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Abstract

See http://web.me.com/annmcnamara/PerceptionCourse2011/Home.html
for updates

This course presents timely, relevant examples on how researchers have lever-
aged perceptual information for optimization of rendering algorithms, to better
guide design and presentation in display media, and for improved visualization
of complex or large data sets. Each presentation will provide references and
short overviews of cutting-edge current research pertaining to that area. We
will ensure that the most up-to-date research examples are presented by sourc-
ing information from recent perception and graphics conferences and journals
such as ACM Transactions on Perception, paying particular attention work pre-
sented at the Symposium on Applied Perception in Graphics and Visualization.
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1 Introduction

1.1 Motivation

The advent of affordable display technology, and seamless integration of real-
world scenes with computer graphics fuels our continuing ability to create and
display stunning realistic imagery. With the arrival of new technology, algo-
rithms and display methods comes the realization that gains can be made by
tailoring output to the intended audience; humans. Human beings have an
amazingly complex perceptual systems, which have the ability to quickly cap-
ture and process vast amounts of complex data. With all its capability however,
the Human Visual System (HVS) has some surprising nuances and limitations
that can be exploited to the benefit of numerous graphics applications. This
short course will provide insight into those aspects of the HVS and other per-
ceptual systems that can serve as both a guide and yard-stick to further the
development and evaluation of computer graphics imagery and presentations.
The literature on perception provides a rich source of knowledge that can be
applied to the realm of computer graphics for immediate and direct benefit,
generating images that not only exhibit higher quality, but use less time and
resources to process. In addition, knowledge of the HVS serves as a guide on
how best to present the images to fulfill the application at hand.

1.2 Course Overview

We will present timely, relevant examples on how researchers have leveraged
perceptual information for optimization of rendering algorithms, to better guide
design and presentation in (3D stereoscopic) display media, and for improved
visualization of complex or large data sets. Each section will provide references
and short overviews of cutting-edge current research pertaining to that area.
We will ensure that the most up-to-date research examples are presented by
sourcing information from recent perception and graphics conferences and jour-
nals such as ACM Transactions on Perception, paying particular attention work
presented at the 2010 and 2011 Symposium on Applied Perception in Graphics
and Visualization.

1.3 Focus Areas

We will focus on key areas in which perceptual knowledge has been successfully
interleaved with computer graphics.

1.3.1 Perceptually Motivated Visualization

Discussion of recent research pertaining to psychophysics and application to
scientific and information visualization. A closer look at visual attention and
visual memory will provide the framework for steering perceptually informed
visualizations.



1.3.2 Exploitation of the limitations of the HVS to reduce rendering
times

while improving resulting image quality. This includes real-time and non-real
time graphics, image quality metrics and high dynamic range imagery.

1.3.3 Exploration of incorporating perceptual and cognitive aspects
to Virtual Environments (VEs).

Such principles could be applied to selective real-time rendering algorithms,
positive transfer of training as well as to optimizations for latency degradations
and predictive tracking.

1.3.4 Insights into High Dynamic Range Imagery, Illumination and
Image Processing.

Discussion of the now ubiquitous HDR for imagery and video, and also a closer
look at the role perception plays in Image Processing.

1.3.5 Realistic Characters, Faces and Animation.

In this section we will explore the role of perception in the design and realization
of characters, facial animation and animation in general.

1.3.6 New Trends in Perception and Graphics Research

A look to the future - current trends and possible emerging trends.

1.4 Summary

In summary, this course represents a whirlwind tour of insights into how the
eye and brain capture and process visual information through our perceptual
systems, and how we can use those insights to further advance many areas in
computer graphics.
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2 Overview of the Human Visual System

2.1 Introduction

NOTE: This section has been kindly reproduced from ”Perceptually Motivated
Graphics”, Siggraph 2010 Course Notes, authored by Christopher Healey.

A fundamental goal of visualization is to produce images of data that support
visual analysis, exploration and discovery, and identifying novel insights. An
important consideration during visualization design is the role of human visual
perception [79, 111, 115, 126]. How we “see” details in an image can directly
impact a user‘s efficiency and effectiveness. This article surveys research on
attention and visual perception, with a specific focus on results that have direct
relevance to visualization and visual analytics. We discuss theories of low-level
visual perception, then show how these findings form a foundation for more
recent work on visual memory and visual attention.

2.2 Visual Attention and Preattentive Processing

For many years vision researchers have been investigating how the human vi-
sual system analyzes images. An important initial result was the discovery of a
limited set of visual properties that are detected very rapidly by low-level and
fast-acting visual processes. These properties were initially called preattentive,
since their detection seemed to precede focused attention. We now know that
attention plays a critical role in what we see, even at this early stage of vi-
sion. The term preattentive continues to be used, however, since it conveys an
intuitive notion of the speed and ease with which these properties are identified.

Typically, tasks that can be performed on large multi-element displays in less
than 200–250 milliseconds (msec) are considered preattentive. Eye movements
take at least 200 msec to initiate, and random locations of the elements in the
display ensure that attention cannot be prefocused on any particular location,
yet viewers report that these tasks can be completed with very little effort. This
suggests that certain information in the display is “seen” in parallel by low-level
visual processes.

A simple example of a preattentive task is the detection of a red circle in a
group of blue circles (Fig. 1). The target object has a visual property red that
the blue distractor objects do not. A viewer can tell at a glance whether the
target is present or absent. Here the visual system identifies the target through
a difference in hue, specifically, a red target in a sea of blue distractors. Hue is
not the only visual feature that is preattentive. For example, viewers can just as
easily find a red circle in a background of red squares. Here, the visual system
identifies the target through a difference in curvature (or form).

A unique visual property in the target—a red hue or a curved form—allows
it to “pop out” of a display. A conjunction target made up of a combination of
non-unique features normally cannot be detected preattentively. For example,



(a) (b)

(c) (d)

(e) (f)

Figure 1: Target detection: (a) hue target red circle absent; (b) target present;
(c) shape target red circle absent; (d) target present; (e) conjunction target red
circle present; (f) target absent

consider combining the two backgrounds and searching for a red circle in a sea of
blue circles and red squares. The red circle target is made up of two features: red
and circular. One of these features is present in each of the distractor objects—
red squares and blue circles. The visual system has no unique visual property
to search for when trying to locate the target. A search for red items always
returns true because there are red squares in each display. Similarly, a search
for circular items always sees blue circles. Numerous studies have shown that
a conjunction target cannot be detected preattentively. Viewers must perform
a time-consuming serial search through the display to confirm its presence or



absence.
If low-level visual processes can be harnessed during visualization, it can

draw attention to areas of potential interest in a display. This cannot be ac-
complished in an ad-hoc fashion, however. The visual features assigned to dif-
ferent data attributes—the data-feature mapping—must take advantage of the
strengths of our visual system, must be well-suited to the analysis needs of
the viewer, and must not produce visual interference effects (e.g., conjunction
search) that could mask information.

2.3 Theories of Preattentive Processing

A number of theories have been proposed to explain how preattentive processing
occurs within the visual system: feature integration, textons, guided search,
and boolean maps. We provide an overview of these theories, then discuss
briefly feature hierarchies, which describes situations where the visual system
favors certain visual features over others, and ensemble coding, which shows
that viewers can generate summaries of the distribution of visual features in
a scene, even when they are unable to locate individual elements based those
same features.

2.3.1 Feature Integration

Anne Treisman was one of the original researchers to document the area of
preattentive processing [118, 116, 117]. In order to explain the phenomena,
Treisman proposed a model low-level human vision made up of a set of feature
maps and a master map of locations. Each feature map registers activity for
a specific visual feature. Treisman suggested a manageable number of feature
maps, including one for each of the opponent colors, as well as separate maps
for orientation, shape, and texture. When the visual system first sees an image,
all the features are encoded in parallel into their respective maps. A viewer
can access a particular map to check for activity, and perhaps to determine the
amount of activity. The individual feature maps give no information about lo-
cation, spatial arrangement, or relationships to activity in other maps, however.

2.3.2 Textons

Bela Julész was also instrumental in expanding our understanding of what we
”see” in an image. Jullész initially focused on statistical analysis of texture
patterns [55, 56, 57, 58, 59]. His goal was to determine whether variations in
a particular order statistic were detected by the low-level visual system, for
example contrast—a first-order statistic—orientation and regularity—a second-
order statistic—and curvature—a third-order statistic. Based on these findings,
Julész suggested that the early visual system detects a group of features called
textons, which fall into three general categories:

1. Elongated blobs—line segments, rectangles, or ellipses—with specific prop-
erties of hue, orientation, width, and so on.



(a) (b) (c)

Figure 2: Textons: (a,b) two textons A and B that appear different in isolation,
but have the same size, number of terminators, and join points; (c) a target
group of B -textons is difficult to detect in a background of A-textons when
random rotation is applied

2. Terminators—ends of line segments.

3. Crossings of line segments

Julész believed that only a difference in textons or in their density could be
detected preattentively (Fig. 2). No positional information about neighboring
textons is available without focused attention. Like Treisman, Julész suggested
that preattentive processing occurs in parallel and focused attention occurs in
serial.

2.3.3 Guided Search

More recently, Jeremy Wolfe has proposed a theory that he calls “guided search.”
He hypothesized that an activation map based on both bottom-up and top-
down information is constructed during visual search. Attention is drawn to
peaks in the activation map that represent areas in the image with the largest
combination of bottom-up and top-down influence [132, 133, 131].

As with Treisman, Wolfe believes early vision divides an image into indi-
vidual feature maps. In his theory, there is one map for each feature type—a
color map, an orientation map, and so on. Within each map a feature is filtered
into multiple categories. Bottom-up activation follows feature categorization. It
measures how different an element is from its neighbors. Top-down activation
is a user-driven attempt to find items with a specific property or set of proper-
ties. The activation map is a combination of bottom-up and top-down activity.
Hills in the activation map mark regions that generate relatively large amount
of bottom-up or top-down influence, but without providing information about



(a) (b)

(c) (d)

Figure 3: Conjunction search with boolean maps: (a–b) blue horizontal target,
select “blue” objects, then search within for a horizontal target, present in (a),
absent in (b); (c–d) red vertical target, select “red” objects, then search within
for a vertical target, absent in (c), present in (d)

the source of a hill. A subject‘s attention is drawn from hill to hill in order of
decreasing activation.

