
Recent Advances in Real-Time Collision and Proximity
Computations for Games and Simulations

Organizer:

- Sung-eui Yoon and Young J. Kim

Lecturers (alphabetic order):

- Takahiro Harada, Young J. Kim, and Sung-eui Yoon

Abstract:
This course is intended for instructing students and practitioners on recent developments related to collision and
proximity computations for interactive games and simulations.

There have been significant advances in various physics-based simulation techniques for movies, interactive
games, and virtual environments. Most recent work has been on achieving realistic simulations of rigid,
articulated, deforming, and fracturing models. However, many complex and challenging simulations (e.g.,
fracturing simulation) are not widely used in interactive games because of their computational requirements,
although the hardware capability of current CPUs and GPUs has considerably improving. It is well known that
one of the main performance bottlenecks in most simulations lies in proximity queries including collision
detection, minimum separation distance, and penetration depth computations.

As a result, there has been significant recent research on developing real-time proximity computation algorithms
for interactive games and high-quality simulations. Some of recent advanced techniques are able to achieve
interactive performance even for most challenging simulations such as fracturing or large-scale cloth
simulations. However, these techniques are quite complicated. Moreover, they require in-depth geometric
background and sophisticated optimizations on multi-core architectures. These techniques, therefore, have not
been easily accessible to students and practitioners who work on real-time simulation methods.

Our objective is to introduce and teach students and practitioners about efficient proximity computation methods
and their practical implementations. By doing so, we can expose the attendees to the latest developments, to
bridge the gap between the two different fields: proximity computation and simulation. At a broad level, this
course will cover the following topics:

• Basic algorithms for various proximity queries including collision detection, minimum separation
distances, penetration depth, etc.

• Discrete and continuous algorithms for rigid, articulated, deforming, and fracturing models.
• Parallel algorithms that utilize many cores of CPUs, GPUs, or CPUs/GPUs.
• Applications of various proximity queries in Havoc, a widely used Physics simulation package
• Optimized proximity data structures for many-core architectures including GPU
• Integrating proximity computation algorithms into physically-based simulation systems.

We have three instructors from academia and industry, each of who has significant experiences in designing and
implementing different aspects of the aforementioned teaching materials. Since each instructor is a world-class
expert in his field, students will receive the best instruction. Moreover, students and practitioners can learn how
the industry-leading physics middleware, Havok, benefits from efficient proximity queries, in addition to getting
the overall understanding of these libraries.

Relate courses:
To the best of our knowledge, there have been no courses on topics similar to ours, at least within the last three
years at SIGGRAPH. However, we will offer a similar course at the SIGGRAPH this year. The main difference
between this proposal and the one for SIGGRAPH 2010 is the speaker list; Prof. Dinesh Manocha, Erwin
Coumans (Sony Entertainment), and Richard Tonge (Nvidia) do not participate in this course, but Dr. Takahiro
Harada (currently at AMD and previously at Havok) will talk about GPU- and Havok-related issues.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1900520.1900542&domain=pdf&date_stamp=2010-12-15

Proposed Schedule:

8:30am: Introduction (Yoon)
9:15am: Real-time continuous collision detection and penetration depth computation for rigid and articulated
characters (Kim)

10:15: Break

10:15am: Collision detection for deformable and fracturing models (Yoon)
11:00am: Recent parallel techniques for collision detection and its application to physics simulation on the GPU
(Harada)

12:00pm: Q&A session (All)
12:15pm: Close

Talk Syllabus:

1. Introduction (Yoon)
Summary: We explain a basic collision detection method based on a bounding volume hierarchy. We explain
how to perform inter- and intra-collision detection methods in an efficient manner, followed by discussing the
difference between discrete and continuous collision detection. We also introduce other related proximity
queries (e.g., minimum separation distance).

Syllabus:

 Basic collision detection methods
 Bounding volume hierarchies and their operations
 Self- and inter-collision detection methods.
 Discrete and continuous detection methods.

