

INTRODUCTION TO NETWORKED GRAPHICS

SIGGRAPH ASIA, 2011

Anthony Steed

Department of Computer Science, University College London, UK

1. Overview

The Internet has change vastly over the last 10 years. Increasingly, the computer graphics
applications we use at work and play are supporting real-time interaction over various types
of network. This course introduces the techniques that are used to enable real-time 3D
graphics applications such as games and simulators to interact over modern networks. It
covers the state of the art in combating latency, bandwidth and scalability constraints.

We take a broad view of networked graphics, including the domains network games, virtual
reality and networked simulations. We start by demonstrating why networked graphics
applications have different requirements on the network compared to “normal” applications
such as web browser. We then describe the problems of providing consistency in networked
graphics situations. The main barriers to providing total consistency of views are latency and
bandwidth so we discuss ways in which these can be accommodated. Finally we give a
survey of other important issues, some other uses of networking and some recent disruptive
technologies.

2. Audience

Developers, programmers and analysts interested in networked graphics and its application
in games and simulation. Researchers from a range of disciplines interested in the latest
state of the art and areas for future development in networked graphics. Students
interested in learning more about key technologies behind games, virtual reality and
simulations.

If you plan to come to this course, some basic experience of Internet technologies such as
standard protocols & services will be helpful. There is a very short re-cap in the first session.
We will assume some basic knowledge of computer graphics such coordinate systems &
types of 3D model used in real-time systems. Some prior experience playing some real-time
networked computer graphics simulations (e.g. games) will have exposed you to some of the
issues of consistency that we emphasise during the short course.

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2077434.2077445&domain=pdf&date_stamp=2011-12-12

3. Lecturer

Anthony Steed is a Professor in the Department of Computer Science at University College
London. He leads the Virtual Environments and Computer Graphics research group that
numbers around 40 staff and doctoral students. His research interests are in collaborative
virtual environments, immersive virtual reality, interaction, and human animation. With
Manuel Oliveira he wrote the book Networked Graphics: Building Networked Virtual
Environments and Networked Games. In the academic year 2006 - 2007 he was on
sabbatical to Electronic Arts in Guildford. He is also the director of the United Kingdom's
Engineering Doctorate Centre in Virtual Environments, Imaging, and Visualization.

4. Resources

The lecturer is the main author of the book Networked Graphics: Building Networked Virtual
Environments and Networked Games, from Elsevier.

This course, and other materials can be found on the Networked Graphics site:

http://www.networkedgraphics.org/

in particular this course including supplemental materials is available here:

http://www.networkedgraphics.org/materials/sigasia2011

That page includes some suggested links for further reading, other sites

Elsevier make freely available from their website Chapter 3 of the Networked Graphics book,
which contains a more detailed introduction to the Internet technologies:

http://www.networkedgraphics.org/materials/chapter3

Also that site there are many more lecture slides including slides for a day long course and
slides to create an 20-30 hour lecture module for undergraduates or masters-level students).
There are additional articles on technologies that have evolved since the book was written
and case studies that didn’t make it in to the book. There is a blog that tracks interesting
new resources for networked graphics. There are several code examples for you to try.

2

5. Schedule

This is a half-day (3.75 hour) course.

Course Overview (5 mins)

Introduction (40 mins)

- A very short history of networked graphics
- Requirements for networked graphics
- The Internet and TCP/IP stack
- Basic protocol and architecture choices

Requirements and Constraints (15 mins)

- Internet performance
- Why are all types of networked graphics non-standard networking applications?
- Requirements on consistency
- Implications for latency and scalability

Latency (45 mins)

- Synchronising state with latent communications
- Playout delays, local lag
- Extrapolation and dead reckoning

Break (15 mins)

Bandwidth Management & Scalability (45 mins)

- Bandwidth constraints
- Management of awareness
- Interest specification
- Server partitioning
- Peer to peer networking

Application Support & Recent Research (30 mins)

- Security
- Streaming
- Cluster graphics
- Thin clients
- Scalable peer to peer

Conclusion / Q & A / More Demos (30 mins)

3

Introduction to Networked
Graphics

• Part 1 of 5: Introduction

4

Overview

• Goal:
• To give an overview of the networked graphics

and the Internet

• Topics:
• A very short history of networked graphics
• Requirements for networked graphics
• The Internet and TCP/IP stack
• Basic protocol and architecture choices

5

SIMNET

SIMNET aircraft simulation. Left: A view of the simulator control. Right: a view
from the cockpit of an aircraft simulator. Images from (Harris, 1994)

6

DOOM

DOOM™ (iD Software) was the first multi-player first-person shooter to
reach wide-spread public attention

7

DIVE

DIVE system from Swedish Institute of Computer Science. UCL scene
in 1999 with spatialised audio amongst 16 participants.

8

Quake

Quake (id Software) brought true 3D and was the basis for several
licensed games. Left: the original Quake game. Right: Counter-Strike
(Valve Software), originally a modification of the game Half-Life which
was based on Quake engine.

9

Ultima Online

Pirates demanding tribute (Schultz, A., 2009)

10

Second Life

8

Two day conference papers panel in SecondLife

11

Presenter
Presentation Notes
IEEE Virtual Reality 2009 programme committee meeting, autumn 2008

Burnout™ Paradise

Electronic Arts, Burnout™ Paradise

12

Common Themes

• A shared 3D virtual environment
• Networked virtual environment (NVE) or

networked games (NG)
• Real-time changes
• Collaboration with other users

• Representation of users in the world (typically as
avatars, but also cars/tanks/etc.)

• Text and occasionally voice communication

13

Common Themes

• One client is usually responsible for generating the
view for one user

• A set of clients creates the illusion of a shared
virtual environment

• “Illusion” because
• Virtual environments can involve detailed models
• Information about changes in models takes time

to travel across communication links

14

Consistency and
Plausibility

• Local plausibility is the appearance of consistency
of only local actions

• Shared plausibility is the appearance of properties
being the same as observed by users
• Objects that are in the background need not be

consistent
• Further: only things that might be the focus of

joint attention can be discussed and be different
• A local implausibility might be an obvious thing to

talk about!

12

15

The Internet

• Networks at the heart of networked VR
• Many network protocols are out there

• TCP, UDP, multicast, RTP, etc
• Choice based on needs

• Properties of the Internet

16

IP Stack

Application

Transport

Network

Link

Physical

DHCP, DIS, DNS, FTP,
HTTP, IMAP, RTP, SMTP,

SSH, Telnet

TCP, UDP, RSVP

IP, ICMP, IGMP

Ethernet, 802.11, ADSL

copper wires, fibre-optic
cable, radio waves

17

End to End Principle

• Only the end nodes know about the application. The
network only sees IP packets. They don’t know
about TCP or UDP, or HTTP, etc.

Application

Transport

Network

Link

Application

Transport

Network

Link

Network

Link

Network

Link

18

Presenter
Presentation Notes
You might be aware that this isn’t strictly true because ISPs (and government agencies?) do deep packet inspection to check what is in the packets and thus prioritize the speed of the packets. This is very computationally expensive to do.