2.3.4 Boolean Maps

A more recent model of low-level vision has been presented by Huang et al.
[52, 53]. This theory carefully divides visual search into two parts: selection
and access. Selection involves choosing a set of objects from a scene. Access
determines what properties of the selected objects a viewer can apprehend.
Although both operations are implicitly present in previous theories, they are
often described as a whole and not as separate steps.

Huang et al. suggest that the visual system can divide a scene into exactly
two parts: selected elements and excluded elements. This is the “boolean map”
that underlies their theory. The visual system can then access certain properties
of the selected elements in the map. Once a boolean map is created, two prop-
erties are available to a viewer: the label for any feature in the map, and the
spatial location of the selected elements (Fig. 3). Boolean maps can be created
in two ways. First, a viewer can specify a single value of an individual feature
to select all objects that contain that feature. Second, union or intersection can



be applied to two existing maps. In either case, only the result is retained, since
evidence suggests that a viewer can only hold and access one boolean map at
a time. Viewers can chain these operations together to search for targets in a
fairly complex scene.

2.3.5 Ensemble Coding

Existing characterizations of preattentive vision have focused on how low level-
visual processes can be used to guide attention to specific location or object in
a larger scene. An equally important characteristic of low-level visual processes
is their ability to generate a quick summary of how simple visual features are
distributed across the field of view. The ability of humans to register a rapid and
in-parallel summary of a scene in terms of its simple features was first reported
by Ariely [4]. He demonstrated that observers could extract the average size of a
large number of dots from only a single glimpse at a display. Yet, when observers
were tested on the same displays and asked to indicate whether a single dot of
a given size was present, they were unable to do so. This suggests that there
is a preattentive mechanism that records summary statistics of visual features
without retaining information about the constituent elements that generated
the summary.

This ability to rapidly identify scene-based averages may offer important
advantages in certain visualization environments. For example, given a stream
of real-time data, ensemble coding would allow viewers to observe the stream at a
high frame rate, yet still identify individual frames with interesting distributions
of visual features (i.e. attribute values). Ensemble coding would also be critical
for any situation where viewers want to estimate the amount of a particular data
attribute in a display. These capabilities were hinted at in a paper by Healey
et al., but without the benefit of ensemble coding as a possible explanation.

2.3.6 Feature Hierarchies

One promising strategy for multidimensional visualization is to assign different
visual features to different data attributes. This allows multiple data values to
be shown simultaneously in a single image. A key requirement of this method is a
data-feature mapping that does not produce visual interference. One example of
interference is a conjunction target. Another example is the presence of feature
hierarchies that appears to exist in the visual system. For certain tasks one
visual feature may be “more salient” than another. Researches in psychophysics
and visualization have demonstrated a hue-shape hierarchy: the visual system
favors color over shape [15, 16, 17, 48, 49]. Background variations in hue interfere
with a viewer‘s ability to identify the presence of individual shapes and the
spatial patterns they form. If hue is held constant across the display, these
same shape patterns are immediately visible. The interference is asymmetric:
random variations in shape have no effect on a viewer‘s ability to see color
patterns. Similar luminance-hue and hue-texture hierarchies have also been
identified.



2.4 Visual Memory

Preattentive processing asks in part: “What visual properties draw our eyes,
and therefore our focus of attention to a particular object in a scene?” An
equally interesting question is: “What do we remember about an object or a
scene when we stop attending to it and look at something else?” Many viewers
assume that as we look around us we are constructing a high-resolution, fully
detailed description of what we see. Researchers in psychophysics have known
for some time that this is not true. In fact, in many cases our memory for detail
between glances at a scene is very limited. Evidence suggests that a viewer‘s
current state of mind can play a critical role in determining what is seen and
what is not.

We present three theories that demonstrate and attempt to explain this
phenomena: change blindness, inattentional blindness, and attentional blink.
Understanding what we remember as we focus on different parts of a visualiza-
tion is critical to designing visualizations that encourage locating and retaining
the information that is most important to the viewer.

2.4.1 Change Blindness

New research in psychophysics has shown that an interruption in what is being
seen—a blink, an eye saccade, or a blank screen—renders us “blind” to signifi-
cant changes that occur in the scene during the interruption [104, 69, 105, 110].
This change blindness phenomena can be illustrated using a task similar to one
shown in comic strips for many years. A viewer is shown two pairs of images.
A number of significant differences exists between the images. Many viewers
have a difficult time seeing any difference and often have to be coached to look
carefully to find it. Once they discover it, they realize that the difference was
not a subtle one. Change blindness is not a failure to see because of limited
visual acuity; rather, it is a failure based on inappropriate attentional guidance.
Some parts of the eye and the brain are clearly responding differently to the two
pictures. Yet, this does not become part of our visual experience until attention
is focused directly on the objects that vary.

The presence of change blindness has important implications for visualiza-
tion. The images we produce are normally novel for our viewers, so prior expec-
tations cannot be used to guide their analyses. Instead, we strive to direct the
eye, and therefore the mind, to areas of interest or importance within a visual-
ization. This ability forms the first step towards enabling a viewer to abstract
details that will persist over subsequent images.

2.4.2 Inattentional Blindness

A related phenomena called inattentional blindness suggests that viewers fail
to perceive objects or activities that occur outside of the focus of attention
[69]. This phenomena is illustrated through an experiment conducted by Neisser
[90, 109]. His experiment superimposed video streams of two basketball games.
Players wore white shirts in one stream and black shirts in the other. Subjects



(a)

(b)

Figure 4: Change blindness, a major difference exists between the two images

attended to one team—either white or black—and ignored the other. Whenever
the subject’s team made a pass, they were told to press a key. After about 30
seconds of video, a third stream was superimposed showing a woman walking
through the scene with an open umbrella. The stream was visible for about 4
seconds, after which another 25 seconds of basketball video was shown. Follow-
ing the trial, only six of twenty-eight naive observers reported seeing the woman.
When subjects only watched the screen and did not count passes, 100% noticed
the woman.

Additional issues with relevance to visualization are also being investigated.
Most et al. are studying the relationship between inattentional blindness and at-
tentional capture, the ability of an object to draw the focus of attention without
a viewer’s active participation. Researchers are also studying how perceptual
load affects inattentional blindness. Finally, results suggest meaningful objects
(e.g., a person’s name or a happy face icon) may be easier to notice.



2.4.3 Attentional Blink

In each of the previous methods for studying visual attention, the primary em-
phasis is on how human attention is limited in its ability to represent the details
of a scene (change blindness) and in its ability to represent multiple objects at
the same time (inattentional blindness). But attention is also severely limited
in its ability to process information that arrives in quick succession, even when
that information is presented at a single location in space. The attentional blink
paradigm is currently the most widely used method to study the availability of
attention across time. Its name—”blink”—derives from the finding that when
two targets are presented in rapid succession, the second of the two targets
cannot be detected or identified when it appears within approximately 100–500
msec following the first target [14, 101]. This suggests that that attention op-
erates over time like a window or gate, opening in response to finding a visual
item that matches its current criterion or template and then closing shortly
thereafter to consolidate that item as a distinct object or event from others.
The attentional blink is an index of the “dwell-time” needed to consolidate a
rapidly presented visual item into visual short term memory.

2.5 Conclusions

This presentation surveys past and current theories of low-level visual percep-
tion and visual attention. Initial work in preattentive processing identified basic
visual features that can implicitly or explicitly capture a viewer’s focus of at-
tention. More recent work has extended this to study limited visual memory
for change—change blindness and attentional blink—and being “blind” to ob-
jects that are outside the focus of attention—inattentional blindness. Each of
these phenomena have significant consequences for visualization. We strive to
produce images that are salient and memorable, and that guide attention to
locations of importance within the data. Understanding what the visual seems
sees and does not see is critical to designing effective visual displays.
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3 Perceptually Motivated Rendering

3.1 Visual Perception in Realistic Image Synthesis

Realism is often a primary goal in computer graphics imagery. We strive to cre-
ate images that are perceptually indistinguishable from an actual scene. Ren-
dering systems can now closely approximate the physical distribution of light
in an environment. However, physical accuracy does not guarantee that the
displayed images will have an authentic visual appearance. In recent years the
emphasis in realistic image synthesis has begun to shift from the simulation of
light in an environment to images that look as real as the physical environment
they portray. In other words the computer image should be not only physically
correct but also perceptually equivalent to the scene it represents. This implies
aspects of the Human Visual System (HVS) must be considered if realism is
required. Visual perception is employed in many different guises in graphics to
achieve authenticity [92, 7]. Certain aspects of the HVS must be considered to
identify the perceptual effects that a realistic rendering system must achieve in
order to effectively reproduce a similar visual response to a real scene. This
section outlines the main characteristics of the HVS and the manner in which
knowledge about visual perception is increasingly appearing in state-of-the-art
realistic image synthesis. Perception driven rendering algorithms are described,
which focus on embedding models of the HVS directly into global illumination
computations in order to improve their efficiency.

3.1.1 Visual Perception

Perception is the process by which humans, and other organisms, interpret
and organize sensation in order to understand their surrounding environment.
Sensation refers to the immediate, relatively unprocessed result of stimulation
of sensory receptors. Perception, on the other hand, is used to describe the
ultimate experience and interpretation of the world and usually involves further
processing of sensory input. Sensory organs translate physical energy from the
environment into electrical impulses processed by the brain. In the case of vision
light, in the form of electromagnetic radiation, activates receptor cells in the eye
triggering signals to the brain. These signals are not understood as pure energy,
rather, perception allows them to be interpreted as objects, events, people and
situations.