2. Real-time Continuous Collision Detection and Penetration Depth Computation for

Rigid and Articulated Characters (Kim)

Summary: Maintaining the non-penetration constraint is a crucial problem for realistic simulations of rigid and
articulated bodies. Recent researches show that the two seemingly conflicting approaches based on penetration
avoidance and recovery turn out to be complementary to each other and are both useful for imposing the non-
penetration constraint. In this talk, we present a penetration avoidance technique based on continuous collision
detection (CCD) by taking into account of the underlying character motion. We also explain a penetration
recovery technique based on penetration depth (PD) computation. Finally, we describe a practical method to
implement these collision and penetration queries in a relatively simple manner, which can guarantee interactive
performance at run-time, and also demonstrate how these queries can be integrated into real-time physics
simulation.

Syllabus:

 Continuous collision detection algorithms for rigid models
 Continuous collision detection algorithms for articulated models
 Penetration depth computation for rigid models
 Application of continuous collision detection and penetration depth to real-time physics simulation

3. Collision Detection for Large-Scale Deforming and Fracturing Models (Yoon)

Summary: Many physically-based simulations used in games and movies are heavily using different types of
deforming models. Unlike handling rigid models, deforming models can have self-collisions. Therefore, the
performance of collision detection for deforming models has been known to be significantly slower than that for
rigid bodies. In this talk, we describe various optimization methods that have been designed recently to improve
the performance of discrete and continuous collision detection for deforming models. We also cover most recent
techniques designed for fracturing simulations, which are one of the most challenging simulations in terms of
collision detection.

Syllabus:

• BVH update and reconstruction methods for deforming and fracturing models
• Efficient self-collision detection method
• Various culling techniques for intra- and self-collisions
• Hybrid parallel algorithms

4. GPU-based collision detection and proximity computations (Harada)

Summary: The trend of processor technology is to increase the number of cores on a processor. On these
processors, technologies developed for a single core processor cannot be used to achieve high performance.
Thus, developing technologies for these parallel processors are getting more and more important. This session
starts with an introduction of parallel computation on the GPU. Later, it presents recent techniques for collision
detection and its application to physics simulation on the GPU.

Syllabus:

 GPU-friendly rigid and paticle-based simulations
 GPU-friendly collision detection methods
 Techniques using multiple GPUs
 Parallel contact handling

Real-time Continuous Collision Detection

and Penetration Depth Computation

Young J. Kim

http://graphics.ewha.ac.kr
Ewha Womans University

http://graphics.ewha.ac.kr/

Autonomous Ice Serving Robot
(with Zhixing Xue at FZI)

http://graphics.ewha.ac.kr

Non-penetration Constraint

• No overlap between geometric objects

• Crucial for mimicking the physical presence

interior()A B  

A BA B A B

http://graphics.ewha.ac.kr

Earlier Research

• Focused on checking for whether there is any
overlap between A and B, fixed in space

– Tons of papers published in the area of collision

detection

– Well-studied and matured technology

• Not clear how to resolve such overlap

http://graphics.ewha.ac.kr

Recent Research Trends

• Avoid inter-penetration
– Continuous collision detection (CCD)

• Allow inter-penetration but backtrack
– Penetration depth (PD)

A B A

http://graphics.ewha.ac.kr

Applications of Continuous CD

• Rigid body dynamics
– Find the time of contact (ToC) to apply forces

http://graphics.ewha.ac.kr

Applications of Continuous CD

• Motion planning
– Check whether a path is collision-free

http://graphics.ewha.ac.kr

Applications of Penetration Depth

• Dynamics simulation
– Penalty-based
– Impulse-based

BA

Penetration
Depth

Point of
Impact

Impulse

http://graphics.ewha.ac.kr

Goal

• Recent research results
– CCD (rigid, polygon-soups, articulated)
– PD (pointwise, translational)

• Applications
– Real-time rigid body dynamics
– Robotic grasping
– CAD disassembly

http://graphics.ewha.ac.kr

CONTINUOUS COLLISION

DETECTION

http://graphics.ewha.ac.kr

Discrete Collision Detection

Collision Missing
http://graphics.ewha.ac.kr

Continuous Collision Detection

• Motion trajectory f(t) is known in advance

()f t
Time of Contact

http://graphics.ewha.ac.kr

Previous Work on CCD

• Algebraic solution -[Canny86], [Redon00], [Kim03], [Choi06]

• Swept volume -[Abdel-Malek02],[Hubbard93], [Redon04a,b]