Application Layer
Protocols

• Determine what messages are sent between
applications
• Messages defined by syntax and semantics

• Various standards for messages, typically set by
RFCs (Requests for Comments) hosted by the IETF
(Internet Engineering Task Force)

19

E.G. HTTP Request

• If you connect to Host www.cs.ucl.ac.uk at Port 80
• And then issue (type!) in ASCII the following

message:

GET /staff/A.Steed/ HTTP/1.1
Host: www.cs.ucl.ac.uk

• And issues (type) two carriage returns
• You get …

20

…
HTTP/1.0 200 Document follows
MIME-Version: 1.0
Server: CERN/3.0
Date: Sun, 08 Feb 2009 15:25:18 GMT
Content-Type: text/html
Content-Length: 16150
Last-Modified: Wed, 21 Jan 2009 17:42:00 GMT

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" dir="ltr">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<meta name="keywords" content="A. Steed, Anthony Steed, Department of Computer
Science, University College London, virtual environments, virtual reality, computer graphics"
/>

 21

Application Protocol
Descriptions

• Often ASCII preamble with binary assets inserted at
known or marked positions

• Some messages are designed to be carried over a
reliable stream and are of unknown length (likely to
be over TCP)

• Some messages are small and it is not important if
they get lost (likely to be over UDP)

22

Common Application
Protocols

Service Full Name Short Name Port Transport
File Transfer Protocol ftp 21 tcp
Simple Mail Transfer smtp 25 tcp
Domain Name System dns 53 udp
Finger finger 79 tcp
HyperText Transfer
Protocol

http 80 tcp

Post Office Protocol
(Version 3)

pop3 110 tcp

Internet Message
Access Protocol

imap 143 tcp

Hypertext Transfer
Protocol Secure

https 443 tcp

File Transfer Protocol
Secure

ftps 990 tcp

Distributed Interactive
Simulation

dis 3000 udp

BZFlag Game Server bzflag 5154 tcp
Quake Game Server quake 26000 udp

23

Domain Name Service
(DNS)

• Maps fully qualified domain names
(narok.cs.ucl.ac.uk) to their IP addresses
(128.16.5.123)

• Is a network service, thus takes time
• Time is variable because it’s a hierarchical search
• Local DNS caches query responses for a time (e.g.

24 hours)
• Otherwise needs to query a canonical domain

24

Transport Layer
Protocols

• User Datagram Protocol (UDP)
• Send a message (datagram) and forget about it
• No guaranteed delivery
• No guaranteed ordering

• Transmission Control Protocol (TCP)
• Guaranteed, in-order stream of data from one host

to another

25

UDP

• All hosts on the Internet have an IP address
• How does the network know which program wants

it?
• You additionally need (for UDP and TCP) a port

number
• These are 16 bits numbers, so must lie in the

range 0-65535
• Some are reserved, see later

• Processes listen for incoming UDP packets
• Need to check the packet for consistency

26

TCP

• In comparison to UDP, TCP offers:
• A connection-oriented services with bi-directional

(full-duplex) communication
• Reliable transmission of messages
• Congestion avoidance, using variable rate

transmission
• In order, and non-duplicate delivery of information

• Applications add messages to an outgoing buffer
• The buffer is streamed in packets to the receiver
• The receiver reconstructs the buffer and extract

packets
 27

TCP is Bi-Directional

• Even if, logically, data only flows one way, in order
to ensure reliability, we need return data which tells
us which data has been successfully received (ACK)

• The sender must maintain the buffered data until it
receives an ACK

• ACKs can waste space if the traffic is mostly one
way!

28

TCP Fairness

• How does TCP decide when to send packets
• With UDP you call “send”!

• It sends packets within increasing frequency but
when they start going missing, it halves its rate

• There are LOTS of variants of TCP
• Protocols are often tested to see if there are TCP-

fair, i.e. if N streams share a network link they get
1/N of the bandwidth

• UDP protocols are often NOT TCP-fair, you need to
add that functionality yourself

29

Observations

• If there is lots of data to send TCP can fill up IP
packets, UDP might waste network capacity

• There are potentially lots of ACK packets in TCP
• TCP is slow to start, UDP is rapid start
• UDP protocols need to play fair when there is

congestion

• Specifically for NVEs & NGs, TCP repair is probably
redundant a lot of the time because more up to date
data has already been generated by the simulation

30

Network Layer

• The Internet is a collection of
machines that understand IP
packets

• A network routes packets
from one host to another
through routers

• In IPv4 addresses are 32 bits
in the form 128.16.13.118

• They are running out and
IPv6 is ready to be deployed

Router
Route
Table

IP Packet

IP Packet

31

IP Packets

• Key problem is what happens if links support
frames of different size
• E.G. Ethernet is 1500bytes

• The solution is that IP supports packet
fragmentation, where a large packet is broken in to
smaller ones: the end point must then reassemble
them

• Obviously try to pick a maximum transmission unit
(MTU) that avoids this

32

Bits 0 15 16 31
0-31 Version Header

Length
Type of Service Total Length

32-63 Identification Flags Fragment Offset
64-95 Time to Live Protocol Header Checksum
96-127 Source Address

128-159 Destination Address
160-191 Options (Optional)

160+
192+,
224+,
etc.

Data

IP Packet Format

33

Presenter
Presentation Notes
Figure 3.24

Link and Physical Layer

• The one we all have experience with is Ethernet,
either wired or wireless

• Our experience is that for a specific Ethernet
interface, we either need to:
• Set IP address manually
• Get an address automatically using DHCP

• DHCP is actually an application-layer protocol
• In both cases, we are making a mapping between

the MAC address of the Ethernet adapter and the IP
address

34

Basic Architectures and
Protocols

• A single connection might be established, but how
should a set of clients be connected

• Two basic models are possible
• Peer to Peer
• Client/Server

• There are various hybrids that use multiple servers

35

Consider Just Two
Machines

•What is the relationship between them?
•Peers?
•Master/slave? Client/server?
•Does one have data the other one does not?

36

Peer to Peer with Two
Clients

• Need to decide separation of responsibilities
• E.G. Each client simulates one player’s actions

• Need to communicate sufficient information to the
other that they can get both get the same state

• Assumes that they have the same information other
than real-time input

• Can be achieved simply with sending input to each
other

37

Doom ClientA

Read
Input

Rendering

Receive
Input

Simulate

Doom ClientC

Read
Input

Rendering

Receive
Input

Simulate

For Example DOOM

38

Presenter
Presentation Notes
Figure 11.6

Master Slave with Two
Clients

• One process calculates results of input and
distributes it to the others

• Necessary if simulation is non-deterministic
• Many examples. E.G. Fable II from Lionhead/

Microsoft Games Studio

39

Slave

Read
Input

Rendering

Master

Read
Input

Rendering

Receive
Input

Simulate

For Example

40

Presenter
Presentation Notes
Figure 11.6

More Clients

• The same issues exist:
• Who is responsible?
• Who has the necessary data to evolve the state?
• Who can be trusted to evolve the state?

41

Peer to Peer Architecture

Client

Client

Client
Client

Client

42

Client-Server
Architecture

Server

Client

Client
Client

Client

43

Implications

• Peer to Peer
• Data need to be sent multiple times on the

network links might vary in bandwidth & latency
• Clients need to manage multiple connections

• Client Server
• The Server is a bottleneck
• Clients manage one connection
• Server can have privileged data, and can probably

be trusted
• Latency is higher
• Synchronization is easy
 44

Hybrid Architectures

• Multiple servers serving different regions
• Multiple service types & service layers

Server pool

45

Which Protocol to Use?

• If there is an application layer protocol that is
appropriate use that!

• UDP
• Good for fast changing data, and initial start

update
• Good for position information

• TCP
• Good for reliable data, and bulk data transfer
• Good for data assets and critical information such

as score

 46

Which Protocol to Use?

• Some people implement “reliability-lite” on top of
UDP

• Other platforms mix UDP & TCP
• There are many catches with this

• Many platforms support application layer protocols

such as HTTP or FTP for bulk asset transfer

47

TCP is Bi-Directional

• Even if, logically, data only flows one way, in order
to ensure reliability, we need return data which tells
us which data has been successfully received (ACK)

• The sender must maintain the buffered data until it
receives an ACK

• ACKs can waste space if the traffic is mostly one
way!

48

TCP Fairness

• How does TCP decide when to send packets (with
UDP you call “send”)?

