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Abstract: 
This course is intended for instructing students and practitioners on recent developments related to collision and 
proximity computations for interactive games and simulations. 
  
There have been significant advances in various physics-based simulation techniques for movies, interactive 
games, and virtual environments. Most recent work has been on achieving realistic simulations of rigid, 
articulated, deforming, and fracturing models. However, many complex and challenging simulations (e.g., 
fracturing simulation) are not widely used in interactive games because of their computational requirements, 
although the hardware capability of current CPUs and GPUs has considerably improving.  It is well known that 
one of the main performance bottlenecks in most simulations lies in proximity queries including collision 
detection, minimum separation distance, and penetration depth computations. 
 
As a result, there has been significant recent research on developing real-time proximity computation algorithms 
for interactive games and high-quality simulations. Some of recent advanced techniques are able to achieve 
interactive performance even for most challenging simulations such as fracturing or large-scale cloth 
simulations. However, these techniques are quite complicated. Moreover, they require in-depth geometric 
background and sophisticated optimizations on multi-core architectures. These techniques, therefore, have not 
been easily accessible to students and practitioners who work on real-time simulation methods. 
  
Our objective is to introduce and teach students and practitioners about efficient proximity computation methods 
and their practical implementations. By doing so, we can expose the attendees to the latest developments, to 
bridge the gap between the two different fields: proximity computation and simulation. At a broad level, this 
course will cover the following topics: 

• Basic algorithms for various proximity queries including collision detection, minimum separation 
distances, penetration depth, etc. 

• Discrete and continuous algorithms for rigid, articulated, deforming, and fracturing models. 
• Parallel algorithms that utilize many cores of CPUs, GPUs, or CPUs/GPUs. 
• Applications of various proximity queries in Havoc, a widely used Physics simulation package 
• Optimized proximity data structures for many-core architectures including GPU 
• Integrating proximity computation algorithms into physically-based simulation systems. 

We have three instructors from academia and industry, each of who has significant experiences in designing and 
implementing different aspects of the aforementioned teaching materials. Since each instructor is a world-class 
expert in his field, students will receive the best instruction. Moreover, students and practitioners can learn how 
the industry-leading physics middleware, Havok, benefits from efficient proximity queries, in addition to getting 
the overall understanding of these libraries. 
 
Relate courses:  
To the best of our knowledge, there have been no courses on topics similar to ours, at least within the last three 
years at SIGGRAPH. However, we will offer a similar course at the SIGGRAPH this year. The main difference 
between this proposal and the one for SIGGRAPH 2010 is the speaker list; Prof. Dinesh Manocha, Erwin 
Coumans (Sony Entertainment), and Richard Tonge (Nvidia) do not participate in this course, but Dr. Takahiro 
Harada (currently at AMD and previously at Havok) will talk about GPU- and Havok-related issues. 
 
 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1900520.1900542&domain=pdf&date_stamp=2010-12-15


Proposed Schedule: 
 
8:30am: Introduction (Yoon) 
9:15am: Real-time continuous collision detection and penetration depth computation for rigid and articulated 
characters (Kim) 
 
10:15: Break 
 
10:15am: Collision detection for deformable and fracturing models (Yoon) 
11:00am: Recent parallel techniques for collision detection and its application to physics simulation on the GPU 
(Harada) 
 
12:00pm: Q&A session (All) 
12:15pm: Close 
 
 
 

Talk Syllabus: 

 

1. Introduction (Yoon)  
Summary: We explain a basic collision detection method based on a bounding volume hierarchy. We explain 
how to perform inter- and intra-collision detection methods in an efficient manner, followed by discussing the 
difference between discrete and continuous collision detection. We also introduce other related proximity 
queries (e.g., minimum separation distance). 
 
 
Syllabus: 

 Basic collision detection methods 
 Bounding volume hierarchies and their operations 
 Self- and inter-collision detection methods. 
 Discrete and continuous detection methods. 