• Bisection -[Redon02], [Schwarzer02]

• Kinetic data structures -[Kim98], [Kirkpatrick00], [Agarwal01]

• Minkowski sum -[Bergen04]

• Conservative advancement
– [Mirtich96], [Mirtich00],[Coumans 2006],[Zhang06], [Tang09]

http://graphics.ewha.ac.kr

Conservative Advancement (CA)

• Assume objects are convex

• Find the 1st time of contact (ToC) of a moving
object

http://graphics.ewha.ac.kr

ToC = + + +

Conservative Advancement (CA)

1. Find a step size to conservatively advance
the object until collision occurs

2. Repeat until inter-distance < ε

it

t1 t2 t3 t4

http://graphics.ewha.ac.kr

Calculating t in CA

p
d, n: closest distance,

direction vector
v: velocity

v

d

n

0

| () () |

t

v t n t dt



 d
0

max(| () () |)

t

v t n t dt



 



http://graphics.ewha.ac.kr

Calculating t in CA

0

| () () |

t

v t n t dt



 d
0

max(| () () |)

t

v t n t dt



 


t

d


 t d 

http://graphics.ewha.ac.kr

Extension to Non-convex
[Zhang et. al PG 06]

• Use of convex decomposition
• Build a hierarchy of decomposed convex pieces

and perform CA hierarchically

http://graphics.ewha.ac.kr

Santa vs. Thin Board

37K triangles

51,546 FPS

of iterations
3.68

http://graphics.ewha.ac.kr

Bunny vs. Bunny

70K triangles/bunny 110 FPS # of iterations 4.7http://graphics.ewha.ac.kr

Torusknot vs. Torusknot

2.8K
1067 FPS

11K
400 FPS

34K
186 FPS

of iterations 4.49

of iterations 4.49

of iterations 4.46
http://graphics.ewha.ac.kr

Extension to Polygon-Soups
[Tang et. al IEEE ICRA 09]

• Construct the bounding volume hierarchy of
polygons

• Motion bound calculation
– Bounding volume
– Triangles

d
t


 

http://graphics.ewha.ac.kr

Extension to Polygon-Soups
[Tang et. al IEEE ICRA 09]

• We use swept sphere volumes

[Larsen et. al IEEE ICRA 1999]

http://graphics.ewha.ac.kr

Motion Bound Calculation

• Motion bound of SSV (e.g. PSS)

 1

:

:

:

 closest direction
radius of PS

rotational velocity

S

   

r

ω n c r

n

ω

http://graphics.ewha.ac.kr

Controlling the CA Iterations

0

1

2

3

1 2 3 4 5 6 7 8
timing distance

Normalized distance

timing(ms)

Iteration step

Distance
threshold

1. Compute approximate distance in the beginning
2. Compute exact distance toward the end

http://graphics.ewha.ac.kr

Results - Timings

0 5 10 15 20 25 30 35 40 45 50 55

C
lu

b
s

G
ea

rs

C2A Without C2AC2A

(ms)

28X

4X

4X

Without C2A

H
am

m
er

(ms)

http://graphics.ewha.ac.kr

Comparisons against [Zhang 06]

• [Zhang 06] can handle only manifold surfaces

0 1 2 3 4 5

Dynamic Bunnies

Bunnies

Toruskots

C2A
FAST

(ms)

C2A
Zhang 06

http://graphics.ewha.ac.kr

Extension to Articulated Models
[Zhang et. al SIGGRAPH 07]

• Treat each link as a
rigid body

• Apply CA to each link
independently

• Taking the minimum
of CA results

http://graphics.ewha.ac.kr

Motion Bound Calculation

1
0 0 0 1 0 1 1

1 1 1 1

2 2

ji
j k j

j k j

j k
 




  

 

  
         