3.1.2 The Human Visual System

Vision is a complex process that requires numerous components of the human
eye and brain to work together. Vision is defined as the ability to see the features
of objects we look at, such as color, shape, size, details, depth, and contrast.
Vision begins with light rays bouncing off the surface of objects. These reflected



light rays enter the eye and are transformed into electrical signals. Millions of
signals per second leave the eye via the optic nerve and travel to the visual
area of the brain. Brain cells then decode the signals providing us with sight.
The response of the human eye to light is a complex, still not well understood
process. It is difficult to quantify due to the high level of interaction between
the visual system and complex brain functions. A sketch of the anatomical
components of the human eye is shown in Figure 5 The main structures are the
iris, lens, pupil, cornea, retina, vitreous humor, optic disk and optic nerve.

Figure 5: Cross section of the human eye

The path of light through the visual system begins at the pupil, is focused
by the lens, then passes onto the retina, which covers the back surface of the
eye. The retina is a mesh of photoreceptors, which receive light and pass the
stimulus on to the brain. The internal structure of the human eye, a sphere,
typically 12mm in radius, is enclosed by a protective membrane, the sclera. At
the front of the sclera lies the cornea, a protruding opening, and an optical
system comprising the lens and ciliary muscles which change the shape of the
lens providing variable focus. Light enters the eye though the lens and proceeds
through the vitreous humor, a transparent substance, to the rear wall of the eye,
the retina. The retina has photoreceptors coupled to nerve cells, which intercept
incoming photons and output neural signals. These signals are transmitted to
the brain through the optic nerve, connected to the retina at the optic disk
or papilla, more commonly known as the blind spot. The retina is composed
of two major classes of receptor cells known as rods and cones. The rods are
extremely sensitive to light and provide achromatic vision at low (scotopic)
levels of illumination. The cones are less sensitive than the rods but provide
color vision at high (photopic) levels of illumination. A schematic drawing of
rod and cone cells is shown in Figure 5. Cones are nerve cells that are sensitive
to light, detail, and color. Millions of cone cells are packed into the macula,
aiding it in providing the visual detail needed to scan the letters on an eye
chart, see a street sign, or read the words in a newspaper. Rods are designed for
night vision. They also provide peripheral vision, but they do not see as acutely
as cones. Rods are insensitive to color. When a person passes from a brightly lit
place to one that is dimly illuminated, such as entering a movie theatre during
the day, the interior seems very dark. After some minutes this impression passes



and vision becomes more distinct. In this period of adaptation to the dark, the
eye becomes almost entirely dependent on the rods for vision, which operate
best at very low light levels. Since the rods do not distinguish color, vision in
dim light is almost colorless.

Cones provide both luminance and color vision in daylight. They contain
three different pigments, which respond either to blue, red, or green wavelengths
of light. A person who is missing one or more of the pigments is said to be
color-blind and has difficulty distinguishing between certain colors, such as red
from green. These photoreceptor cells are connected to each other and the gan-
glion cells which transmit signals to and from the optic nerve. Connections
are achieved via two layers, the first and second synaptic layers. The intercon-
nections between the rods and cones are mainly horizontal links, indicating a
preferential processing of signals in the horizontal plane.

Normal daytime vision, where the cones predominate visual processing, is
termed photopic, whereas low light levels where the rods are principally respon-
sible for perception is termed scotopic vision. When both rods and cones are
equally involved then vision is termed mesopic. Visual acuity is the ability of
the Human Visual System (HVS) to resolve detail in an image. The human
eye is less sensitive to gradual and sudden changes in brightness in the image
plane but has higher sensitivity to intermediate changes. Acuity decreases with
increase in distance. Visual acuity can be measured using a Snellen Chart, a
standardized chart of symbols and letters. Visual field indicates the ability of
each eye to perceive objects to the side of the central area of vision. A normal
field of vision is 180 degrees .

3.1.3 Contrast

Contrast is defined as:

lmax =
lmax − lmin

lmax + lmin
(1)

where lmax and lmin are the maximum and minimum luminance. Human
brightness sensitivity is logarithmic, so it follows that for the same perception,
higher brightness requires higher contrast. Apparent brightness is dependent
on background brightness. This phenomenon, termed simultaneous contrast,
is illustrated in Figure 6. Despite the fact that all centre squares are the
same brightness, they are perceived as different due to the different background
brightness.
Depth Perception is the ability to see the world in three dimensions and to
perceive distance. Images projected onto the retina are two-dimensional, and
from these flat images vivid three dimensional worlds are constructed. Binoc-
ular Disparity and monocular cues provide information for depth perception.
Binocular disparity is the difference between the images projected onto the left
and right eye. The brain integrates these two images into a single three dimen-
sional image to allow depth and distance perception. Monocular cues are cues to
depth that are effective when viewed with only one eye, including interposition,



Figure 6: Simultaneous Contrast. Despite the fact that all centre squares are the
same brightness, they are perceived as different due to the different background
brightness.

atmospheric perspective, texture gradient, linear perspective, size cues, height
cues and motion parallax.

3.1.4 Constancy

Perceptual Constancy is a phenomenon which enables the same perception of an
object despite changes in the actual pattern of light falling on the retina. Psy-
chologists have identified a number of perceptual constancies including lightness
constancy, color constancy, size constancy and shape constancy. Lightness Con-
stancy: The term lightness constancy describes the ability of the visual system
to perceive surface lightness correctly despite changes in the level of illumina-
tion.
Color Constancy: Closely related to lightness constancy, this is the ability of the
HVS to perceive the correct color of an object despite changes in illumination.
Shape Constancy: Objects are perceived as having the same shape regardless
of changes in their orientation. -example with cube, from front and side
Size Constancy: This is the tendency to perceive objects as staying the same
size despite changes in viewing distance.

3.1.5 Human Visual Perception

A number of psychophysical experimental studies have demonstrated many fea-
tures of how the HVS works. However, problems arise when trying to generalize
these results for use in computer graphics. This is because, often, experiments
are conducted under limited laboratory conditions and are typically designed to
explore a single dimension of the HVS. As described earlier, the HVS comprises
complex mechanisms, which rather than working independently, often features
work together, and therefore it makes sense to examine the HVS as a whole.
Instead of reusing information from previous psychophysical experiments, new
experiments are needed. Some examples will support this. Figure 2.6: When
a black and white patterned top shown on the left is rotated at 5-10 revolu-
tions per second, colored rings can be seen. The light intensity distribution of
the rotating pattern as a function of time is shown on the right. Spatiotem-



poral interactions between antagonistic, spectrally opponent color mechanisms
account for this phenomenon. A Benhams disk is a flat disc, half of which is
black and the other half has three sets of lines like the grooves on a record but
more spaced out, Figure 7. When the disk is spun a human observer sees red,
yellow and green rings, despite the fact that there are no colors in the pattern.
The curves on the right of the pattern begin to explain what happens. Each
curve plots the temporal light intensity distribution at the different radii from
the centre, created when the top is spun. These changing light patterns produce
spatiotemporal interaction in the HVS that unbalance antagonistic, spectrally-
opponent mechanisms to create the appearance of colored rings. This illusion
demonstrates that, although it may be convenient to model the HVS in terms
of unidimensional responses to motion, pattern and color, human percepts are
in fact the product of complex multidimensional response.

Figure 7: When a black and white patterned top shown on the left is rotated
at 5-10 revolutions per second, colored rings can be seen. The light inten-
sity distribution of the rotating pattern as a function of time is shown on the
right. Spatiotemporal interactions between antagonistic, spectrally opponent
color mechanisms account for this phenomenon.

A second example, Figure 8, shows the panels in checkerboard block on
the left and a flat pattern on the right, which have the same reflectance, but
differences in their three-dimensional organization means they are perceived dif-
ferently. The two panels marked with Xs have the same reflectance, but on the
block they appear to have different reflectance under different levels of illumi-
nation. Conversely, the two panels marked with Os have different reflectance
values but on the block appear to be the same color due to the different illu-
mination conditions. This demonstrates the complexity of interactions between
apparent reflectance, apparent illumination and apparent shape that can dra-
matically affect human perception.



Figure 8: Interaction between apparent reflection, apparent illumination and
apparent three-dimensional shape. Corresponding panels in the two patterns
have the same physical reflectance. Differences in the perceived spatial orga-
nization of the patterns produces differing interpretations in terms of lightness
(apparent reflectance) and brightness (apparent illumination).

3.1.6 Lightness Perception

Gilchrist [43, 44, 18] justified the systematic study of lightness error as an un-
derstanding of the HVS. He found that there are always errors when judging
lightness, and these errors are not random, but systematic. The pattern of these
systematic errors therefore provide a signature of the visual system. He defines
a lightness error as any difference between the actual reflectance of a target sur-
face and the reflectance of the matching chip selected from a Munsell chart. The
task defined for the psychophysical experiments described later in this thesis in-
volves asking human observers to match the reflectance of real world objects
to a Munsell chart, which gives a measure of errors in lightness matching. The
observer is then asked to match the reflectance of simulated objects (in a com-
puter generated rendition of the real world) to the same Munsell chart. This
gives a measure of lightness errors with respect to the computer image. There
are limitations on the HVS, so there will be errors (systematic errors) in both
cases. For the rendered image to be deemed a faithful representation, both sets
of lightness errors should be close to each other.

Gilchrist (1977) [45] showed that the perception of the degree of lightness of
a surface patch (i.e. whether it is white, gray or black) is greatly affected by
the perceived distance and orientation of the surface in question, as well as the
perceived illumination falling on the surface -where the latter was experimen-
tally manipulated through a variety of cues such as occlusion, or perspective.
Perception of the lightness of patches varying in reflectance may thus be a suit-
able candidate for the choice of visual task. It is simple to perform, and it is



known that lightness constancy depends on the successful perception of lighting
and the 3D structure of a scene, for example Figure 9 When viewed in isolation,
the patches on the top left hand corner appear to be of different luminance.
However, when examined in the context of the entire scene, it can be seen that
the patches have been cut from the edge of the stairwell, and are perceived as
an edge where the entire stairwell has the same luminance. Lightness has been
applied when developing Tone Mapping techniques for High Dynamic Range
Imagery [61, 62].