 
 

2. Real-time Continuous Collision Detection and Penetration Depth Computation for 

Rigid and Articulated Characters (Kim) 
  
Summary: Maintaining the non-penetration constraint is a crucial problem for realistic simulations of rigid and 
articulated bodies. Recent researches show that the two seemingly conflicting approaches based on penetration 
avoidance and recovery turn out to be complementary to each other and are both useful for imposing the non-
penetration constraint. In this talk, we present a penetration avoidance technique based on continuous collision 
detection (CCD) by taking into account of the underlying character motion. We also explain a penetration 
recovery technique based on penetration depth (PD) computation. Finally, we describe a practical method to 
implement these collision and penetration queries in a relatively simple manner, which can guarantee interactive 
performance at run-time, and also demonstrate how these queries can be integrated into real-time physics 
simulation.  
  
Syllabus:  

 Continuous collision detection algorithms for rigid models 
 Continuous collision detection algorithms for articulated models  
 Penetration depth computation for rigid models 
  Application of continuous collision detection and penetration depth to real-time physics simulation 

 

3. Collision Detection for Large-Scale Deforming and Fracturing Models (Yoon) 



 
Summary: Many physically-based simulations used in games and movies are heavily using different types of 
deforming models. Unlike handling rigid models, deforming models can have self-collisions. Therefore, the 
performance of collision detection for deforming models has been known to be significantly slower than that for 
rigid bodies. In this talk, we describe various optimization methods that have been designed recently to improve 
the performance of discrete and continuous collision detection for deforming models. We also cover most recent 
techniques designed for fracturing simulations, which are one of the most challenging simulations in terms of 
collision detection. 
  
Syllabus: 

•        BVH update and reconstruction methods for deforming and fracturing models 
•        Efficient self-collision detection method 
•        Various culling techniques for intra- and self-collisions 
•        Hybrid parallel algorithms 

 
 
 

4. GPU-based collision detection and proximity computations (Harada) 
 
Summary: The trend of processor technology is to increase the number of cores on a processor. On these 
processors, technologies developed for a single core processor cannot be used to achieve high performance. 
Thus, developing technologies for these parallel processors are getting more and more important. This session 
starts with an introduction of parallel computation on the GPU. Later, it presents recent techniques for collision 
detection and its application to physics simulation on the GPU. 
 
Syllabus: 

 GPU-friendly rigid and paticle-based simulations 
 GPU-friendly collision detection methods 
 Techniques using multiple GPUs 
 Parallel contact handling 

 
 
 



Real-time Continuous Collision Detection 

and Penetration Depth Computation

Young J. Kim

http://graphics.ewha.ac.kr
Ewha Womans University

http://graphics.ewha.ac.kr/


Autonomous Ice Serving Robot
(with Zhixing Xue at FZI)

http://graphics.ewha.ac.kr



Non-penetration Constraint

• No overlap between geometric objects 

• Crucial for mimicking the physical presence

interior( )A B  

A BA B A B
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Earlier Research

• Focused on checking for whether there is any 
overlap between A and B, fixed in space

– Tons of papers published in the area of collision 

detection

– Well-studied and matured technology

• Not clear how to resolve such overlap

http://graphics.ewha.ac.kr



Recent Research Trends

• Avoid inter-penetration
– Continuous collision detection (CCD)

• Allow inter-penetration but backtrack
– Penetration depth (PD)

A B A

http://graphics.ewha.ac.kr



Applications of Continuous CD

• Rigid body dynamics
– Find the time of contact (ToC) to apply forces

http://graphics.ewha.ac.kr



Applications of Continuous CD

• Motion planning
– Check whether a path is collision-free

http://graphics.ewha.ac.kr



Applications of Penetration Depth

• Dynamics simulation
– Penalty-based
– Impulse-based

BA

Penetration
Depth

Point of 
Impact

Impulse

http://graphics.ewha.ac.kr



Goal

• Recent research results
– CCD (rigid, polygon-soups, articulated)
– PD (pointwise, translational)

• Applications
– Real-time rigid body dynamics
– Robotic grasping
– CAD disassembly

http://graphics.ewha.ac.kr



CONTINUOUS COLLISION 

DETECTION

http://graphics.ewha.ac.kr



Discrete Collision Detection

Collision Missing
http://graphics.ewha.ac.kr



Continuous Collision Detection

• Motion trajectory f(t) is known in advance

( )f t
Time of Contact

http://graphics.ewha.ac.kr



Previous Work on CCD

• Algebraic solution -[Canny86], [Redon00], [Kim03], [Choi06]