  
 υ n n ω L υ n ω ω L

0L1

1L2

2L3

0ω1

1ω2

2ω3

0vi: velocity of link i

i-1ωi: rotational velocity
of link i w.r.t. link i-1

i-1Li: difference vector
btwn the links

d
t


 

http://graphics.ewha.ac.kr

Problems in Straightforward CA

• Problems
– O(n2) checking

between individual
links

http://graphics.ewha.ac.kr

Spatial Culling

• Cull the link pairs that
are far apart

• Use bounding
volume-based
collision-culling

http://graphics.ewha.ac.kr

Spatial Culling using Dynamic AABB

• Goal
– Compute an axis-aligned

bounding box (AABB) that
bounds the motion of a
moving link

http://graphics.ewha.ac.kr

Bounding Volume Culling

Interval Arithmetic Taylor Models
http://graphics.ewha.ac.kr

Locomotion Benchmark

• CCD

performance

– 1.22 msec

• Mannequin
– 15 links, 20K tri

• Obstacles
– 101K tri

• Locomotion SW
– FootstepTM

http://graphics.ewha.ac.kr

Exercise Benchmark

• Mannequin
– 15 links, 20K

triangles

• Self-CCD

performance

– 0.38 msec

http://graphics.ewha.ac.kr

Motion Planning Benchmark 1

• Excavator
– 52 links, 19K tri

• Obstacles
– 0.4M tri

• CCD

performance

– 100~700 msec

http://graphics.ewha.ac.kr

Motion Planning Benchmark 2

• Tower crane
– 14 links, 1288 tri

• CCD

performance

– 5.66~15.1 msec

http://graphics.ewha.ac.kr

Articulated Body Dynamics Benchmark

• Four trains
– 10 links, 23K tri

(each)

• CCD

performance

– 535 msec

http://graphics.ewha.ac.kr

Software Implementations

• Source codes are available

– http://graphics.ewha.ac.kr/FAST (2-manifold)
– http://graphics.ewha.ac.kr/C2A (polygon-soups)
– http://graphics.ewha.ac.kr/CATCH (articulated)

http://graphics.ewha.ac.kr

http://graphics.ewha.ac.kr/FAST
http://graphics.ewha.ac.kr/C2A
http://graphics.ewha.ac.kr/CATCH

PENETRATION DEPTH

COMPUTATION
http://graphics.ewha.ac.kr

Pointwise Penetration Depth
[Tang et. al SIGGRAPH 09]

• Defined as deepest interpenetrating points

http://graphics.ewha.ac.kr

1. Find intersection surfaces and

2. Penetration depth =

Pointwise Penetration Depth

B

BA

A
Penetration

Depth

Pointwise Penetration Depth

Demo (40K Bunny vs 40K Bunny)
http://graphics.ewha.ac.kr

Benchmark: Pointwise PD

Model complexity

– 50K tri

Avg. Performance

– 3.88ms/pair

http://graphics.ewha.ac.kr

Benchmark: Pointwise PD

Model complexity

– 3.5K tri

Avg. performance

– 0.95ms/pair

http://graphics.ewha.ac.kr

Penetration Depth
[Dobkin 93]

• Minimum translational
distance to separate
overlapping objects

BA

Penetration
Depth

http://graphics.ewha.ac.kr

Previous Work on PD

• Convex polytopes -[Cameron and Culley86], [Dobkin93],
[Agarwal00], [Bergen01], [Kim04]

• Non-convex polyhedra -[Kim02],[Redon and Lin06],
[Lien08a,b], [Hachenberger09]

• Distance fields -[Fisher and Lin01], [Hoff02], [Sud06]

• Pointwise PD -[Tang09]

• Generalized PD – [Ong and Gilbert96], [Ong96], [Zhang07]

• Volumetric PD - [Wellner and Zachmann09]

http://graphics.ewha.ac.kr

Minkowski Sum

{ | , }P Q P Q    p q p q

{ | , }P Q P Q    p q p q

P

Q

P Q

http://graphics.ewha.ac.kr

Proximity VS Minkowski Sum

P Q

Penetration Depth

Closest Distance

http://graphics.ewha.ac.kr

Combinatorial Explosion

• Complexity of Minkowski Sum
– O(m3n3) with m and n triangles

http://graphics.ewha.ac.kr

PD Estimation

o Boundary of
Minkowski Sums

Penetration Depth

http://graphics.ewha.ac.kr

Out-Projection = CCD

o

f
q

0q

Out-Projection

Boundary of
Minkowski Sums

http://graphics.ewha.ac.kr

In-Projection = LCP
(Linear Complementarity Problem)