• It sends packets within increasing frequency but
when they start going missing, it halves its rate

• There are LOTS of variants of TCP
• Protocols are often tested to see if there are TCP-

fair, i.e. if N streams share a network link they get
1/N of the bandwidth

• UDP protocols are often NOT TCP-fair, you need to
add that functionality yourself

49

Observations

• If there is lots of data to send TCP can fill up IP
packets, UDP might waste network capacity

• There are potentially lots of ACK packets in TCP
• TCP is slow to start, UDP is rapid start
• UDP protocols need to play fair when there is

congestion

50

Summary

• NVEs & NGs have a long history, but it is in the last
10 years that they have really taken off

• The Internet is a best effort network where
applications need to deal with latency & loss

• There are various architectures that support NVEs &
NGs
• Client server versus peer to peer
• As much a question of delegation of responsibility

as connectivity
• TCP v. UDP debate

 51

Introduction to Networked
Graphics

• Part 2 of 5: Requirements and
Constraints

52

Overview

• Goal:
• To give an overview of the performance of the

Internet and how it affects how NVEs can work.

• Topics:
• Internet performance
• Why are all types of networked graphics non-

standard networking applications?
• Requirements on consistency
• Implications for latency and scalability

53

Internet performance

• Latency (Round Trip Time)
• Time to transmit data (speed of light, modems)

• Jitter
• Routers insert bandwidth

• Bandwidth (Capacity)
• Broadband for WAN, Ethernet for LAN?

• Loss (Congestion, Reliability)
• Routers drop packets, links do go down

• Not fully connected
• Network address translation

3

54

Latency

• Sources of latency
• Speed of copying to link (e.g. modem)
• Speed of transmission in link (e.g. speed of light)
• Client scheduling (when packets arrive compared to

the commitment to render the effect)
• Server scheduling (e.g. server updates at a fixed

frequency)

55

Latency
Client Application

Network

Link

Physical

Input Simulation Rendering Device Display

Server Application

Simulation

Physical

Link

Network

56

Jitter

• Jitter is change in latency
• Jitter is caused by the technology of the Internet

• Wired routers
• Wireless access

• Two problems:
• Routers are almost certainly capacity bound and

demand on routers changes rapidly
• Some link layers (notably wireless) are shared

medium so transmitters will conflict

57

Latency and Jitter :
Network Perspective

Sender Receiver Internet

Regular Timing Jittered Timing

Network Latency

Transmission Delay : time it takes to put a packet on the outgoing link
Propagation Delay : time it takes for the packet to arrive at destination

58

Bandwidth

• Bandwidth is a shared resource
• At local level we shared the wireless or share a home or

office router
• Can be much more outbound or requested inbound

traffic that the local network can access
• However probably, the bottleneck is likely to be

upstream to our ISP
• ISP have intra-ISP (and “senior” ISP) bottlenecks
• The destination site (BBC, Facebook) might have

inbound capacity limits

59

Loss

• Loss is good
• Loss is the Internet’s way of protecting itself from

overload
• Principally caused by congestion: a router can’t cope

with the throughput OR it can’t copy all incoming traffic
on to the desired outgoing route

• End to end protocols need to detect loss
• TCP does this for you

• Protocols need to rate limit because not doing so will
likely make the situation worse

 60

Loss : Network Perspective

Handler

Routing
Table

Input Queues Output Queues

Loss

61

Presenter
Presentation Notes
Queue is full, packet is dropped

Bandwidth and Latency:
Wired

• Much literature in the area is based on 56kbps modems
…

• Broadband is now common in homes
• 500Kbps – 1Gbps
• Depends on technology (twisted-pair v. optical)

• Offices have always been different
• 1Gbps Ethernet, switched (not shared) is common
• Outbound varies enormously

• Latency is good

62

Bandwidth and Latency:
Wireless

• 2G
• Don’t try, run web or sms-based applications!

• 3G / 4G
• 3G: ~2.4Mbps
• 4G: 100Mbps – 1Gbps

• 802.11a-n
• b: 11 Mbps
• n: 54 Mbps

• Be skeptical: its shared bandwidth
• Latency is moderate-poor: its shared bandwidth

63

Bandwidth Availability

Average connection speed by country, Q1 2011. Based on Akamai, State of the
Internet, 4(2)

Rank Country Mbps Q1, 2011
- Global 2.1
1 South Korea 14.4
2 Hong Kong 9.2
3 Japan 8.1
4 Netherlands 7.5
5 Romania 6.6
6 Czech Rep. 6.5
7 Latvia 6.3
8 Switzerland 6.2
9 Belgium 6.1
10 Ireland 5.6
…
14 United States 5.3

64

Effect of distance on
throughput

Based on (Leighton, 2009)

Distance from
Server to User
(miles)

Network
Latency (ms)

Typical Packet
Loss (%)

Throughput
(Mbps)

:Quality

4GB DVD
Download Time

Local:
<100

1.6 0.6 44:HDTV 12min

Regional:
500-1,000

16 0.7 4:Almost DVD 2.2hrs

Cross-continent
~3,000

48 1.0 1:Almost TV 8.2hrs

Multi-continent
~6,000

96 1.4 0.4:Poor 20hrs

65

Why NVEs are unique

• NVEs are not “standard” network applications
• Unlike video/audio streaming, or web browsing, in an

NVE or NG client, networking is NOT the main activity:
rendering probably is

• Some information changes very quickly and smoothly
• E.G. player positions

• Can incorporate other web-enabled media
• Audio/video

• Often require bulk download of assets
• NVEs mix different types of requirement

66

Why NVEs are unique

• Internet is built to move bulk traffic, but not for end to
end speed

• You can’t reserve bandwidth (except in certain
situations)

• Latency and bandwidth will vary
• Streaming for audio and video will buffer significantly

and loss is not important
• For NVEs loss can be critical, but also buffering is

usually not appropriate

67

Consistency : System
Perspective

• C1 : Local changes replicated at each site

• C2 : Simulation should not diverge over time

• C3 : Casual order of events should be preserved

• C4 : Temporal and motion characteristics of events

should be preserved

68

Consistency : User
Perspective

• C5 : The joint perception of events should be plausible

• C6 : The outcome of the events should be fair

• C7 : The system should preserve the users’ intentions

69

Presenter
Presentation Notes
Given latency, bandwidth, loss and potential unreachability ..
Wish to provide a consistent experience to the users

ClientA ClientB

CarA
A=1, V=0

CarB
A=1, V=0

CarA
A=1, V=1

CarA
A=1, V=2

CarA
A=1, V=3

CarB
A=1, V=1

CarB
A=1, V=2

CarB
A=1, V=3

CarA CarB CarA CarB

Impact: Timing Activity
Onset

70

Presenter
Presentation Notes
Here the impact of latency is quite obvious. If two players both have the same reactions to the go signal in a race, then they’ll suddenly leap ahead in the race. This is because the acceleration message from their competitor takes time to arrive.

Can’t apply
open state

Door is Open
& Locked

ClientA ClientB

Lock Door Open
Door

Door is Closed
& Unlocked

Door is Closed
& Locked

Door is Closed
& Unlocked

Door is Open
& Unlocked

Impact: Inconsistent
State Changes

71

Presenter
Presentation Notes
Here the latency causes an inconsistent state that must be resolved.

ClientA ClientB

Server

Shooter
(PlayerA)

Target
(PlayerB)

Impact: Fireproof
Players

72

Presenter
Presentation Notes
In this figure each column represents a different computer. Each row is a different time. PlayerA see PlayerB at a slight delay and vice versa. Thus PlayerA shoots at PlayerB in the first time step and then expects that shot to hit in the next time step. The server receives the shoot message slightly delayed. By the time the server receives the shoot message, a message from PlayerB has arrived at the server that indicates that PlayerB has moved out of the way. In this case, the server just uses the current state as it sees it to make a decision. Thus PlayerB gets to live and PlayerA gets annoyed because PlayerB appears to be fireproof because at their site, the explosion hit but they carried on.

