 10 deformations of Y vyC.
(left) Spatial geometries. (right) Quaternion orientation space geom-
etry spreads for each amino acid residue.

34

Example contd: NMR Frame Statistics

Isolating a selected section of the protein YvyC from Bacill us sub-
tilis, 2HC5. (left) The selected region. (right) Quaternio n maps show-
ing the orientation space geometry spreads for each individual amino
acid in this region.

35

Example contd: NMR Frame Statistics

(a) (b)
Quaternion maps for NMR data describing 20 different geomet ries
for the protein obtained from 1D1R (YciH gene of E. Coli). (a) Alter-
native geometries. (b) Quaternion map clusters.
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Quaternion Protein Maps:
Summary and Conclusions

• Step I: Select a framing.

• Step II: Convert to quaternions.

• Step III: Enforce Continuity.

• Step IV: View the 4D map projected to 3D. The map

itself can be rotated in 4D to different viewpoints that ex-

pose selected properties of the similarity space.
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Part II c: Dual Quaternions

• Quaternions Describe Only 3D Rotations. A computer

graphics scene must place elements using both Rota-

tions and Translations.

• Dual quaternions can do translations. Dual quater-

nions are a mathematical trick that effectively creates an

infinite-radius rotation , and that is exactly a translation.

• Mathematical device: dual numbers. We already know

that quaternions use a “generalized complex number” with

i2 = j2 = k2 = ijk = −1: Dual numbers add another

copy of a quaternion multiplied by ǫ, where ǫ2 = 0.
38

Dual Quaternions. . .

• Long history. Dual quaternions (biquaternions) were

first investigated by Clifford (1873), and elaborated by

Study (1891). Modern treatments can be found, e.g.,

from the German school of Blaschke (1960), and are used

in theoretical mechanics (Bottema and Roth, 1979; Mc-

Carthy, 1990), and in robotics. Kavan et al. (TOG, 2008)

have spurred their use in graphics for skinning problems,

etc.
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Dual Quaternions. . .

• Closely related to Clifford Algebra (Geometric Alge-

bra). See Dorst et al., Geometric Algebra for Computer

Science for the connection between dual quaternions and

Clifford algebras. Note that quaternion rotation properties

can be generalized to N -dimensions using Clifford Alge-

bras. The same is true for the properties of dual quater-

nions. We will not pursue the Clifford Algebra connection

here, since we have time only for a brief introduction. We

will use the more straightforward dual-number approach

favored in the kinematics literature, but the reader should

be aware of the Clifford Algebra association.

40

Approach to Adding in Translations

IDEA: Terminate the exponential series. This changes a

rotation into a translation.

Usual: i2 = −1: eiθ = 1 + iθ −
1

2
θ2 −

1

3!
iθ3 + · · ·

= cos θ + i sin θ

eiθeiφ = cos(θ + φ) + i sin(θ + φ)

Dual: ǫ2 = 0: eǫt = 1 + ǫt + 0

eǫxeǫt = 1 + ǫ(x + t) .

So that’s basically all there is to it. . .

41

toward Dual Quaternions. . .

Well, almost all there is to it. . .

• Try 2D rotation with complex numbers:

eiθ(x+ iy) = (x cos θ − y sin θ)+ i(x sin θ + y cos θ).

Seems ok.

• Translation needs two pieces, non-dual and dual:

eǫ(x+iy)eǫ(a+ib) = (1 + ǫ(x + iy))(1 + ǫ(a + ib))

= 1 + ǫ(x + a + i(y + b))

• BUT then if you try the eiθ rotation trick, you get into trou-

ble, e.g., 1 → eiθ.
42



Introduce Dual Quaternions

So we fix this by introducing a dual version of the sandwich

operation, and dualizing the vector as well:

Usual quat rot: R · x = q ∗ (0,x) ∗ q∗

Add trans: R · x + t = q̂ ∗ (1 + ǫ(0), 0 + ǫx) ∗ ¯̂q
∗

,

Here ∗ is quaternion conjugation and ¯ is dual conjugation,

q̂ =

(

1 +
1

2
ǫ(0, t)