o

In-Projection

2q

Boundary of
Minkowski Sums

Je et. al Tech Report 2010

http://graphics.ewha.ac.kr

PolyDepth: Iterative Optimization

o

f
q

0q

Out-Projection

1q

In-Projection

2q

Boundary of
Minkowski Sums

Penetration Depth

http://graphics.ewha.ac.kr

PolyDepth Performance

• Spoon: 1.3K triangles
• Cup: 8.4K triangles

• Time: 1~7 msec

http://graphics.ewha.ac.kr

PolyDepth Performance

• Bunny: 40K triangles
• Dragon: 174K

triangles

• Time: 2~15 msec

http://graphics.ewha.ac.kr

Comparison against Exact Solution

Accuracy

Performance

http://graphics.ewha.ac.kr

APPLICATIONS

http://graphics.ewha.ac.kr

Real-time Physics Simulation using PD

802K triangles in total214K triangles in total

http://graphics.ewha.ac.kr

Integration with Physics Engine

http://virtualphysics.kr

http://graphics.ewha.ac.kr

http://virtualphysics.kr/

Robotic Grasping using CCD

With Zhixing Xue @ FZI

http://graphics.ewha.ac.kr

CAD Disassembly using CCD

With Liangjun Zhang @ Stanford/UNC
http://graphics.ewha.ac.kr

Summary

CCD PD

Concept Collision avoidance Collision correction

Usages

1. Constraint-based
dynamics

2. Exact motion
planning

3. Grasping

1. Penalty-, impulse-
based dynamics

2. Retraction-based
motion planning

Complexities O(mn) O(m3n3)

http://graphics.ewha.ac.kr

Future Work

• Continuous collision detection
– N-body
– Non-linear motion

• PD
– Articulated body
– Deformable
– N-body

http://graphics.ewha.ac.kr

Collision Culling of a Million Bodies on GPUs
Friday, 11:00 AM, Room E1-E4

Real-time Dynamics Simulation of 16,000 Rigid Bodieshttp://graphics.ewha.ac.kr

Acknowledgements

• Min Tang, Xinyu Zhang, Minkyoung Lee,
Youngeun Lee (Ewha)

• Stephane Redon (INRIA)
• Dinesh Manocha (UNC)
• Liangjun Zhang (Stanford)
• Zhixing Xue (FZI)

• KEIT/MKE (IT core research)
• KRF (Young investigator award)

http://graphics.ewha.ac.kr

Main References

• X. Zhang, M. Lee, Y. Kim, Interactive Continuous Collision

Detection for Non-convex Polyhedra, Pacific Graphics 2006
http://graphics.ewha.ac.kr/FAST

• X. Zhang, S. Redon, M. Lee, Y. Kim, Continuous Collision

Detection for Articulated Models using Taylor Models and

Temporal Culling, SIGGRAPH 2007
http://graphics.ewha.ac.kr/CATCH

• M. Tang, Y. Kim, D. Manocha, C2A: Controlled Conservative

Advancement for Interactive Continuous Collision Detection,
IEEE ICRA 2009 http://graphics.ewha.ac.kr/C2A

http://graphics.ewha.ac.kr

http://graphics.ewha.ac.kr/FAST
http://graphics.ewha.ac.kr/CATCH
http://graphics.ewha.ac.kr/C2A

Main References

• M. Tang, M. Lee, Y. Kim, Interactive Hausdorff Distance

Computation for General Polygonal Models, SIGGRAPH 2009
http://graphics.ewha.ac.kr/HDIST

• C. Je, M. Tang, Y. Lee, M. Lee, Y. Kim, PolyDepth: Real-time

Penetration Depth Computation using Iterative Contact-space

Projection, Ewha Technical Report 2010
http://graphics.ewha.ac.kr/PolyDepth

• M. Tang, Y. Kim, D. Manocha, Efficient Local Planning using

Connection Collision Query, Workshop on Algorithmic
Foundations of Robotics 2010
http://graphics.ewha.ac.kr/CCQ

http://graphics.ewha.ac.kr

http://graphics.ewha.ac.kr/HDIST
http://graphics.ewha.ac.kr/PolyDepth
http://graphics.ewha.ac.kr/CCQ

Thank you for listening!

http://graphics.ewha.ac.kr

http://graphics.ewha.ac.kr/

I t ti C lli i D t ti fInteractive Collision Detection for
Deformable and Fracturing Objectsg j

Sung-Eui Yoon
Scalable Graphics Lab.