ClientA ClientB

Server

Shooter
(PlayerA)

Target
(PlayerB)

Impact: Shooting Around
Corners

73

Presenter
Presentation Notes
This figure is almost the reverse of the previous figure. PlayerA is a smarter player who knows to fire in advance. Thus at the server, PlayerA’s shoot message hits PlayerB. PlayerB thinks they are safe because they don’t see the shoot message, in fact the shoot message arrives at the same time as the explosion, but the shoot message indicates that PlayerA shot behind PlayerB. PlayerB gets annoyed because to them it appears that PlayerA can shoot around or through corners.

Latency Acceptability

Several tasks plotted on the Precision/Deadline axes. Based on Claypool and
Claypool (2006).

74

Presenter
Presentation Notes
The latency requirements thus depend critically on the task. Shooting a weapon in an FPS has tight deadlines: it should be relayed as soon as it can. Claypool and Claypool add another axis which is how accurately the event needs to be represented. This is related to latency because the temporal variance in an event can lead to a different outcome than was expected. However some events (such as shooting) have a natural “imprecision” so the temporal variation doesn’t matter too much. Thus the fact that you missed with a sniper rifle might be because the shot was inaccurate, or the bullet travelled slowly. A rocket is a slower projectile, but also its damage is less easy to predict, so it doesn’t need to be delivered with such precise timing.

Bandwidth
Requirements

• Obviously depends on activity
• Downloading models
• Sending small, game specific commands
• Rate of command sending (very sensitive to type of

game)
• Typically:

• FPS & real-time send commands at fixed rate (e.g. 20
Hz)

• RTS and other send commands at issue rate (e.g. up
to 5Hz with StarCraft)

75

Packet Rates

Server packet rates and sizes for three FPS games, from Feng et al.
(2005)

Game Packet Rate
In (pps)

Packet Rate
Out (pps)

Packet Size
In (bits)

Packet Size
Out (bits)

Day of
Defeat

421.85 341.92 41.73 162.78

Medal of
Honor: Allied
Assault

379.67 294.10 50.10 291.71

Unreal
Tournament
2003

469.89 123.43 27.92 117.74

76

Packet Rates

Client packet rates and sizes for four MMORPG games, from Molnár & Szabó
(2008)

Game Packet Rate
In (pps)

Packet Rate
Out (pps)

Packet Size
In (bytes)

Packet Size
Out (bytes)

World of
Warcraft

6.39 6.21 220.25 71.12

Guild Wars 3.76 3.83 183.19 57.78

Eve Online 0.84 0.86 261.18 64.41

Star Wars
Galaxies

12.26 6.34 156.47 77.25

77

Packet Rates

Bandwidth of Second Life for different region types and different modes of
travel. From Kinicki & Claypool (2008)

Zone
Type

Direction Standing
(kbps)

Walking
(kbps)

Teleport
(kbps)

Flying
(kbps)

Dense &
Crowded

S-C 192 703 1164 877
C-S 15 31 33 31

Dense &
Deserted

S-C 141 278 445 821
C-S 30 46 36 52

Sparse &
Deserted

S-C 10 31 448 27
C-S 13 74 36 73

78

Network Address
Translation

• The biggest hiccup for any peer to peer networking
• Many (most?) computers on the Internet are behind a

NAT
• We are behind a NAT

• 192.168.14.32 is in a reserved IP address domain
• Your home network probably runs a NAT

• You have one address from your ISP
• You might pay to have this be a static IP address

• NATs complicate

79

Comments on NATs

• Many types of NAT, port static, symmetric, etc.
• You can bypass NATs with “hole-punching” techniques
• Many game middleware have a function for this BUT

• Game providers need to provide a rendezvous service
• Need a packet relay service when it fails

• For a peer to peer game, middleware tries to assess
which client has best connectivity

• NATs often are combined with the functionality of
firewalls whose role is to protect the LAN from malicious
incoming traffic

80

Summary

• Broadband accessibility is growing
• NVEs and NGs tend to demand a lot from the network

• Some games have low latency requirements
• Packet rates vary enormously depending on the

game type
• The immediate impact of Internet performance can lead

to de-synchronization and player frustration
• The Internet is not symmetrically connected

81

Introduction to Networked
Graphics

• Part 3 of 5: Latency

82

Overview

• Goal:
• To explain how latency impacts the decisions of

how to ensure consistency. Latency implies that
clients cannot all act the same way because they
don’t have consistent information.

• Topics:

• Synchronising state with latent communications
• Playout delays, local lag
• Extrapolation and dead reckoning

83

Naïve (But Usable)
Algorithms

• Most naïve way to ensure consistency is to allow
only one application to evolve state at once

• One application sends its state, the others wait to
receive, then one proceeds

• Is a usable protocol for slow simulations, e.g. games
• Not that slow – moves progress at the inter-client

latency
• Potentially useful in situations where clients use

very different code, and where clients are “un-
predictable”

84

Lock-Step (1)

• If all clients can deterministically on the input data

• Then a more useful form lock-step for NVEs & NGs
is that everyone exchange input, proceed once you
have all the information from other clients

• But for many simulations, each step is only
determined by user input, so can just communicate
input

85

DOOM 1 – iD Software
 Doom ClientA

Read
Input

Rendering

Receive
Input

Simulate
Doom ClientB

Read
Input

Rendering

Receiv
e

Input

Simulate

Doom ClientC

Read
Input

Rendering

Receive
Input

Simulate

86

Lock-Step (2)

• If the simulation is complex or non-deterministic,
use a server to compute the state

• Clients are locked to the update rate of the server
• Note that own input is delayed

87

Quake ClientA

Read
Input

Rendering

Quake Server

Receive
Input

Simulate

Quake ClientB

Read
Input

Rendering

Mouse
Keyboard

Draw
Lists,
Game
State

Mouse
Keyboard

Draw
Lists,
Game
State

Quake 1
(Pre-QuakeWorld)

88

Presenter
Presentation Notes
Figure 11.5

Optimistic Algorithms

• Conservative simulations tend to be slowed paced
• Optimistic algorithms play out events as soon as

possible
• Of course, this means that they can get things

wrong:
• They may receive an event that happened in the

past
• To fix this they rollback by sending UNDO events
• For many simulations UNDO is easy (just move

something)

89

ClientA ClientB

Lock
Door

Open
Door

ClientC

Add
Zombies

Remove
Zombies

Close
Door

t0

t1

t2

t3

t4

90

Presenter
Presentation Notes
Here two clients make events very close in time. ClientB doesn’t know that ClientA locked the door, so opens it. ClientC see the open door and releases zombies. However the temporally correct order would prevent the door opening. Thus ClientB has to undo its command. This then forces ClientC to do an undo too.

Client Predict Ahead

• A form of optimism: assume that you can predict
what a server (or another peer) is going to do with
your simulation

• Very commonly applied in games & simulations for
your own player/vehicle movement

• You assume that your control input (e.g. move
forward) is going to be accepted by the server

• If it isn’t, then you are moved back Note this isn’t
forwards in time but a prediction of the current
canonical state (which isn’t yet known!)

91

ClientA Server

P0 P1

Move
P0 to P1

Move?
P1 to P2

Move?
P2 to P3

Move?
P3 to P4

Move?
P0 to P1

Move
P1 to P2

Move
P2 to P3

P2 P1

P3 P2

P4 P3

P0 P1

P2 P1

P3 P2

92

Presenter
Presentation Notes
Figure 11.11

ClientA Server

P0 P1

Move
P0 to P1

Move?
P1 to P2

Move?
P2 to P3

Move?
P0 to P1

FailMove
P1 to Q1

FailMove
P1 to Q1

P2 P1

P3 P2

Q1

P0 P1

Q1 P1

P3 P2 Q1

93

Presenter
Presentation Notes
Figure 11.12

Extrapolation Algorithms

• Because we “see” the historic events of remote
clients, can we predict further ahead (i.e. in to their
future!)