Figure 9: Importance of depth perception for lightness constancy.

3.2 Perceptually driven rendering

Recent years have seen an increase in the application of visual perception to
computer graphics. As mentioned earlier, in certain applications it is impor-
tant that computer images should not only be physically correct but also per-
ceptually equivalent to the scene it is intended to represent. Realism implies
computational expense, and research is beginning to emerge to investigate how
knowledge of the human visual system can be used to cut corners and minimize
rendering times by guiding algorithms to compute only what is necessary to sat-
isfy the observer. Perception based image quality metrics, which can be used to
evaluate, validate and compare imagery have been presented [99, 97, 80, 76, 86].

Even for realistic image synthesis there may be little point spending time or
resources to compute detail in an image that would not be detected by a human
observer. By eliminating any computation spent on calculating image features
which lie below the threshold of visibility, rendering times can be shortened
leading to more efficient processing. Because the chief objective of physically
based rendering is realism, incorporating models of HVS behavior into rendering
algorithms can improve performance, as well as improving the quality of the



imagery produced. So by taking advantage of the limitations of the human eye,
just enough detail to satisfy the observer can be computed without sacrificing
image quality. Several attempts have been made to develop image synthesis
algorithms that detect threshold visual differences and direct the algorithm to
work on those parts of an image that are in most need of refinement.

Raytracing produces an image by computing samples of radiance, one for
each pixel in the image plane. Producing an anti-aliased image is difficult unless
very high sampling densities are used. Mitchell [85] realized that deciding where
to do extra sampling can be guided by knowledge of how the eye perceives
noise as a function of contrast and color. Studies have shown that the eye
is most sensitive to noise in intermediate frequencies [124]. While frequencies
of up to 60 cycles per degree (cpd) can be visible, the maximum response to
noise is at approximately 4.5 cpd, so sampling in regions with frequency above
this threshold can be minimized, without affecting the visual quality of the
image. Mitchell begins by sampling the entire image at low frequency then uses
an adaptive sample strategy on the image according to the frequency content.
This results in a non uniform sampling of the image, which enables aliasing
noise to be channelled into high frequencies where artifacts are less conspicuous.
However, non-uniform sampling alone doesnt eliminate aliasing, just changes its
characteristics to make it less noticeable. Mitchell applies two levels of sampling.
To decide whether the high sampling density should be invoked the variance of
samples could be used [89], but this is a poor measure of visual perception of
local variation. Instead Mitchell chooses to use contrast to model the non-linear
response of the eye to rapid variations in light intensity:

As each sample consists of three separate intensities for red, green and blue,
three separate contrasts can be computed for each of them. These three con-
trasts are tested against separate thresholds, 0.4, 0.3 and 0.6 for red, green and
blue respectively, and super-sampling is done if any one exceeds the threshold.
The contrast metric is then used to determine when the high sampling density
should be invoked. This test is most sensitive to green in accordance with the
human eyes response to noise as a function of color. Multi stage filters are then
used to reconstruct the non-uniform samples into a digital image. Although
this idea has the beginnings of a perceptual approach, it is at most a crude
approximation to the HVS. Only two levels of sampling are used and it doesnt
account for visual masking 1.

The HVS exhibits different spatial acuities in response to different colors.
Evidence exists that color spatial acuity is less than monochrome spatial acuity.
Exploiting this poor color spatial acuity of the HVS, Meyer and Liu [84] devel-
oped an adaptive image synthesis algorithm which uses an opponents processing
model of color vision [61] comprising chromatic and achromatic color channels.
Using a Painter and Sloan [122] adaptive subdivision, a k-D 2 tree representa-
tion 3 of the image is generated. Areas of the image containing high frequency

1The presence of high spatial frequency in an image can mask the presence of other high
frequency information

2A KD Tree is a data structure that is used in computer science during orthogonal range
searching



information are stored at the lower levels of the tree. They then modified a
screen subdivision raytracer to limit the depth to which the k-D tree must be
descended to compute the chromatic color channels. The limit is determined
by psychophysical results describing the color spatial frequency. They achieved
a modest saving in computational effort and showed, using a psychophysical
experiment, that decreasing the number of rays used to produce the chromatic
channels had less of an effect on image quality than reducing the number of rays
used to create the achromatic channels. This was the first work to attempt to
minimize the computation of color calculations, as opposed to just decreasing
costly object intersection calculations.

Bolin and Meyer [9] took a frequency based approach to raytracing, which
uses a simple vision model, making it possible for them to control how rays are
cast in a scene. Their algorithm accounts for the contrast sensitivity, spatial
frequency and masking properties of the HVS. The contrast sensitivity response
of the eye is non-linear. So, when deciding where rays should be cast, the algo-
rithm deems a luminance difference at low intensity to be of greater importance
than the same luminance difference at high intensity. The spatial response of
the HVS is known to be less for patterns of pure color than for patterns that
include luminance differences. This means that it is possible to cast fewer rays
into regions with color spatial variations than are cast in regions with spatial
frequency variations in luminance. Finally, it is known that the presence of
high spatial frequency can mask the presence of other high frequency informa-
tion (masking). When used in conjunction with a Monte Carlo raytracer, more
rays are spawned when low frequency terms are being determined than when
high frequency terms are being found. Using this strategy, the artifacts that
are most visible in the scene can be eliminated from the image first, then noise
can be channelled into areas of the image where artifacts are less conspicuous.
This technique is an improvement on Mitchells method because the vision model
employed accounts for contrast sensitivity, spatial frequency and masking.

Despite the simplicity of the vision models used in these approaches, the
results are promising, especially as they demonstrate the feasibility of embedding
HVS models into the rendering systems to produce more economical systems
without forfeiting image quality. Fueled by the notion that more sophisticated
models of the HVS would yield even greater speedup, several researchers began
to introduce more complex models of the HVS into their global illumination
computations.

Myszkowski [88] applied a more sophisticated vision model to steer compu-
tation of a Monte Carlo based raytracer. Aiming to take maximum advantage
of the limitations of the HVS, his model included threshold sensitivity, spatial
frequency sensitivity and contrast masking. A perceptual error metric is built
into the rendering engine allowing adaptive allocation of computation effort into
areas where errors remain above perceivable thresholds and allowing computa-
tion to be halted in all other areas (i.e. those areas where errors are below
the perceivable threshold and thus not visible to a human observer). This per-
ceptual error metric takes the form of Dalys [25] Visible Difference Predictor
(VDP).



Bolin and Meyer [10] devised a similar scheme, also using a sophisticated
vision model, in an attempt to make use of all HVS limitations. They integrated
a simplified version of the Sarnoff Visible Discrimination Model (VDM) into an
image synthesis algorithm to detect threshold visible differences and, based on
those differences direct subsequent computational effort to regions of the image
in most need of refinement. The VDM takes two images, specified in CIE XYZ
color space, as input. Output of the model is a Just Noticeable Difference (JND)
map. One JND corresponds to a 75% probability that an observer viewing
the two images would detect a difference [81]. They use the upper and lower
bound images from the computation results at intermediate stages and used the
predictor to get an error estimate for that stage. Drettakis et al introduced a
perceptual rendering pipeline which takes into account visual masking due to
contrast and spatial frequency[29]. Scenes are split into layers to account for
inter-object masking. Using a perceptually driven level of detail algorithm the
layers are then used to choose an appropriate level of detail for each object based
on predicted contrast and and spatial masking. A subsequent user study showed
that their algorithmic choices corresponded well with perceived differences in the
images. Masking has also been used in geometric modeling, Lavoué et. al. [65]
introduced the notion of roughness for a 3D mesh. Roughness gives a measure
of geometric noise on the surface, based on this noise masking can be invoked
to hide geometric distortions.

Applying a complex vision model at each consecutive time step of image
generation requires repeated evaluation of the embedded vision model. The
VDP can be expensive to process due to the multi-scale spatial processing in-
volved in some of its components. This means that in some cases the cost of
recomputing the vision model may cancel the savings gained by employing the
perceptual error metric to speed up the rendering algorithm. To combat this,
Ramasubramanian [100] introduced a metric that handles luminance-dependent
processing and spatially-dependent processing independently, allowing the ex-
pensive spatially-dependent component to be precomputed. Ramasubramanian
developed a physical error metric that predicts the perceptual threshold for
detecting artifacts in the image. This metric is then used to predict the sensi-
tivity of the HVS to noise in the indirect lighting component. This enables a
reduction in the number of samples needed in areas of an image with high fre-
quency texture patterns, geometric details, and direct lighting variations, giving
a significant speedup in computation.

Using validated image models that predict image fidelity, programmers can
work towards achieving greater efficiencies in the knowledge that resulting im-
ages will still be faithful visual representations. Also in situations where time
or resources are limited and fidelity must be traded off against performance,
perceptually based error metrics could be used to provide insights into where
computation could be economized with least visual impact.

In addition to Tone Mapping Operators (TMOs) being useful for rendering
calculated luminance to the screen [120, 63, 26, 103], they are also useful for
giving a measure of the perceptible difference between two luminances at a given
level of adaptation. This function can then be used to guide algorithms, such as



discontinuity meshing, where there is a need to determine whether some process
would be noticeable or not to the end user.