KAIST

http://sglab.kaist.ac.kr/~sungeui/

GoalsGoals
Achieve interactive performance for● Achieve interactive performance for
collision detection among deformable and
fracturing modelsfracturing models
● E.g., deforming models consisting of tens or

hundreds of thousand triangles

<Cloth-ball 94K triangles> <Breaking dragon 252K triangles>

2

<Cloth ball, 94K triangles> <Breaking dragon, 252K triangles>

OverviewOverview
Background● Background

●HPCCD: Hybrid parallel continuous
collision detectioncollision detection

● FASTCD: Fracturing-Aware Stable Collision
DetectionDetection

3

OverviewOverview
Background● Background

●HPCCD: Hybrid parallel continuous
collision detectioncollision detection

● FASTCD: Fracturing-Aware Stable Collision
DetectionDetection

4

BackgroundBackground
BVH based collision detection● BVH-based collision detection

● BVH construction

●Updates BVHs as models deforms
● Reconstruction from scratch
● Refitting

S l ti t ti● Selective reconstruction

5

BVH RefittingBVH Refitting
Refit BVs with deformed vertices●Refit BVs with deformed vertices
● Performed efficiently in a bottom-up traversal
● Can have loose BVs when deformation levels● Can have loose BVs when deformation levels

are high

Frame 1Frame 1 Frame 2Frame 2Frame 2Frame 2

6

BVH Selective RestructuringBVH Selective Restructuring
Restructure only subsets of BVHs after●Restructure only subsets of BVHs after
refitting BVs

RestructureRestructure

BVH
●Requires a metric indentifying such

b

BVH

subsets
● Volume ratios of BVs of parent and child BVs

[Zachmann 02 Larsson et al 06 Yoon et al

7

[Zachmann 02, Larsson et al. 06, Yoon et al.
06]

OverviewOverview
Background● Background

●HPCCD: Hybrid parallel continuous
collision detectioncollision detection

● FASTCD: Fracturing-Aware Stable Collision
DetectionDetection

8

Discrete vs ContinuousDiscrete vs. Continuous

●Discrete collision detection (DCD)
● Detect collisions at each frame
● Fast, but can miss collisions

Miss collisions

Frame1 Frame2

9

Frame1 Frame2

Discrete vs ContinuousDiscrete vs. Continuous

●Discrete collision detection (DCD)
● Continuous collision detection (CCD)()

● Identify the first time-of-contact (ToC)
● Accurate, but requires a long computation time, q g p
● Not widely used in interactive applications

Frame1 Frame2

The first time-of-contact (ToC)

10

Frame1 Frame2

Inter and Self CollisionsInter- and Self-Collisions

● Inter-collisions
● Collisions between two

bj tobjects

● Self-collisions
● Collisions between two

regions of a deformable
object
Takes a long comp tation● Takes a long computation
time to detect

11

From Govindaraju’s paper

Parallel Computing TrendsParallel Computing Trends

●Many core architectures
● Multi-core CPU architectures
● GPU architectures

●Heterogeneous architecturesg
● Intel’s Larabee and AMD’s Fusion

●Designing parallel algorithms is important
to utilize these parallel architecturesto utilize these parallel architectures

12

Recent Parallel Collision
Detection MethodsDetection Methods

● CPU-based CD method
● Tang et al., Solid and Physical Modeling, 2009

● gProximity● gProximity
● Laterbach et al., Eurographics 2010

●Hybrid parallel CD method●Hybrid parallel CD method
● Kim et al., Pacific Graphics 2009

13

Recent Parallel Collision
Detection MethodsDetection Methods

● CPU-based CD method
● Tang et al., Solid and Physical Modeling, 2009

● gProximity● gProximity
● Laterbach et al., Eurographics 2010

●Hybrid parallel CD method●Hybrid parallel CD method
● Kim et al., Pacific Graphics 2009