• This is most commonly done for position and
velocity, in which case it is known as dead-
reckoning

• You know the position and velocity at a previous
time, so where should it be now?

• Two requirements:
• Extrapolation algorithm: how to predict?
• Convergence algorithm: what if you got it wrong?

94

Dead Reckoning:
Extrapolation

• 1st order model

• 2nd order model

95

When to Send Updates

• Note that if this extrapolation is true you never need
to send another event!

• It will be wrong (diverge) if acceleration changes
• BUT you can wait until it diverges a little bit before

sending events
• The sender can calculate the results as if others

were interpolating (a ghost), and send an update
when the ghost and real position diverge

96

1st Order Model

97

2nd Order Model

98

Convergence Algorithm

• When they do diverge, you don’t want the receiver to
just jump: smoothly interpolate back again

• This is hard:
• Can linearly interpolate between old and new

position over time, but vehicles don’t linearly
interpolate (e.g. could mean slipping or even
going through obstacles)

99

 Blending between the old ghost and
new ghost

over several frames

Convergence Appears as
Sliding Motion

100

Interpolation

• Extrapolation is tricky, so why not just interpolate?
• Just delay all received information until there are

two messages, and interpolate between them
• Only adds delay equal to the time between sending

packets

101

Interpolation & Playout
Delays

• Extrapolation is tricky, so why not just interpolate?
• Just delay all received information until there are

two messages, and interpolate between them
• Note that jitter is not uniform, you need to be

conservative about how long to wait (if a packet is
late you have no more information to interpolate, so
the object freezes)

• NVEs and NGs thus sometimes use a playout delay
• Note that if you use a playout delay on the clients

own input, then all clients will see roughly the same
thing at the same time!

102

t0 t1 t2 t3

Interpolate
P0→P1

Maximum latency

P0 P1 P2 P3

Playout delay

Sender

ClientA

ClientB

Playout Delay

103

Sender Receiver

P1

P2

P3

P4

t1

t2

t3

t4

104

Presenter
Presentation Notes
Using a playout delay and linear interpolation, here we see that the receiver can interpolate the position of the sender’s entity. From t2 to t3 the receiver is moving the entity from p1 to p2. In practice the playout delay might be longer to accommodate more jitter or latency.

Non-Linear Interpolation

• Need to consider several aspects
• Object movement is not linear, so could use quadric,

cubic, etc. by keeping three or more updates
• Note that this causes more delay
• However, if update rate is fast, the trade off is that

movement is apparently a lot smoother

105

Sender Receiver

P1

P2

P3

P4

t1

t2

t3

t4

t5

t6

Non-Linear Interpolation

106

Presenter
Presentation Notes
Here we use quadric interpolation. You need to have three points in order to interpolate. Thust at t4 the receiver can start to interpolate between the positions received from sender at t1 and t2. When they reach t5, they will be showing the position of the sender at t2

Summary

• You can’t beat latency, so you need to deal with the
consequences

• Over LAN you can just do a lock-step or simple
synchronisation scheme
• Server can calculate all behaviours

• Over a WAN you can’t live with the implied delays,
so its comes to use optimistic schemes

• Alongside that, one might delay playouts and
interpolate historic events to ensure that every site
see a similar state at the same time.

107

Introduction to Networked
Graphics

• Part 4 of 5: Bandwidth
Management & Scalability

108

Overview

• Goal:
• To explain how bandwidth limits cause scalability

problems. In non-trivial environments its simply
not possible to communicate all states to all
parties.

• Topics:

• Management of awareness
• Interest specification
• Server partitioning

109

Interest Specification

• Users are not omniscient beings and thus they can’t be
interested in every event in a non-trivial scene
• Plausibility needs to be maintained

• Systems thus model the user’s awareness so that they
can only deliver a conservative approximation to the
necessary events so that the user’s illusion of a shared
virtual environment is maintained

110

Awareness Categories

• Primary awareness
• Those users you are collaborating with
• Typically near by, typically highest bandwidth

available
• Secondary awareness

• Those users that you might see in the distance
• Can in principle interact with them within a few

seconds by movement
• Tertiary awareness

• All other users accessible from same system (e.g.
by teleporting to them)

111

System Goals

• Attempt to keep
• overall system utilization to a manageable level
• client inbound bandwidth at a manageable level
• client outbound bandwidth to a manageable level

• To do this

• Have clients discard received information
• Have the system manage awareness
• Have clients generate information at different

levels of detail

112

Managing Awareness

• A complex distributed problem
• Users’ expressions of interest in receiving

information balanced against system’s and other
clients’ capabilities

• Awareness scheme is partly dependent on the
networking architecture, but most awareness
management schemes can be applied to different
architectures

• Spatial layout is the primary moderating factor on
awareness

113

Message
Filtering Application

Filter on
Receive

Network
Routing

Application

Filter on
Send

Network
Routing

Message
Routing

Network
Routing

Message
Routing

Network
Routing

Network
Routing

Filtering traffic

114

Presenter
Presentation Notes
Filtering traffic can be done at the sender or the receiver or in between. Recall that the end to end principle means that the network doesn’t know what is in the packets. However in practice there are more sophisticated network protocols (multicast, etc.) that provide an application-level network where client processes route information. These can easily cull or change packets. The very simplest case of this is having a server that doesn’t relay packets to connected clients that can’t see them.

Spatial Partitions

• Global Partitions
• Static Grid
• Hierarchical Grid
• Locales

• Local Partitions
• Aura / nearest neighbours
• Visibility

115

Global Partitions:
Static Cells

 • A static partition in to
regular cells

• Players only
communicate with
other players in the
same cell

116

Global Partitions:
Static Cells

 • A slightly more
sophisticated
partitioning

• Each player receives
information from 7
nearest cells

• As they move they
change the cells they
receive from

• No longer abrupt
changes across borders

117

Global Partitions:
Irregular

Two irregular partitionings

118

Presenter
Presentation Notes
Two irregular partitionings of a virtual environment. Left: A town map partitioned in to four zones by an irregular partition so that each building is contained within one map. Right: Six rooms connected by doorways partitioned in to three zones. Each zone is colored differently. Because they are defined by connectivity, the dark grey zone can overlap the mid-gray zone

Spatial Partitions: Auras
/ Nearest Neighbours

• Aura focus nimbus model from Benford, Greenhalgh, et al.
• Network connections are set up if users are close to each

other and “looking” or “listening” in their direction.
119

Spatial Partitions: Local
Visibility

120

Presenter
Presentation Notes
Examples of communication relationships between clients in a densely-occluded environment. Left: User3, being in CellB and CellE, can potentially see all the other users. Right: None of the users can see any of the others.

Spatial Partitions: Local
Visibility

121

Presenter
Presentation Notes
This is a view of a visibility analysis of a Quake2 level (q2dm4). It shows as grey squares each player. Lines join each pair of players that can see each other based on the cell to cell visibility graph.

Practical Systems

• A system such as Second Life™ utilizes a regular
grid layout with one server per region
• Regions are laid out on a mostly-contiguous map

• However is a game session, far too many players
want to access a specific game content

• A game shard is a complete copy of a system, you
connect to one system and see one player cohort

• A game instance is similar, but is replication of a
particular area (e.g. dungeon) to support one group
of players within a cohort. Often created on demand.