• Swept volume -[Abdel-Malek02],[Hubbard93], [Redon04a,b]

• Bisection -[Redon02], [Schwarzer02]

• Kinetic data structures -[Kim98], [Kirkpatrick00], [Agarwal01]

• Minkowski sum -[Bergen04]

• Conservative advancement
– [Mirtich96], [Mirtich00],[Coumans 2006],[Zhang06], [Tang09]

http://graphics.ewha.ac.kr



Conservative Advancement (CA)

• Assume objects are convex

• Find the 1st time of contact (ToC) of a moving 
object

http://graphics.ewha.ac.kr



ToC  =       +      +      +

Conservative Advancement (CA)

1. Find a step size      to conservatively advance 
the object until collision occurs

2. Repeat until inter-distance < ε

it

t1 t2 t3 t4

http://graphics.ewha.ac.kr



Calculating t in CA

p
d, n: closest distance,    

direction vector
v: velocity
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Calculating t in CA
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Extension to Non-convex
[Zhang et. al PG 06]

• Use of convex decomposition
• Build a hierarchy of decomposed convex pieces 

and perform CA hierarchically

http://graphics.ewha.ac.kr



Santa vs. Thin Board

37K triangles

51,546 FPS

# of iterations 
3.68

http://graphics.ewha.ac.kr



Bunny vs. Bunny

70K triangles/bunny      110 FPS       # of iterations 4.7http://graphics.ewha.ac.kr



Torusknot vs. Torusknot

2.8K
1067 FPS

11K
400 FPS

34K
186 FPS

# of iterations 4.49

# of iterations 4.49

# of iterations 4.46
http://graphics.ewha.ac.kr



Extension to Polygon-Soups
[Tang et. al IEEE ICRA 09]

• Construct the bounding volume hierarchy of 
polygons

• Motion bound calculation
– Bounding volume
– Triangles

d
t


 

http://graphics.ewha.ac.kr



Extension to Polygon-Soups
[Tang et. al IEEE ICRA 09]

• We use swept sphere volumes

[Larsen et. al IEEE ICRA 1999]

http://graphics.ewha.ac.kr



Motion Bound Calculation

• Motion bound of SSV (e.g. PSS)
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Controlling the CA Iterations

0

1

2

3

1 2 3 4 5 6 7 8
timing distance

Normalized distance

timing(ms)

Iteration step

Distance 
threshold

1. Compute approximate distance in the beginning
2. Compute exact distance toward the end

http://graphics.ewha.ac.kr



Results - Timings
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Comparisons against [Zhang 06]

• [Zhang 06] can handle only manifold surfaces

0 1 2 3 4 5

Dynamic Bunnies 

Bunnies

Toruskots

C2A
FAST

(ms)

C2A
Zhang 06

http://graphics.ewha.ac.kr



Extension to Articulated Models
[Zhang et. al SIGGRAPH 07]

• Treat each link as a 
rigid body

• Apply CA to each link 
independently

• Taking the minimum 
of CA results

http://graphics.ewha.ac.kr



Motion Bound Calculation
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Problems in Straightforward CA

• Problems
– O(n2) checking 

between individual 
links

http://graphics.ewha.ac.kr



Spatial Culling

• Cull the link pairs that 
are far apart

• Use bounding 
volume-based 
collision-culling

http://graphics.ewha.ac.kr



Spatial Culling using Dynamic AABB

• Goal
– Compute an axis-aligned 

bounding box (AABB) that 
bounds the motion of a 
moving link

http://graphics.ewha.ac.kr



Bounding Volume Culling

Interval Arithmetic Taylor Models
http://graphics.ewha.ac.kr



Locomotion Benchmark

• CCD 

performance

– 1.22 msec

• Mannequin
– 15 links, 20K tri

• Obstacles
– 101K tri

• Locomotion SW
– FootstepTM

http://graphics.ewha.ac.kr



Exercise Benchmark

• Mannequin
– 15 links, 20K 

triangles

• Self-CCD 

performance

– 0.38 msec

http://graphics.ewha.ac.kr



Motion Planning Benchmark 1

• Excavator
– 52 links, 19K tri

• Obstacles
– 0.4M tri

• CCD 

performance

– 100~700 msec

http://graphics.ewha.ac.kr



Motion Planning Benchmark 2

• Tower crane
– 14 links, 1288 tri

• CCD 

performance

– 5.66~15.1 msec

http://graphics.ewha.ac.kr



Articulated Body Dynamics Benchmark

• Four trains
– 10 links, 23K tri 

(each)