14

HPCCD: Hybrid Parallel CCDHPCCD: Hybrid Parallel CCD

●Utilize both multi-core CPUs and GPUs
● No locking in the main loop of CD
● GPU-based exact CD between two triangles

●High scalability & interactive performanceg y p

GPU

CCDM eMulti-core
CPU

M eMulti-core
CPU

GPU

…

…

CCDCPU CPU
GPU

15

Task DistributionTask Distribution

BVH update BVH traversal Elementary tests

R d S l i bi ti-Random accesses - Solving cubic equations

CCD- Branch prediction Streaming processors
CCD

Elementary
tests

Branch prediction
- Caching optimized with floating

point operations
BVH update and traversal

tests

Multi-core CPUs GPUs

16

GPUs

Testing EnvironmentTesting Environment
Machine●Machine
● One quad-core CPU (Intel i7 CPU, 3.2 GHz)
● Two GPUs (Nvidia Geforce GTX285)● Two GPUs (Nvidia Geforce GTX285)

●Run eight CPU threads by using Intel’s
hyper threading technologyhyper threading technology

17

BVH based CCDBVH-based CCD
Axis aligned bounding boxes● Axis-aligned bounding boxes

● Linear interpolations on vertices for the
continuous motioncontinuous motion
● Vertex-face and edge-edge tests for CCD

[Provot 96][Provot 96]
● Feature based BVHs [Curtis et al., I3D 08]

● Assign each features (e.g., vertex and edge) to● Assign each features (e.g., vertex and edge) to
each triangle

18

ResultsResults

19

Results of a CPU-based Parallel
CCDCCD
8s) 8s)

5
6
7
8

 (
ti

m
es

5
6
7
8

 (
ti

m
es

7.1
Ideal
Our method
Naïve

3
4
5

ve
m

en
t

3
4
5

ve
m

en
t Naïve

3 5

1
2

1 2 3 4 5 6 7 8Im
p

ro
v

1
2

1 2 3 4 5 6 7 8Im
p

ro
v 3.5

1 2 3 4 5 6 7 8
Number of Threads

1 2 3 4 5 6 7 8
Number of Threads

●Remove locking in the main loop of CDg p
● Employ efficient dynamic load-balancing

based on inter-CD task units

20

Results of HPCCDResults of HPCCD

As the number of GPUs is increased we get● As the number of GPUs is increased, we get
higher performances

21

LimitationLimitation
Low scalability for small rigid models● Low scalability for small rigid models

22

SummarySummary
A hybrid parallel algorithm● A hybrid parallel algorithm
● Utilize both multi-core CPUs and GPUs

●High scalability
● About 13 times performance improvement forThe implementation code is available as OpenCCD● About 13 times performance improvement for

CCD by using a quad-core CPU and two GPUs
compared with using a single CPU core

The implementation code is available as OpenCCD
library (http://sglab.kaist.ac.kr/OpenCCD)

p g g

● Interactive performance● Interactive performance
● Show 19-140 FPS for various deformable

models consisting of tens or hundreds of

23

thousand triangles

OverviewOverview
Background● Background

●HPCCD: Hybrid parallel continuous collision
detectiondetection

● FASTCD: Fracturing-Aware Stable Collision
DetectionDetection

24

CD for Fracturing ModelsCD for Fracturing Models
More widely used in various applications to●More widely used in various applications to
create more realistic interactions

● Fracturing● Fracturing
● Changes the connectivity of a mesh: pre-

computed hierarchies show low culling ratioscomputed hierarchies show low culling ratios
● Places many objects in close proximity: CD cost

is increasing

● Fracturing is one of the most
h ll i i fchallenging scenarios of

collision detection

25

Our ApproachOur Approach
FASTCD: Fracturing Aware Stable CD● FASTCD: Fracturing-Aware Stable CD
● Incrementally update meshes and BVHs by

utilizing topological changes of modelsutilizing topological changes of models
● Design a simple self-CD culling method without

much pre-computationsp p

26

CCD Performance with the
Breaking Dragon ModelBreaking Dragon Model

FASTCD

252K triangles dynamic topology
Tang et al. 08

252K triangles, dynamic topology

● FASTCD shows stable performance

27

Selective Restructuring of BVHsSelective Restructuring of BVHs
A d l d f lli ffi i f th i BVH● As models deform, culling efficiency of their BVHs
can be getting lower
● Selective restructuring can address the● Selective restructuring can address the

problem

Deform Restructuring

● How to determine a culling efficiency of a BVH?
● Heuristic metrics have been proposed