122

ServerC

ServerC

Master
Server

ServerA

New
Process

1 2

3

ServerB

Game Shards

123

Presenter
Presentation Notes
Figure 12.1

ServerD

ServerC

Master
Server

ServerA

New
Process

1 2

3
ServerB

Game Regions

124

Presenter
Presentation Notes
Figure 12.2

ServerC ServerC ServerC

Master
Server

ServerA

1 2

3
ServerB

ServerD

New
Process 4

ServerC

Game Regions &
Instances

125

Presenter
Presentation Notes
Figure 12.3

Summary

• Scalability depends on a choice of awareness
mechanism
• Requires a logical scalability mechanism based

on what is most relevant for the users
• Needs to consider bottlenecks at several points
• Most common strategy is to partitioning users

126

Introduction to Networked
Graphics

• Part 5 of 5: Application Support &
Recent Research

127

Overview

• Goal:
• To explain some other application issues and

areas of recent research.

• Topics:
• Security and secure networks
• Streaming
• Cluster graphics
• Thin clients
• Peer to peer

128

ServerX

Client
B

Client
A

Client
C

ClientC may be interfering with traffic

ClientA may be running
Compromised code

ClientB may be colluding
with ClientA

ServerX may have
exploitable bugs

Overview of Security
Problems

129

Presenter
Presentation Notes
Figure 13.1

Compromised Clients

• A pervasive problem in gaming
• E.G. notable problems with PSNet games after the

PS3 master key was found allowing modified code
on the PS3

• For console gaming, hardware vendors try to lock
down the hardware so only verified programs can
run

• For PC gaming, various detection techniques such
as PunkBuster that detect malicious software
• Countermeasure are typically ahead of amateur

cheats but not professional cheats

130

Traffic Interference

• Once data is on the network it is public
• Various attacks

• Packet injection
• Packet hiding
• Latency asymmetry

• Some are mitigated by secure networks
• Some servers specifically support secur

131

Exploitable Server

• Users need to trust server, user hosted games are
not accepted for ranking tournaments or cash
games

• Server might be have a loophole
• E.G. Dupe bugs

• Denial of service attack

132

User Collusion

• A very difficult social situation to counter
• E.G. Chip dumping

• With this and all other security problems monitoring
of exceptions is important
• Players being too skillful
• Unlikely plays
• Game inventory inflation

133

Virtual Private Networks

• Now very common for corporations and universities
• Three reasons

• Protection of internal services
• Giving a different “appearance” to the outside

world (e.g. ACM Digital Library)
• Security of access from anywhere (no need to

trust local network)
• The very easiest way to protect a NVE or NG is to

require someone go on a trusted VPN first
• Incurs latency/bandwidth overhead of routing all

information to the VPN access point first
134

ClientA

ServerX

ServerY

IP

IP

Virtual Private Networks
(VPNs)

135

Presenter
Presentation Notes
ClientA can’t contact ServerY directly. Probably a firewall prevents access.

ClientA

ServerX

ServerY VPN
Gateway

IPSec

IP

IP

VPNs and IPSec

136

Presenter
Presentation Notes
ClientA connects to a VPN using IPSec (IP Secure). All traffic between them is encrypted. ClientA can now reach ServerY, but additionally to any other server, it looks as if they are on the LAN that includes ServerY.

Different Uses of
Streaming

• Streaming Protocols
• Streaming Animations
• Streaming Geometry (i.e. incremental download)

137

Streaming Protocols

• Audio/video transport is well developed on the
Internet

• However “well developed” means lots of competing
solutions

• Several plug and play libraries
• Real-Time Protocol an extension of UDP to support

streaming (though not all streaming protocols use it)
• Can get RTP compliant libraries which enables

streaming and receiving
• E.G. AccessGrid, some VoIP solutions

138

Bits 0
15

16
31

0-31 Version, config, flags Payload Type Sequence Number

32-63 Timestamp

64-95 Synchronisation Source (SSRC) Identifier

96+ Contributing Source (CSRC) Identifiers (Optional)

96+ Header Extensions (Optional)

96+ Payload Header

128+ Payload Data

Real-Time Protocol

139

Presenter
Presentation Notes
Figure 13.4

RTP Payloads

140

Presenter
Presentation Notes
Table 13.1

Streaming Animations

• We have already looked at streaming positions and
orientations of objects

• However, a large class of objects are humans or
animals (or aliens) which deform

• Typically modeled from the graphics side as a
skeleton

• Animation is controlled by indicating which motion
the character is in and the keyframe in that motion

• Because motion is continuous (e.g. motion capture)
information might only need to be sent > 1s

141

Examples of Keyframe
Animation

142

Presenter
Presentation Notes
Figure 13.5

Streaming Geometry

• Many NVEs use very large worlds which need to be
downloaded because user modifiable or just vast

• System needs to determine which parts of the
models should be transferred

• Typically done in a priority order from the viewpoint
of the client, e.g. in increasing distance order

• Two ways of doing this
• Client-pull
• Server-push

143

Client Server

Position
X

Send AHigh,
BLow

Send BHigh,
CLow

Position
Y

Position
Z

Send DLow,
ELow

Server Push

144

Client Server

Fetch
Index

Send Index

Send BHigh,
CLow

Fetch
AHigh, BLow

Send AHigh,
BLow

Fetch
BHigh, CLow

Client Pull

145

Clusters

• Cluster graphics is a particular concern of Virtual
Reality system designers

• One GPU card generates one or two video to get
maximum throughput, but we might need 4+
displays

• Need to synchronize graphics at two levels
• Synchronize graphics state on input to rendering
• Need to synchronize video output

146

Application

Scene Graph

Graphics Drivers

Modifies scene
graph

Render
traversal

Application

Scene Graph

Graphics Drivers

Copy scene
graph

Synchronize
applications

Copy render
commands

Layers of Sharing
Graphics

147

Presenter
Presentation Notes
Figure 13.9

Tools

• Copy render commands
• E.G. Chromium – stream OpenGL commands over

TCP/Ethernet, or other non-IP-based
interconnects

• Copy scene graph
• E.G. OpenSG – stream an edit change list for a

scene-graph
• Synchronize applications

• E.G. VRJuggler – isolate all input in to one (or
more) C++ classes that can serialize themselves
to the network, stream the resulting serializations.
 148

Thin Clients

• Might be considered “backwards” but graphics
architectures go in circles, so why not networked
graphics architectures

• Render the graphics on a server, stream the results
as video

• Recent consumer examples: OnLive, OToy, GaiKai
• However many OS vendors have such a

functionality for supporting thin clients over LANs

149

Thin Clients

• Very small installable on client, client doesn’t need
to be high-powered (hence thin client)

• Stream to server your controller input
• Stream back video (e.g. 720p from OnLive)
• Server runs both game client and game server

(actual architectures not revealed)

150

Thin Client Pros and
Cons

• Pros
• Very small installable (e.g. only Flash for GaiKai)
• Thin client can be low power (e.g. Netbook)
• No need to download/install very large game

assets

• Cons
• Latency
• Constant high bandwidth use compared to normal

game network traffic

151

Peer to Peer

• A live challenge: how can peer to peer networks
scale up to very large numbers

• Key to this is how to distribute awareness
management

• A secondary issue is how to “bootstrap”: how does
a user find their local users?

152

Larger Peer to Peer
Context

• Enormous work in networking community on
generic large scale peer to peer databases

• Key technologies
• Distributed hash tables: a way of storing data sets

across multiple hosts but ensuring fast (O(logN))
access to any data item

• Application-level routing: a mechanism for
supporting group peer to peer communication
without any underlying network support

153

Within a NVE Context

• Very active line of research
• For example, can one maintain a

set of closest peers with
something similar to a Voronoi
Tessellation?

• If peers can identify their Voronoi
Cell, they can identify their
neighbours.