Gibson and Hubbold [42] have used features of the threshold sensitivity dis-
played by the HVS to accelerate the computation of radiosity solutions. A
perceptually based measure controls the generation of view independent radios-
ity solutions. This is achieved with an a priori estimate of real-world adaptation
luminance, and uses a TMO to transform luminance values to display colors and
is then used as a numerical measure of their perceived difference. The model
stops patch refinement once the difference between successive levels of elements
becomes perceptually unnoticeable. The perceived importance of any potential
shadow falling across a surface can be determined, this can be used to control
the number of rays cast during visibility computations. Finally, they use per-
ceptual knowledge to optimize the element mesh for faster interactive display
and save memory during computations. This technique was used on the adap-
tive element refinement, shadow detection, and mesh optimization portions of
the radiosity algorithm.

Discontinuity meshing is an established technique used to model shadows in
radiosity meshes. It is computationally expensive, but produces meshes which
are far more accurate and which also contain fewer elements. Hedley et al. [50]
used a perceptually informed error metric to optimize adaptive mesh subdivision
for radiosity solutions, the goal being to develop scalable discontinuity meshing
methods by considering visual perception. Meshes were minimized by discard-
ing discontinuities which had a negligible perceptible effect on a mesh. They
demonstrated that a perception-based approach results in a greater reduction
in mesh complexity, without introducing more visual artifacts than a purely
radiometrically-based approach.

Farrugia and Peroche [36] used a perceptual metric for discontinuity refine-
ment to develop a progressive radiance evaluation based on the work of Guo et.
al. [46]. Guo used an iterative process to construct an irregular subdivision of
the image in blocks which refer to smooth regions, or discontinuous regions to
build a Directional Coherence Map (DCM). As the algorithm proceeds the cur-
rent DCM dictates where new samples are taken. A contrast based perceptual
heuristic based on contrast over samples corresponding to the corners of each
block is used. Farrugia and Peroch extend this by applying a visual differences
predictor based on Pattanaik et al.s Multiscale Model of Adaptation and Spa-
tial Vision to classify their subdivision cells [94]. To speed up computation they
apply the metric over each cell pair using a statistical approach based on Albin
et. al. [2].

Recognizing that the illumination on a surface can be split into separable
components, which can be individually computed, Stokes et. al [113] introduced
a new approach which applied a perceptual metric on each component. After
a suite of psychophysical experiments to probe various global illumination sce-
narios they determined limited contribution of light path interaction and fitted
a mathematical model used to guide rendering based on the metric predicted
relative importance of each component as a function of visible surface materials.

Ramanarayanan et. al. noticed that when viewing an aggregate, observers



attend less to individual objects and focus more on overall properties such as
numerosity, variety, and arrangement. They also noted that rendering and
modeling costs increase with aggregate complexity, exactly when observers are
attending less to individual objects. They presented new aggregate perception
metrics to simplify scenes by substituting geometrically simpler aggregates for
more complex ones without changing appearance [98].

Ramanarayanan [99] worked toward developing a perceptual metrics based
on higher order aspects of visual coding and introduced the term ”Visual equiv-
alence”. Images are visually equivalent if they convey the same impressions of
scene appearance, even if they are visibly different. They conducted a series of
psychophysical experiments to investigate how object geometry, material, and
illumination interact influence appearance. In their paper they characterized
conditions under which two classes of transformations on illumination maps
(blurring and warping) yield images that are visually equivalent to reference
solutions, and from this developed a metric to predict visual equivalence.

3.3 Conclusion

Using validated image models that predict image fidelity, programmers can work
toward achieving greater efficiencies in the knowledge that resulting images will
still be faithful visual representations. Also in situations where time or resources
are limited and fidelity must be traded off against performance, perceptually
based error metrics could be used to provide insights into where computation
could be economized with least visual impact.

Some of the applications of visual perception in computer graphics were ex-
plored. For many applications computer imagery should not only be physically
correct but also perceptually equivalent to the scene it represents. Knowledge
of he HVS can be employed to greatly benefit the synthesis of realistic images
at various stages of production. Global illumination computations are costly in
terms of computation. There is a great deal of potential to improve the effi-
ciency of such algorithms by focusing computation on the features of a scene
which are more conspicuous to the human observer. Those features that are
below perceptual visibility thresholds have no impact on the final solution, and
therefore can be omitted from the computation, increasing efficiency without
causing any perceivable difference to the final image. Perceptual metrics in-
volving advanced HVS models can be used to determine the visible differences
between a pair of images. These metrics can then be used to compare and eval-
uate image quality. They can also be used within the rendering framework to
steer computation into regions of an image which are in most need of refinement,
and to halt computation when differences in successive iterations of the solution
become imperceptible.



Katerina Mania

4 Perceptually Motivated Simulation and Vir-
tual Environments

4.1 Introduction

Computer graphics algorithms have for long dealt with simulation of physics:
simulation of the geometry of a real-world space, simulation of the light propa-
gation in a real environment and simulation of motor actions with appropriate
tracking. Perception principles have subsequently been incorporated into ren-
dering algorithms [82], in order to save rendering computation, mainly following
the generic idea of “do not render what we cannot see” [77, 54, 68]. However,
with Virtual Environment (VE) simulator technologies aiming at simulating
real-world task situations, the research community is challenged to produce a
much more complex system which is perceptually optimized. We do not neces-
sarily require accurate simulation of physics to induce reality. Much less detail
is often adequate [127, 37, 72, 73].

4.2 Perceptually-based Selective Rendering

Perception principles have been incorporated into rendering algorithms in or-
der to optimize rendering computation and produce photorealistic images from a
human rather than a machine point of view. In order to economize on rendering
computation, selective rendering guides high level of detail to specific regions
of a synthetic scene and lower quality to the remaining scene, without com-
promising the level of information transmitted. Scene regions that have been
rendered in low and high quality can be combined to form one complete scene.
Such decisions are guided by predictive attention modeling, gaze or task-based
information.

In order to economize on rendering computation, previous research dealing
with interactive synthetic scenes has been focused on either rendering in high
quality the 2-3 degrees foveal region of vision and with less detail the periphery
of vision based on gaze information [70], or rendering in high quality the foveal
area based on a-priory knowledge of the viewers task focus [19, 114]. Gaze-
dependent rendering encounters difficulties of maintaining display updates free
of visual artifacts after a fast ( 4ms) eye saccade. Such processes are quite
computationally demanding, however, if the speed gaze-to-rendering issue is re-
solved, task performance results are indistinguishable to a fully fledged, high
resolution real-time environment. It has also been proposed to assign selective
high quality rendering in the visual angle of the fovea (2o) centered on the users
task focus [19, 114]. This approach, however, cannot be applied when there is no
overt task to be conducted. Moreover, there is no acceptable model of compar-
ing or predicting task-relevant saccades. Following a different approach, Haber
et al. [47] suggested rendering the informative areas of a scene in varying quality



based on saliency models. Such models aim to predict the visual features that
involuntarily attract visual attention such as object edges, sudden color changes
or movements. It was proposed that the most noticeable areas as derived from
saliency modeling should be rendered in higher quality. Bottom-up visual atten-
tion models are not shown to predict attention regions successfully [77]. Correla-
tion between actual human and computationally-derived scan-paths was found
to be much lower than predicted when carrying out a real-world task such as
making a cup of tea [35]. Moreover, we have no generally accepted model of
comparing scan paths.

A comprehensive approach should be task and gaze-independent, simulating
cognitive processes rather than predicting attention employing bottom-up pro-
cesses such as saliency models. A recent selective rendering approach exploits
existing research on memory schemata which could ultimately guide selective
rendering based on spatial cognition processes. Schemata are knowledge struc-
tures based on the notion that an individuals prior experience will influence
how he or she perceives, comprehends and remembers new information. When
participants are exposed to a large amount of information in a scene, cogni-
tive psychologists have suggested that schemata are used to guide the search
for information in memory [13]. A general premise derived from this research
is that information which is not related to the schema being used in retrieval
will be harder to recall than information which is schema related. In terms of
real world scenes, schemata represent the general meaning of a scene such as
office, theatre etc. Schemata influence memory of the objects in a given context
according to their association with the schema in place. When being exposed
to a synthetic environment, similar information should be transmitted between
the simulated scene and the real- world scene, both depicting a specific schema.
This would, in due course, indicate which objects or areas in a synthetic scene
could be rendered in lower quality without affecting information uptake but at
the same time reducing computational complexity [87].

Flannery and Walles [39] investigated how schema theories apply to real
versus virtual memories. Participants were instructed to explore either a virtual
or a similar real environment for 20 seconds, without prior knowledge that
their memory of the space would be subsequently assessed. Participants then
completed a recognition task. Recognition scores revealed that participants
had better recognition for consistent objects, but were more confident for the
recognition of the inconsistent objects.

Previous work [71, 72], included a preliminary investigation of the effect of
object type (consistent vs. inconsistent) and shadows (flat-shaded scene vs. ra-
diosity scene) on object memory recognition in a VE. The computer graphics
simulation was displayed on a Head Mounted Display (HMD) utilizing stereo
imagery and head tracking. Thirty-six participants across three conditions of
varied rendering quality of the same space were exposed to the computer graph-
ics environment and completed a memory recognition task. The high-quality
and mid-quality conditions included a pre-computed radiosity simulation of an
academics office (with 80% and 40% radiosity iterations computed respectively).
The low-quality condition consisted of a flat-shaded version of the same office.



Results revealed that schema consistent elements of the scene were more likely to
be recognized than inconsistent information. Overall, higher confidence ratings
were assigned to consistent rather than inconsistent items. Total object recog-
nition was better for the scene including rough shadows (mid-quality condition)
compared to the flat-shaded scene. The presence of accurate shadow informa-
tion, though, did not affect recognition of consistent or inconsistent objects,
therefore lower quality of rendering was adequate for better memory recogni-
tion of consistent objects. This study was limited to the investigation of subtle
shadow variations. Another experimental study employed a more extreme set of
rendering types: wireframe with added color, and full radiosity [87] (Figure 3).
The proportion of inconsistent/consistent objects was varied, and object recog-
nition tests ensured that all objects were easily recognized in all conditions. The
results showed a significant interaction between rendering type, object type, and
consistency ratio. This suggests that inconsistent objects are only preferentially
remembered if the scene looks normal or if there are many such objects in an
abnormal scene such as in the wireframe condition. It was also shown that mem-
ory performance is better for the inconsistent objects in the radiosity rendering
condition compared to the wireframe condition. We conclude that memory for
objects can be used to assess the degree to which the context of a VE appears
close to expectations.