● A cost metric that measures the expected number

28

of intersection tests is proposed

Metric ValidationMetric Validation
E ti t d # f t t Ob d # f t t● Estimated # of tests vs. Observed # of tests

Observed # of intersection tests

Estimated costs

● Linear Correlation : 0.71
● Tested with various models (0.28 ~ 0.76 , average 0.48)

29

● Tested with various models (0.28 ~ 0.76 , average 0.48)

Result of Selective RestructuringResult of Selective Restructuring

● LM metric : [Larsson and Akenine-Möller 2006]
252K triangles, dynamic topology

● LM metric : [Larsson and Akenine Möller 2006]
● Performance degradations at topological changes
 unstable

30

 unstable

Fast BVH Construction MethodFast BVH Construction Method
At f t i t BVH f f t d t● At a fracturing event, BVHs for fractured parts
should be updated for high culling efficiencies
● Causes noticeable performance degradations● Causes noticeable performance degradations

● Propose a BVH construction method
based on grid and hashing,based on grid and hashing,
instead of typical NlogN methods

● Constructed hierarchies have
low culling efficiencies, but g
use less construction times
● Improve the overall performance

f i
31

at fracturing events

Result of Fast BVH ConstructionResult of Fast BVH Construction

● Performance degradations at fracturing
events are reduced

32

events are reduced

Comparison on CCDComparison on CCD

FASTCD

252K triangles dynamic topology
Tang et al. 08

252K triangles, dynamic topology

● FASTCD shows more stable performance

33

Comparison (Discrete CD)Comparison (Discrete CD)

FASTCD

Spatial hashing

f h i i d i l h hi [h

42~140K triangles, dynamic topology

● 20x faster than optimized spatial hashing [Teschner et
al, 2003]
St bl f

34

● Stable performance

SummarySummary
Presented two recent BVH based methods● Presented two recent BVH-based methods
for interactive CD among large-scale
deforming modelsdeforming models
● HPCCD: Hybrid Parallel Continuous Collision

Detection
● FASTCD: Fracturing-Aware Stable Collision

Detection The code of HPCCD is available as OpenCCD
library (http://sglab kaist ac kr/OpenCCD)library (http://sglab.kaist.ac.kr/OpenCCD)

 T f t i d l il bl Two fracturing models are available
(http://sglab.kaist.ac.kr/FASTCD/)

35

Future DirectionsFuture Directions
Various parallel proximity queries and● Various parallel proximity queries and
their applications
● g-Planner (GPU-based motion planner) AAAI● g Planner (GPU based motion planner), AAAI

10
● Hybrid proximity queries, under progressy p y q , p g
● Their applications to time-critical applications

(e.g., robot motion planning)

● Volumetric representations
l l● VolCCD, Tang et al. 2010,

under progress

36

AcknowledgementsAcknowledgements
Research collaborators●Research collaborators
● DukSu Kim, JaePil Heo, John Kim, Miguel

Otaduy Tang Min JeongMo Hong JoonKyungOtaduy, Tang Min, JeongMo Hong, JoonKyung
Seong, JaeHyuk Heo

● Funding sources
● Ministry of Knowledge Economy● Ministry of Knowledge Economy
● Microsoft Research Asia
● Samsungg
● Korea Research Foundation

37

ReferenceReference
FASTCD: Fracturing Aware Stable Collision● FASTCD: Fracturing-Aware Stable Collision
Detection
● ACM SIGGRAPH/Eurographics Symp on● ACM SIGGRAPH/Eurographics Symp. on

Computer Animation (SCA), 2010
● http://sglab.kaist.ac.kr/FASTCD/p g

●HPCCD: Hybrid Parallel Continuous
Collision Detection using CPUs and GPUs
● Computer Graphics Forum (Pacific Graphics)

2009
http://sglab kaist ac kr/HPCCD/http://sglab.kaist.ac.kr/HPCCD/

38