• New clients can walk the cells to
get to find their true neighbours

154

Summary

• Plenty of tools and options to support your NG or
NVE project

• Security is a big challenge if you can’t get your
users on to a VPN

• Other facilities require more infrastructure and are
very domain specific

• Plenty of research issues: thin clients being a wild
card at the moment

155

Case Study: BurnoutTM Paradise
The Burnout™ series of racing games is developed by Criterion Games, who were acquired by
Electronic Arts in 2004. The Burnout™ games are renowned for their focus on high-risk and high-
speed driving and spectacular crashes. The games have garnered very positive critical acclaim and a
number of awards. BurnoutTM Paradise is the fifth game in the series. It was originally released for
Xbox 360 and PlayStation 3 in January 2008. Since then several online updates have been made
available, and a PC version has been released.

Whilst the first four games in the series had a traditional format based on races or other events
that could be selected from a front-end menu, the BurnoutTM Paradise game format is very novel.
Players drive around a large open world (Paradise City) and start races and events by stopping at traffic
lights and revving their engines. The race then starts from that location. This has two quite novel
implications: players can access most events right from their entry to the game and the player can turn
up in any car that they have access to, and finally, and perhaps most controversially.

Much of the gameplay focuses on the causing of crashes. Part of the fun and reward is “taking
down” other players’ vehicles or non-player vehicles by causing them to crash. There are several types
of event, including straight-forward races, road rage where the player must takedown a target number
of vehicle, marked man where the player must avoid being taken down, stunt runs which require the
player to sequence together jumps and stunts without crashing, and burning routes which are timed
challenges using specific vehicles. All of these event types, with the exception of the burning routes are
available in multiplayer mode. In addition there is a sequence of challenges that require cooperation or
competition amongst the players.

Multiplayer mode, called Online Freeburn in the game, supports eight players at once. The player
can drop in and out of multiplayer mode whilst driving around Paradise City. They enter the
multiplayer mode in the same location, and may be in the thick of the action, or on the other side of the
city. Also, and importantly, there may or may not be an event or challenge already in progress. If there
is, then the new player doesn’t join the event, but can drive around and observe until the next event
starts.

SCREENSHOTS FROM THE PC VERSION OF BURNOUT™ PARADISE

Car Mechanics

The basics of the multiplayer mode are the distribution of the players’ cars. Burnout™ Paradise uses a
peer-to-peer model, where each player sends updates to each other player. The game runs at a fixed
rate (50 or 60Hz), and the player sends out updates in a round-robin manner, in that each frame they
send an update to at most one of the other players. They actually send approximately 6 packets to each
other player each second. This means that each client must animate the other players’ cars based on
updates 160ms apart. Latency between clients becomes problematic when it gets large, for example at
over 500ms, but this is very rarely seen.

Burnout™ Paradise involves racing at speeds of up to 200mph and it is important to preserve the
impression of racing neck and neck through complex landscapes. However the update rate poses a
challenge: if packets arrive every 160ms: the vehicles may have travelled 15 meters between updates.

156

Furthermore the latency of the link means that for every ms latency, the vehicle could have travelled
almost 0.1m in the game. Early prototypes of the game solved this problem by playing out game state
at a fixed play out delay, meaning that even in the presence of dropped updates, the simulation was
always consistent. However, for Burnout™ Paradise, with its emphasis on close racing and trying to
push rivals in to the scenery, this wasn’t acceptable. Thus each client extrapolates the last known state
of the other cars. Each player update message contains the car position and velocity, but also the
current control input. (acceleration, braking, drifting, etc.). If the control input doesn’t change, then the
extrapolation will be exact, however control input will frequently change during these periods. Thus
whilst extrapolating the state of the other cars, the client enforces some local visual and physics
consistency: player cars are moved around static scenery and traffic. Each client is completely
authoritative about its own car, and thus other clients can’t force it to crash in to their own car or other
scenery. Each client takes the forces generated by the other cars and integrates them. This means that if
you nudge another vehicle you may notice their response is slightly delayed, but your own car’s
response is actually under a physics simulation with car roll and momentum, so your own car’s
response is instantaneous.

Extrapolation of last known state may lead to consistency repairs later: for example the local
extrapolation may give the impression that the other player missed an obstacle, but actually they hit it.
Thus the collision would have happened in the past at the local side. The local client, given the time in
the past when the collision did happen, can accurately calculate where the other player car now is. The
system doesn’t try to converge the extrapolated non-collision state and the new state with collision, it
just switches to the latter. In practice, cars carry a lot of forward momentum through crashes, crashes
are so complex and the game moves so quickly, that this isn’t noticed too frequently.

Paradise City is full of traffic, with thousands of vehicles touring the city or parked on the road-
side. Any traffic is potentially collideable. Furthermore, collisions and crashes are under the control of
a physics simulation. At first glance this means that enormous amounts of state must be shared between
the players. However, two implementation strategies avoid the need for large state synchronization: the
traffic is actually deterministic depending on the game time, and the physics engine is completely
deterministic. Thus as each player drives around the city, the non-player traffic is automatically
consistent, as long as the players’ game time clocks are synchronized. To synchronize any non-player
vehicles that have been hit, the clients only need to send the initial collision itself, that is the velocity
and direction of impact and status of the cars, and then each client can evolve the state, including
further collisions. Each player is responsible for the collisions that they themselves cause with non-
player traffic.

Thus in order to synchronize the main state of the game, in addition to their own car’s status and
control input, each frame they each player needs to send the collision descriptions (i.e. collision time
and contact specification) for any collisions that they are responsible for. The player can easily be
responsible for 10 collisions and thus this can comprise a large part of the data. However, it only needs
to be sent once to each peer. The data sending rate of a client is thus kept to approximately 8-9kbps.
The networking uses UDP because there is little point resending lost packets containing vehicle
dynamics which will have changed before the transport layer triggers the resend..

Aside from the control and collisions, other items that must be sent peer to peer are car status
(damage, boost, etc.), camera shots (when you takedown a rival you can send a camera shot to brag),
any score multipliers and achievements, and any takedown notifications. In total there are over 50
pieces of game state that might be need synchronizing. Some things are completely unsynchronized,
including the state of any collideable street furniture.

Game Phases and Time Synchronization

The majority of the network packets are concerned with creating a consistent city full of traffic. Online
Freeburn provides events and challenges for players to undertake. The game thus goes through a circle
of states. In building the networking reliably synchronizing the progression of these phases, and
dealing with all conditions of players not getting certain information, or disappearing from the network
was a big challenge. The main states are illustrated in the figure below which shows circular timelines
for two players in a race situation. Both players start in the “free driving” state. The host is one
nominated player who is allowed to start challenges and events. They announce the start time for the
race. Once the start time is reached, each player enters the race mode by going in to an running event
state This running event state, actually consists of two sub-states, “driving” and “crashing”, where
during driving the player has control of the car, and during crashing control is taken away. Crashing is
an implicit penalty in any race as it takes a few seconds to occur before the car is put back on the road
and the driving state is re-entered. In a race, once each player crosses the finish line, they enter a

157

“waiting results” state. Once each player crosses the finish line, or a timeout occurs, the state moves on
to “awards” state where a ranking is made and points awarded. Then the players go back to the “free
driving” state. In some events or challenges, there is no waiting results state, as soon as some event, or
combination of events happen, the players can switch to the awards state. Moving these global states
requires a reliable application-level protocol on top of UDP.

MAJOR AND MINOR GAME STATES IN ONLINE FREEBURN IN
BURNOUT™ PARADISE. IN FREE DRIVING AND RACE STATE, THE
PLAYER MAY CRASH. THE RACE STARTS A SHORT PERIOD AFTER AN
ANNOUNCEMENT. THE AWAITING RESULTS STATE IS ENTERED AS THE
PLAYER FINISHES. THIS STATE AND THE AWARDS STATE, ARE NON-
INTERACTIVE.