Despite contradictory results in literature as detailed above, it seems that
perceptual information can be complemented by involuntary knowledge based
on past experience. Experimental studies in synthetic scenes have revealed that
consistent objects which are expected to be found in a scene can be rendered
in lower quality without affecting information uptake taking advantage of such
expectations, whereas inconsistent items which are salient would require a high
level of rendering detail in order for them to be perceptually acknowledged [71].
Therefore, by exploiting schema theory, it is possible to reduce computational
complexity, producing scenes from a cognitive point of view without affecting
information uptake and resulting in an entirely novel and interdisciplinary ap-
proach which is gaze, task and saliency-model independent. A novel selective
rendering system has been presented that exploits schema theory by identify-
ing the perceptual importance of scene regions [135]. Objects that have been
rendered in low and high quality are incorporated in a scene based on schema
expectations. The rendered quality of these objects will change in real time,
dependent on user navigation and interaction [87].

High level visual cognition is that which takes place late in the HVS, that
is parietal and temporal cortex and into the frontal lobes when decisions based
on visual information need to be made. Low level visual cognition is that which
takes place in the occipital lobe, early on in the visual processing stream, e.g.
the visual signal is received in the retinae, and initially passed through the Lat-
eral Geniculate Nucleus to the occipital lobe at the back. Thus, these higher
decision processes are unaffected by changes in the experiments, whilst normal
(visual) cognition occurs as long as the scene is realistic. Taken together, the
results of previous studies investigating the effect of schemas on object recogni-
tion suggest that high-level visual cognition is generally unaffected by ubiquitous



Figure 10: Task-based rendering [19].



Figure 11: Gaze-based rendering [70].

Figure 12: Schema memory experimental studies [87].



Figure 13: Selective Renderer Architecture [135].

graphics manipulations such as polygon count and depth of shadow rendering;
normal cognition operates as long as the scenes look acceptably realistic. On
the other hand, when the overall realism of the scene is greatly reduced, such
as in the wireframe condition, then visual cognition becomes abnormal. Specif-
ically, effects that distinguish schema-consistent from schema-inconsistent ob-
jects change because the whole scene now looks incongruent, and we have shown
that this effect is not due to a failure of basic recognition. Thus, a recipe for
anyone wishing to use such displays in studies of visual cognition is to construct
environments which look acceptably realistic in terms of polygon count but
need not be of very high quality. This relates to the kinds of high-level visual
cognitive effects we have studied here, such as object congruence. Lower-level
effects, such as recognition, can be dissociated from these high-level effects (but
make their presence felt when the scene is further degraded, e.g. when color is
removed from the wireframe scenes). Thus, high-level processes need somewhat
greater realism than low-level ones.

4.3 Behavioral Fidelity of Simulations based on Space Mem-
ory

The entertainment world appears to consider highly realistic visual quality one
of the keys to success, with cinematic quality graphics claimed for the next
generation of gaming consoles. On the other hand, when interactive immersive



Virtual Environments (VEs) are implemented for training rather than enter-
tainment purposes, visual quality might not be as significant. If the training
is to be effective, the skills acquired must transfer into the real world at ap-
propriate levels of performance. A VE with maximum visual and interaction
fidelity would result in a transfer of information equivalent to real world training
since the environments would be indistinguishable [73]. Visual fidelity refers to
the degree to which visual features in the VE conform to visual features in the
equivalent real environment [123, 106]. Functional realism refers to the com-
munication of similar information in the real and virtual world rather than the
aesthetics or physics, in the sense that users are able make the same judgments
and perform the same tasks as in the real world [37, 91].

It is tempting to replicate the real world as accurately as possible in order
to provide equivalent experiences [67]. Whilst arguably ideal, it is not yet com-
putationally feasible for this to occur. Trade-offs between visual/interaction
fidelity and computational complexity should be applied to a simulation system
without detracting from its training effectiveness [72, 125]. There is, therefore,
a call for efficient techniques assessing the fidelity of a VE and determine its
relationship with performance in order to economize on rendering computation
without compromising the level of information transmitted (functional realism)
[37].

The utility of Virtual Environment (VE) technologies for training systems
such as flight simulators is predicated upon the accuracy of the spatial repre-
sentation formed in the VE. Spatial memory tasks, therefore, are often incor-
porated in benchmarking processes when assessing the fidelity of a VE sim-
ulation for training. Spatial awareness is significant for human performance
efficiency of such tasks as it is dependent on spatial knowledge of an environ-
ment [64, 28, 130]. A central research issue, therefore, is how an interactive
synthetic scene is cognitively encoded and how recognition and memory of such
worlds transfer to real world conditions [72, 1, 38]. Previous research has exam-
ined the variables that communicate transfer of spatial knowledge acquired in a
simulation environment, in the real-world and discuss the form and development
of spatial awareness in VE training compared to either real-world training or
training with maps, photographs and blueprints [8, 6]. The suitability of VE
systems as effective training mediums was examined and was concluded to be
as effective as map or blueprint training. Configurational knowledge acquisi-
tion based on estimation of absolute distances and directions between known
points could yield training effects similar to training with photographs and real
world training [8]. Furthermore, estimation of travel distance from optic flow is
subject to scaling when compared to static intervals in the environment, irre-
spective of additional depth cues [40]. Past research often aims to identify the
minimum system characteristics relevant to rendering computations and inter-
action interfaces that would yield the maximum performance on a task or the
greatest sense of presence. For example, search objects rendered in global or
ambient illumination have been shown to take significantly longer to identify
than those rendered through a local illumination model [134]. What if the vi-
sual fidelity of a system should be assessed across a range of applications and



tasks? Could we interrogate the human cognitive systems that are activated
when training within VE scenes of varied visual or interaction fidelity in order
to identify whether such responses are transferable to the real-world task situa-
tion simulated? Which simulation characteristics should we optimize in order to
match the capabilities of the VE system to the requirements of these cognitive
systems?

Because of the wide-range of VE applications and differences in participants
across their backgrounds, abilities and method of processing information, an
understanding of how spatial knowledge is acquired within a VE, complement-
ing spatial memory performance per se, is significant. Common strategies may
be revealed across a range of applications and tasks. Recent research focuses
upon the effect of rendering quality (flat-shaded vs radiosity) on object-location
recognition memory and its associated awareness states while spatial knowledge
is transferred from a synthetic training environment into a real-world situation.
The main premise of this work is that accuracy of performance per se is an imper-
fect reflection of the cognitive activity that underlies performance on memory
tasks [74]. The framework to be presented has been drawn from traditional
memory research adjusted to form an experimental procedure [119, 11, 27].

Accurate recognition memory can be supported by: a specific recollection of
a mental image or prior experience (remembering); reliance on a general sense
of knowing with little or no recollection of the source of this sense (knowing);
guesses. Gardiner and Richardson-Klavehn [41] explained the remembering as
personal experiences of the past that are recreated mentally. Meanwhile know-
ing refers to other experiences of the past but without the sense of reliving
it mentally. The work of Tulving [119] first suggested that remembering and
knowing were measurable constructs. Through a series of experiments, Tulving
[119] reported that participants find it easy to distinguish between experiences
of remembering and knowing when self-reporting their experiences. The sense
of knowing has since been further divided into two related concepts. The cor-
rect answer may be just known without the associated recollection of contextual
detail associated with remembering or the answer may feel more familiar than
a uninformed guess, but cannot be considered as being known (familiar).

According to this theoretical framework derived from memory psychology,
measures of the accuracy of memory can be complemented by self-report of
states of awareness such as remember, know, familiar and guess during recog-
nition [24]. Previous studies have investigated the relationship between recog-
nition memory and simulation environments of varied visual and interaction
fidelity. Such work by the authors of this paper revealed varied distribution
of awareness states whilst overall accuracy remained the same across experi-
mental conditions suggesting that measurement of awareness states acts as a
useful additional measure to supplement the information provided by accuracy
[75, 72].

A different study employing the same methodology aims to interrogate the
mental processes associated with obtaining spatial knowledge during exposure to
a simulated scene while transferring such knowledge in the real-world scene sim-
ulated [74]. An object-memory task was performed in the simulated real-world



environment immediately after VE training and a retention test was conducted
one week after the VE exposure. The virtual scene was rendered with one of
two levels of visual fidelity (flat shaded vs. radiosity rendering) and displayed
on a stereo Head Mounted Display (HMD). The experimental scene consisted
of a room depicting an academics office. Central to this work is identifying
whether high fidelity or low fidelity scenes are associated with stronger visu-
ally induced recollections represented by self-report of the remember awareness
state. A secondary, exploratory goal is to investigate the effect of schemas on
memory recognition post VE exposure. Memory recognition studies in syn-
thetic scenes have demonstrated that low interaction fidelity interfaces such as
the mouse compared to head tracking as well as low visual fidelity scenes pro-
voked a higher proportion of visually-induced recollections associated with the
remember awareness state, while there was no effect of condition upon memory
recognition performance [75, 72].

Broadly, desirable influences on recognition memory and the associated cog-
nitive states may be ultimately identified and generalized to aid specific appli-
cations. It could be true, for instance, that for flight simulation applications it
is crucial for trainees to refer to mental images associated with instruments as
opposed to recollections that are confident but not accompanied by mental im-
agery when training is transferred into a real-world flight situation. The study
presented, therefore, explores the effect of training in immersive environments of
varied visual fidelity on the distribution of memory awareness states measured
in a real-world task [74]. The fact that it has been shown that interfaces of low
interaction or visual fidelity induce a higher number of recollections based on
mental imagery when compared with systems of high visual or interaction fi-
delity, may relate to attentional resources directed to systems that vary strongly
from the real-world. The results demonstrated that participants who trained
in the low fidelity simulation reported a larger proportion of correct remember
responses while conducting the memory recognition task in the real-world sit-
uation compared to participants trained in the high fidelity simulation. These
results were consistent with previous findings that associated a larger proportion
of correct remember responses with low visual and interaction fidelity simula-
tions [75, 72]. The results observed consistently in previous studies was also
observed in this study despite the fact that participants physically performed
the task in the real-world room after training in its simulated counterpart con-
sisting of an ecologically plausible training scenario.