)

∗ (Usual q)

NOTE: when sandwiched , this one-half translation produces precisely
R ·x+t. So this is the key to putting translation into the usual quaternion.
IDEA: ǫ2 = 0 truncates the cos, sin series that would produce a
rotation, and leaves only a single term, the translation.
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Basics of Dual Quaternion Operations

• Basic 3-vector in dual quaternion notation is

x = (1,0,0,0) + ǫ(0, x, y, z) = 1 + ǫx

• Basic dual quaternion becomes

q̂ =
(

(1,0,0,0) + 1
2 ǫ (0, tx, ty, tz)

)

∗ q,

where (tx, ty, tz) are the translation parameters and q,

with q · q = 1, is a standard rotational unit quaternion.

Note the 1
2t terms, similar to θ → θ

2 in q.

• The full space-motion transformation formula is then

x
′ = q̂ ∗ x ∗ ¯̂q∗ .
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Useful Properties of Dual Quaternions

• Unit Dual Quaternions: The general form of q̂ is assumed to be unit
length as usual. This is tricky because the norm of q̂ = q + ǫ e

is ‖q̂‖ = ‖q‖ + ǫ q·e
‖q‖,

which means that, since ‖q‖ = 1, we must enforce q ·e = 0. It turns
out that this can be done compatibly with a general spatial motion.

• Trigonmetric/Exponential Form: In general, any unit dual quater-
nion can be written as

q̂ = cos
θ̂

2
+ ŝ sin

θ̂

2

= cos
θ + ǫτ

2
+ (s + ǫt) sin

θ + ǫτ

2

To compute this, we need formulas like cos(a + ǫ b) = cos a −
ǫ b sin a and sin(a+ǫ b) = sin a+ǫ b cos a, which follow from series
expansion.
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Useful Properties of Dual Quaternions. . .

• Exponential and Log: Using power series, one can extend the
usual quaternion exponential and log formulas:

exp(ŝθ̂) = cos θ̂
2 + ŝ sin θ̂

2

and so obviously log q̂ = ŝ θ̂.

• Inverse: The inverse of a dual object is:
(a + ǫ b)−1 = 1

a+ǫ b = 1
a − ǫ b

a2

as can be easily confirmed from (a+ǫ b)(c+ǫ d) = ac+ǫ (ad+bc)

• Inverse: A trick similar to the one we saw for quaternions works for
the square root of a dual quaternion:√

a + ǫ b =
√

a + ǫ b
2
√

a
.
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Applications: Blending and Interpolation
• Blending for Skinning: Dual quaternions permit an unusually smooth

combination of weighted skin vertices associated to two or more
skeletal elements in character animation. The most rigorous meth-
ods are essentially dual quaternion extensions of the spherical center-
of-mass methods of Buss and Fillmore (TOG, 2001). Faster, but less
accurate methods, use the concept of Phong shading, renormalizing
a linear combination of data sets (Kavan et al., TOG 2008).

• Interpolation: Blending is a static process, and needs to be done to
combine character body elements such as skin vertices at each mo-
ment. Interpolation for simulating moving object kinematics and con-
trolling camera motion can also be accomplished by extending stan-
dard quaternion interpolation techniques to dual quaternions, though
challenging issues such as how to control dual parameters and how
to match rotational and translational speeds in a single interpolation
introduce additional complexity and possible artifacts.
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FINAL TUTORAL SUMMARY

• Quaternions nicely represent frame sequences.
• TUBES: Curve frames ⇒ quaternion curves. Exploit

quaternion space of frames to design any type of frame.

• PROTEINS: Amino acid residue coordinates ⇒ quater-

nion frame maps. Apply to global comparisons and sta-

tistical distributions.

• DUAL QUATERNIONS: (From Clifford, 1873.) Extend

quaternion rotation algebra to include translations.

Applications include blending for skinning in figure

animation, robot arm motion planning, etc.

48