It is critical to the fairness of the race is that everyone start racing at the same time and that they see
each other in the correct order on the road. However it is not straightforward to ensure this. In practice
the winner of a race is whoever takes the shortest time to cross the finish line, based on their local
clock. It is not specifically required that everyone start at the same time, though this is highly desirable.
The fact that you see the correct number of players in front of, or behind you, is actually a secondary
concern in ensuring that the overall winner of the race is appropriate. This does lead to the situation
where the first player to go in to the “waiting results” state may not be the winner: someone who
actually started later, but who took a shorter time might bump them from the top. Obviously this
violates the expectations of the users, so it is to be avoided.

Two techniques are used to ensure as tight as possible synchronization between the views. First,
whilst in free driving state, all the players are synchronizing game clocks with a protocol similar to
NTP (see Section 10.3.3). This means that, as discussed, the clocks of the machines can be
synchronized to approaching 10ms accuracy. Despite this, clocks may get out of synchronization, and
NTP-like protocols do not work over links with asymmetric timing. However, problems are reported to
be infrequent. Note that NTP is not run during a race because of the concern above that the elapsed
local time is the actual measure, and thus the local clock should not be altered during a race. The
second technique is to make very sure that every client knows when the start time of an event is. The
start time is broadcast from the game host five times, and in case there are any connectivity problems
between two hosts, each peer also relays the start time to all peers. This might seem over-kill, but if a
player’s client fails to get this event then they must wait until the next game phase to join in, which
could be in over 5 minutes time. In the case when a peer gets a start time for an event in the past, then
they start immediately.

Driving sub-state
(default)

Crashing sub-state

Player 1 Timeline

Player 2 Timeline
Free
Driving
State

Time

Race start
announcement

Race startAwaiting
Results State
(non-
interactive)

Awards
State
(non-
interactive)

Race State

158

Game Hosting and Peer to Peer Networking

Multi-player games are set up via a master host list, hosted at an EA server facility in Virginia. Anyone
can host a game, and the master host list is downloaded by each client who is online before they enter
Online Freeburn. The host list contains some details of the game modes that the host is running at the
time and the number of players currently connected to that host’s game. When the player enters Online
Freeburn, they then download the client lists for each hosted game. The host is only responsible for
starting the events and challenges; they perform no other special networking function. If the host player
becomes unavailable, then there is a host migration protocol to select another host from the other
players.

Console players log on using their Xbox LIVE gamertag or PSN ID; this is provided by the
console itself. PC players must use an account created on the EA server facility. This server facility is
based on LAMP technology (an acronym referring to a suite of Open Source software, Linux, Apache,
MySql, PHP/Perl/Python). Aside from logins and match-making, it is responsible for keeping track of
event results, and also player-to-player states; the game makes a significant gameplay feature of
rivalries and retribution on the road, not just within any one race, but over separate sessions. Match-
making and back-end server provision was considered to be one of the biggest challenges, because, as
has been found by many MMOG writer, it is very difficult to simulate all the players turning up
simultaneously. The provision of an early demo helped Criterion Games iron out any problems.

Because the game is peer-to-peer, each client must retrieve an IP address for the others peers, but
it can’t be known if these are behind NATs or not. The system tries a version of UDP hole punching
(see Section 10.6.1), but if this does not work, it reverts to using packet relaying. To support relaying,
EA provides a number of relay servers on each continent, so that relaying does not add significant
latency overhead. Thus a peer-to-peer connection can always be made between two hosts.

159

	1. Overview
	2. Audience
	3. Lecturer
	4. Resources
	5. Schedule
	Car Mechanics
	part5.pdf
	Introduction to Networked Graphics
	Overview
	Overview of Security Problems
	Compromised Clients
	Traffic Interference
	Exploitable Server
	User Collusion
	Virtual Private Networks
	Virtual Private Networks (VPNs)
	VPNs and IPSec
	Different Uses of Streaming
	Streaming Protocols
	Real-Time Protocol
	RTP Payloads
	Streaming Animations
	Examples of Keyframe Animation
	Streaming Geometry
	Server Push
	Client Pull
	Clusters
	Layers of Sharing Graphics
	Tools
	Thin Clients
	Thin Clients
	Thin Client Pros and Cons
	Peer to Peer
	Larger Peer to Peer Context
	Within a NVE Context
	Summary

	part4.pdf
	Introduction to Networked Graphics
	Overview
	Interest Specification
	Awareness Categories
	System Goals
	Managing Awareness
	Filtering traffic
	Spatial Partitions
	Global Partitions: Static Cells
	Global Partitions: Static Cells
	Global Partitions: Irregular
	Spatial Partitions: Auras / Nearest Neighbours
	Spatial Partitions: Local Visibility
	Spatial Partitions: Local Visibility
	Practical Systems
	Game Shards
	Game Regions
	Game Regions & Instances
	Summary

	part3.pdf
	Introduction to Networked Graphics
	Overview
	Naïve (But Usable) Algorithms
	Lock-Step (1)
	DOOM 1 – iD Software
	Lock-Step (2)
	Quake 1�(Pre-QuakeWorld)
	Optimistic Algorithms
	Slide Number 9
	Client Predict Ahead
	Slide Number 11
	Slide Number 12
	Extrapolation Algorithms
	Dead Reckoning: Extrapolation
	When to Send Updates
	Slide Number 16
	Slide Number 17
	Convergence Algorithm
	Convergence Appears as Sliding Motion
	Interpolation
	Interpolation & Playout Delays
	Playout Delay
	Slide Number 23
	Non-Linear Interpolation
	Non-Linear Interpolation
	Summary

	part2.pdf
	Introduction to Networked Graphics
	Overview
	Internet performance
	Latency
	Latency
	Jitter
	Latency and Jitter : Network Perspective
	Bandwidth
	Loss
	Loss : Network Perspective
	Bandwidth and Latency: Wired
	Bandwidth and Latency: Wireless
	Bandwidth Availability
	Effect of distance on throughput
	Why NVEs are unique
	Why NVEs are unique
	Consistency : System Perspective
	Consistency : User Perspective
	Impact: Timing Activity Onset
	Impact: Inconsistent State Changes
	Impact: Fireproof Players
	Impact: Shooting Around Corners
	Latency Acceptability
	Bandwidth Requirements
	Packet Rates
	Packet Rates
	Packet Rates
	Network Address Translation
	Comments on NATs
	Summary

	part1b.pdf
	Client-Server Architecture
	Implications
	Hybrid Architectures
	Which Protocol to Use?
	Which Protocol to Use?
	TCP is Bi-Directional
	TCP Fairness
	Observations
	Summary

	part1.pdf
	Introduction to Networked Graphics
	Overview
	SIMNET
	DOOM
	DIVE
	Quake
	Ultima Online
	Second Life
	Burnout™ Paradise
	Common Themes
	Common Themes	
	Consistency and Plausibility
	The Internet
	IP Stack
	End to End Principle
	Application Layer Protocols
	E.G. HTTP Request
	…
	Application Protocol Descriptions
	Common Application Protocols
	Domain Name Service (DNS)
	Transport Layer Protocols
	UDP
	TCP
	TCP is Bi-Directional
	TCP Fairness
	Observations
	Network Layer
	IP Packets
	IP Packet Format
	Link and Physical Layer
	Basic Architectures and Protocols
	Consider Just Two Machines
	Peer to Peer with Two Clients
	For Example DOOM
	Master Slave with Two Clients
	For Example
	More Clients
	Peer to Peer Architecture
	Client-Server Architecture
	Implications
	Hybrid Architectures
	Which Protocol to Use?
	Which Protocol to Use?
	TCP is Bi-Directional
	TCP Fairness
	Observations
	Summary

	test.pdf
	1. Overview
	2. Audience
	3. Lecturer
	4. Resources
	5. Schedule
	Car Mechanics