Recent developments in psychological research have shown that distinctive
information or experiences generate more awareness states associated with re-
membering. For example, participants who are shown typical and distinctive
faces are more likely to recognize the distinctive faces in a later memory test
with an accompanying experience of remembering [12]. Similar results have also
been found using other stimuli such as forenames [11] . In the current context,
a low fidelity rendered simulation could be considered as being more distinc-
tive than a high fidelity rendered simulation because of its variation from real.
Given that these are immersive environments, distinctiveness in this instance
would be judged relative to reality. The less real the environment is, the more



distinctive it can be considered. It would be expected that a more distinctive
immersive environment, e.g. a low fidelity one would result in more remember
responses than a less distinctive immersive environment, e.g. a high fidelity one.
It is worth noting that distinctiveness in this sense may not only refer to visual
distinctiveness but to motor responses to the environments [72]. The important
variable therefore appears to be differentiation relative to multiple aspects of
reality, e.g. visual appearance of, and, motor responses within. Here, higher
confidence scores associated with the flat-shaded condition compared to confi-
dence of recollections after training in the radiosity condition further support
this suggestion.

Whilst the relationship between distinctiveness and memory may prove use-
ful in explaining these effects it is important to consider what cognitive processes
may underlie such a relationship. Previous psychological research has indicated
that remember responses require more attentional processing in the first instance
than those based on familiarity [93, 12]. A tentative claim would therefore be:
immersive environments that are distinctive recruit more attentional resources.
This additional attentional processing may bring about a change in participants
subjective experiences of remembering when they later recall the environment.
This change would therefore lead to an increase in the experience of remember-
ing. Interestingly, this effect was not observed during the retest that revealed
similar proportions of awareness states distributed across the viewing conditions.
It is likely that the fidelity of the training environment only affects awareness
states when transfer of training is tested immediately. As time goes by, the
enhanced attentional resources associated with low fidelity environments do not
influence the long-term memories associated with the training simulation.

Moreover, it is found here that more correct know responses are reported
after training in the high fidelity rendered simulation than in the low fidelity
rendered simulation. This would suggest a shift from remember responses to
know responses. Memories that are accompanied with a feeling of remembering
for participants in the low fidelity simulation are only accompanied with a feeling
of knowing in the high fidelity simulation. In line with suggestions made above,
this could be explained on the basis of reduced attentional processing of these
items in the high fidelity simulation.

4.4 Investigating Perceptual Sensitivity to Head Tracking
Latency

Virtual Environment (VE) latency is the time lag between a users action in a
Virtual Environment and the systems response to this action. This lag typ-
ically takes the form of a transport delay and arises from the sum of times
associated with measurement processes of the various input devices, compu-
tation of the VE contents and interaction dynamics, graphics rendering, and
finite data transmission intervals between these various components. The VE
and human factors literature has established that these delays have a significant
impact on user performance [33], [32] and user impressions of simulation fidelity
[31, 33, 60, 78, 1]. Latency negatively affects user performance in 3D object



placement tasks [66, 128].
Excessive latency has long been known to hinder operator adaptation to

other display distortions such as static displacement offset [51]. Latency also
degrades manual performance, forcing users to slow down to preserve manipula-
tive stability, ultimately driving them to adopt a move and wait strategy [107] ,
[108]. Operator compensation for a delay usually requires the ability to predict
the future state of a tracked element.

Interest has more recently been directed toward the subjective impact of
system latency relevant to virtual reality simulations. Latency as well as update
rate have been considered as factors affecting the operators sense of presence in
the environment [129, 121]. In a recent study, lower latencies were associated
with a higher self-reported sense of presence and a statistically higher change
in heart rate for users while in a stress-inducing (fear of heights), photorealistic
environment involving walking around a narrow pit [83].

Since the combination of sensing, computation, rendering, and transmission
delay is unavoidable in most VE, tele-operation, and augmented reality applica-
tions, interest naturally is directed to how detectable differing levels of latency
might be. Both the quantification of perceptual sensitivity to latency and de-
scription of the mechanism by which VE latency is perceived will be essential to
guide system design in the development of countermeasures such as predictive
compensation [5, 60].

Previous research has also focused on the precision, stability, efficiency and
complexity of operation interaction and performance with latency-plagued sys-
tems [78]. Additionally, the first measures of human operators discrimination of
the consequences of latency during head or hand tracked movements have been
provided [34, 31] Related investigations have explored the hypothesis that ob-
servers do not explicitly detect time delay, but rather detect the consequences of
latencyi.e., they use the artifact motion of the VE scene (away from its normally
expected spatially stable location) caused by system time lags [1]. Relevant per-
ceptual thresholds (i.e., Just Noticeable Difference or JND) were identified to
average 8-17ms, depending on viewing condition. This psychometric quantity
appeared to be invariant across different pedestals (33, 100 and 200ms, stan-
dard stimuli). The apparent invariance of the detection function in [34, 31, 1]
demonstrated that the classic Webers Law of psychophysics (that JND is lin-
early proportional to the magnitude of the standard stimulus) did not hold
for latency. In other words, observers of long latency VEs will be as sensitive
to changes in latency as those who use prompter, more advanced systems. It
can also be inferred that the same sensitivity would also apply for comparisons
against zero latency pedestal.

Regan et al.[102] found 70.7% latency thresholds averaging 15ms for a spe-
cialized non-immersing CRT display. By making assumptions of Gaussian psy-
chometric functions and zero response bias for two-interval forced-choice judg-
ments with balanced presentation order, the 70.7% threshold from [102] can be
equated with a JND of 18.6ms.

Allison et al. 2001 observed on the other hand that with large virtual objects
occupying the full Head Mounted Display (HMD) Field-of-View (FOV), 50%



thresholds for perceived image instability (oscillopsia) were found to be 180-
320ms depending on head motion velocity [3]. This threshold indicates the
latency level at which observers were equally likely as not to say the image was
unstable and represents their average response bias or preference. Such response
biases may be attributable to, among other things, the amount of observer
training before the data was collected and the type of judgment task required. In
the case of Allison et. al. [3] participants performed single interval judgmentsi.e.,
they did not compare each presentation against a standard stimulus but relied
on their own internal notion of when an image was no longer stable. Data from
citeellis99a, [31], [1] shows their participants response bias ranged between 40
and 70ms for a two-interval judgment of whether the stimulus was the same as
or different than the pedestal standard. In contrast, the participants in [102]
were forced to choose which of the two stimulus intervals was actually the one
with added latency, which though not reported, leads to a presumption of zero
bias.

Figure 14: Experimental conditions [30], [73].

The much higher threshold reported by Allison et al. [3] might also be
attributable to the fact that their participants viewed a textured virtual back-
ground (the inside surface of red and white faceted sphere) that completely
enveloped their head and thus always occupied their entire FOV. Surrounding
observers with such a geometrically structured environment contributes to the
phenomenon of visual capture. The term visual capture implies that when con-
current multi-sensory spatial information is available, the observer will weight
the visual channel more heavily in constructing a percept. It has been demon-



strated that, even with very simple VE graphics in an HMD, visually discrepant
information will bias proprioceptive and vestibular feedback of static head pitch
angle [91]. Since awareness of VE image instability relies on visual, vestibular,
and proprioceptive information, the full structured background viewed in Alli-
son et al.s study [3] may have diminished their observers sensitivity to latency
induced oscillopsia. Furthermore, without the inclusion of nearer objects in
their environment, participant head movement does not trigger motion of scene
contents relative to the background and thus does not provide cues through
internal image shear.

One aim of ongoing research on latency perception at NASA Ames Research
Centre has been to quantify the latency that a VE system can exhibit without
being perceptible to the user. In our prior studies, we employed very sparse
environments containing only a single simple object such as a faceted sphere
[31], [34] or a hollow-framed octahedron [1]against an empty black background.
Synthetic environments with differing levels of graphical complexity with the
goal of extending the generality of our results for participant sensitivity latency
in VEs have been also employed by Mania et al.[73].

The focus of the [73] study is in describing observer sensitivity to latency
differences during head movements in an immersive VE representing a real-world
space (room, building, etc.)sensitivity that has not been measured in previous
research. On the one hand, because there could be an inherent association with
how the real world is perceived, we might expect observers to be more sensitive
to the visual consequences of latency when viewing a scene representing what
could be a real-world space rather than a sparse, simplified scene with only one
or two artificial objects. On the other hand, an enveloping structured scene
could promote visual capture, thereby degrading observers sensitivity to VE
latency.

During an earlier study more fully reported in [30], a simple white-red checker
sphere surrounding the observer, such as that used in [3] and/or a hollow-frame
octahedron in front of the observer, as in [1] served as the VEs visual con-
tent. Participants were asked to compare two sequential stimulus presentations
while moving their head in a constant pattern and report whether the stimuli
differed in the visible consequences of the experimentally manipulated VE la-
tency. The study presented here employed the same experimental methodology,
but instead, the visual scene was a pre-computed radiosity rendering of two in-
terconnected rooms that include real-world objects. Here, we also statistically
compare sensitivity results derived from Ellis et al. [30] and the study presented
in this paper. Both studies also explore whether relative motion shear between
more than one artificial object in the VE could be a mechanism contributing to
observer perception of head tracking latency.

In summary, results from these studies conducted at NASA Ames Research
Centre suggest that virtual environment system designers should expect ob-
servers who are not burdened with any other performance tasks to generally be
able to notice differences in latency as low as 15ms, regardless of the relative
location of objects in the scene, the meaningfulness of the scene context in re-
lation to the real world, or possibly even the degree of photorealism in their



rendering. These results will also serve as performance guidelines to aid in the
design of predictive compensation algorithms.
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•  Further analysis → for each rTMO for each image we compute the 
outlier index:

Outlier index (rTMOi) = (rTMOi Rating) – (Median rating across rTMOs)

•  And we plot the corresponding 
histograms…
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Artifacts introduced by rTMOs also visible in LDR renditions of 
the images
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• rTMO for bright images with large saturated areas 

• Simple global rTMOs for imperfect input images
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• rTMO for bright images with large saturated areas 

• Simple global rTMOs for imperfect input images

• Darker HDR depictions are usually preferred for 
bright input images [Meylan et al. 2006] 

• Contrast enhancement usually improves image 
quality [Rempel et al. 2007; Banterle et al. 2009]

! Expansion for Over-exposed Content
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! expansion

! Darkens overall appearance
! Increases contrast
»  Noise?

• rTMO for bright images with large saturated areas 

• Simple global rTMOs for imperfect input images

LDR Pixel Value

H
D

R
 N

or
m

al
iz

ed
 V

al
ue

!

! Expansion for Over-exposed Content

1. Background
2. Prev. Work

3. Experiment One
4. Experiment Two

5. ! 
expansion6. 
Conclusions

Ok, but… How do we choose ! for each image?
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Ok, but… How do we choose ! for each image?

! Expansion for Over-exposed Content

With the key
of the image
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Ok, but… How do we choose ! for each image?

1. Key [Akyüz and Reinhard 2006]

2. Pilot study adjusting ! manually to get best 
depiction

3. Best fit (see also [Masia et al. 2011])

! Expansion for Over-exposed Content

With the key
of the image
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Subjective evaluation – Experiment One (again)
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Banterle’s! expansion
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Objective evaluationDynamic range independent quality
assessment [Aydin et al. 2008]
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Contrast reversal

Dynamic range independent quality
assessment [Aydin et al. 2008]
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Objective evaluation

Contrast reversal
Loss of visible contrast

Dynamic range independent quality
assessment [Aydin et al. 2008]
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Objective evaluation

Contrast reversal
Loss of visible contrast
Amplification of invisible contrast

Dynamic range independent quality
assessment [Aydin et al. 2008]

Linear expansion LDR2HDR Banterle’s operator ! expansionSource LDR
image

Linear expansion LDR2HDR Banterle’s operator ! expansionSource LDR
image
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Objective evaluation

Contrast reversal
Loss of visible contrast
Amplification of invisible contrast
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Linear expansion LDR2HDR Banterle’s operator ! expansionSource LDR
image

! Expansion for Over-exposed Content
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5. ! 
expansion6. 
ConclusionsRecap & Conclusions

• Previous works on rTMO design have assumed correctly 
exposed input images

• Experiment One → for bright overexposed images the 
consensual approach of detecting and boosting saturated 
areas could be improved

• A ! expansion was proposed for these cases instead

• Subjective evaluation
• Objective evaluation

• Experiment Two ! spatial artifacts are more important 
than inaccuracy in reproduced intensity levels



1. Background
2. Prev. Work

3. Experiment One
4. Experiment Two

5. ! 
expansion6. 
ConclusionsThe future…

• This study aims to be valuable for further development of 
HDR display technology and for the design of future rTM 
algorithms

• Understanding the problem in its early stages is crucial for 
the development of new strategies → further tests are 
desirable






Diego Gutiérrez
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Perception-based image editing


The first photograph: Joseph Nicéphore Niépce,1826. Source:http://
palimpsest.stanford.edu/byorg/abbey/an/an26/an26-3/ an26-307.html.
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[Mitra et al. 2009]


http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/ 

































http://www.youtube.com/watch?v=PRRWGTridAY 









Overview

• [Oh et al. 2001]






Overview

• [Fang and Hart 2004]
• [Zelinka et al. 2005]
• [Fang and Hart 2006]




Overview

• [Khan et al. 2006]









Depicting procedural caustics in single images
D. Gutiérrez, J. López, F. Serón, M. Sánchez  E. Reinhard
Universidad de Zaragoza   University of Bristol
ACM Transactions on Graphics (SIGGRAPH Asia) 2008









Overview

• Why is this difficult?  
• It´s difficult enough in 3D: L S* D E 

http://blender3d.cz









Overview






Results




Psychophysics: Experiment 1

• As visually plausible as a full 3D photon mapping 
simulation?
• How would a simpler approach work?






Psychophysics: Experiment 1

• 2AFC




Results






Results




Compositing through light detection and relighting
J. López, D. Gutiérrez          E. Reinhard                   S. Hadap

       U. Zaragoza                    U. Bristol                    Adobe Inc.
Computers & Graphics (to appear, 2010)  









Inspired by [Ostrovski05]

























Painting with light 
J. López, D. Gutiérrez            S. Hadap              K. Anjyo

                        U. Zaragoza                Adobe Inc.        OLM Digital
                                      Submitted to NPAR 2010                           
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6 Realistic Characters, Faces and Animation



Characters & faces

Diego Gutierrez
Universidad de Zaragoza

Characters & faces

Diego Gutierrez
Universidad de Zaragoza

Many thanks to all the slides contributors: 
R. McDonnell, C. Ennis, H. W. Jensen, J. Jimenez

Download the latest version from:
http://web.me.com/annmcnamara/PerceptionCourse2011/Home.html



Background

• Crowd Variety Techniques
– Tecchia 02, Gosselin 05, Dobbyn 06, 
– Maim 07, Thalmann 07

• Visual Attention
– Yarbus 67, Itti 98, Yee 01

• Perception of Faces
– Farah 92, Hochstein 04, 
– Nothdurft 93, Sinha 06

 
Clone Attack: Perception of Crowd Variety

R. McDonnell et al. 2008

Eye-catching Crowds: Saliency Based Selective Variation

R. McDonnell et al. 2009

Seeing is believing: Body motion dominates in multisensory 
conversations

C. Ennis et al. 2010



Introduction

Introduction



• Appearance clones much easier to detect than 
motion clones

Results

Body-part Saliency

• What are the most salient parts of virtual characters?

Faces?

Clothing?

Hair 
style?



Setup

-Increment head fixation count
-Record fixation duration
-Add to running count for head

Setup



Setup

Full Variation



Selective Variation

Inverse-Selective Variation



No Variation

Trial Example



Trial Example

• Perception of conversing groups
– Cut scenes in video games
– Real time conversational groups
– Multisensory perception

Motivation



• 2 actor sets:
– 3 Male
– 3 Female

• Motion capture:
– 13 cameras
– 52 markers per actor

• Audio recording:
– Omni-directional microphone
– 3 Condenser microphones

Mocap Pic

Stimuli Creation

Debates



Dominant Conversations

Virtual Characters



• Does the presence of audio affect sensitivity to 
desynchronization?
– 19 participants (11M, 9F) 

• Will a richer localized audio signal help mask 
desynchronization better than mono audio?
– 13 participants (8M, 5F)

• If there is no audio present, will we find similar results?
– 12 participants (10M, 2F)

Experiment Design

• Audio does not mask 
desynchronization in general

• Match one character to audio
• Ensure talker / listener coordination

– Dominant easiest to mix and match
Results hold for males and females

Guidelines



• Scaling to large 
crowds and 
outdoors

• Detailed animation 
for close-ups

• Group dynamics

Future Work

Introduction



Faces

• Images from [Miranda et al. 2011]



• Lying or telling the truth?
• High quality (HQ) was caught lying more 

often than NPR
• Subtle cues easier to detect in HQ?



Modeling and animating eye blinks
Trutoiu et al. 2011



Subsurface scattering



Subsurface scattering

Slide by Henrik Wann Jensen

Subsurface scattering



• 2AFC (no reference)
• Task description

– Choose the image which you think look most realistic (i.e. 
most like real human skin)

– Unlimited viewing time (10 sec recommended)
– Person has the same age (45 years old)

Screen-Space Perceptual Rendering of Human Skin
Jorge Jimenez, Veronica Sundstedt and Diego Gutierrez
ACM Transactions on Applied Perception, Vol. 6(4), Article 23

Faces



A Practical Appearance Model for Dynamic Facial Color
Jorge Jimenez, Timothy Scully, Nuno Barbosa, Craig Donner, Xenxo 
Alvarez, Teresa Vieira, Paul Matts, Veronica Orvalho, Diego Gutierrez and 
Tim Weyrich
ACM Transactions on Graphics, Vol. 29(5) (SIGGRAPH Asia 2010)

Faces



Faces

Faces



APGV

7 Trends from the 8th annual ACM/Eurographics
Symposium on Applied Perception in Graph-

ics and Visualization 2011

7.1 APGV Proceedings and Resources

In 2001 a small group of researchers gathered in Snowbird for a “campfire”
on Graphics and Perception, there was a certain air of excitement that things
were getting started. The growing interest in this area, and the realization that
perception is playing an increasingly important role in graphics and visualization
lead to the establishment of a symposium dedicated to perceptual research in
graphics and visualization, called APGV - Applied Perception in Graphics and
Visualization. The goal for this symposium is to have it serve as an inclusive
forum where researchers working at the intersection of perception, graphics and
visualization can come together to share ideas and results. APGV hopes to
provide a great opportunity for people not only to acquire new knowledge, but
also to seek new partnerships and collaborations. Now in it’s 7th year papers
of the years have represented active interdisciplinary efforts. A wide range
of topics have treated . including color, shape, motion, distance judgments,
virtual reality, and haptics, as well as application areas such as product design
and medicine. Please see http://www.apgv.org and this years proceedings for
further information, [22, 20, 21, 23, 96, 95, 112].
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