• CCD 

performance

– 535 msec

http://graphics.ewha.ac.kr



Software Implementations

• Source codes are available

– http://graphics.ewha.ac.kr/FAST (2-manifold)
– http://graphics.ewha.ac.kr/C2A (polygon-soups)
– http://graphics.ewha.ac.kr/CATCH (articulated)

http://graphics.ewha.ac.kr

http://graphics.ewha.ac.kr/FAST
http://graphics.ewha.ac.kr/C2A
http://graphics.ewha.ac.kr/CATCH


PENETRATION DEPTH 

COMPUTATION
http://graphics.ewha.ac.kr



Pointwise Penetration Depth
[Tang et. al SIGGRAPH 09]

• Defined as deepest interpenetrating points

http://graphics.ewha.ac.kr



1. Find intersection surfaces         and        

2. Penetration depth = 

Pointwise Penetration Depth

B

BA

A
Penetration 

Depth



Pointwise Penetration Depth

Demo (40K Bunny vs 40K Bunny)
http://graphics.ewha.ac.kr



Benchmark: Pointwise PD

Model complexity

– 50K tri

Avg. Performance 

– 3.88ms/pair

http://graphics.ewha.ac.kr



Benchmark: Pointwise PD

Model complexity

– 3.5K tri

Avg. performance 

– 0.95ms/pair

http://graphics.ewha.ac.kr



Penetration Depth
[Dobkin 93]

• Minimum translational 
distance to separate 
overlapping objects

BA

Penetration
Depth

http://graphics.ewha.ac.kr



Previous Work on PD

• Convex polytopes -[Cameron and Culley86], [Dobkin93], 
[Agarwal00], [Bergen01], [Kim04]

• Non-convex polyhedra -[Kim02],[Redon and Lin06], 
[Lien08a,b], [Hachenberger09]

• Distance fields -[Fisher and Lin01], [Hoff02], [Sud06]

• Pointwise PD -[Tang09]

• Generalized PD – [Ong and Gilbert96], [Ong96], [Zhang07]

• Volumetric PD - [Wellner and Zachmann09]

http://graphics.ewha.ac.kr



Minkowski Sum

{ | , }P Q P Q    p q p q

{ | , }P Q P Q    p q p q

P

Q

P Q
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Proximity VS Minkowski Sum

P Q

Penetration Depth

Closest Distance

http://graphics.ewha.ac.kr



Combinatorial Explosion

• Complexity of Minkowski Sum
– O(m3n3) with m and n triangles

http://graphics.ewha.ac.kr



PD Estimation

o Boundary of
Minkowski Sums

Penetration Depth

http://graphics.ewha.ac.kr



Out-Projection = CCD

o

f
q

0q

Out-Projection

Boundary of
Minkowski Sums

http://graphics.ewha.ac.kr



In-Projection = LCP 
(Linear Complementarity Problem)

o

In-Projection

2q

Boundary of
Minkowski Sums

Je et. al Tech Report 2010

http://graphics.ewha.ac.kr



PolyDepth: Iterative Optimization

o

f
q

0q

Out-Projection

1q

In-Projection

2q

Boundary of
Minkowski Sums

Penetration Depth

http://graphics.ewha.ac.kr



PolyDepth Performance

• Spoon: 1.3K triangles
• Cup: 8.4K triangles

• Time: 1~7 msec

http://graphics.ewha.ac.kr



PolyDepth Performance

• Bunny: 40K triangles
• Dragon: 174K 

triangles

• Time: 2~15 msec

http://graphics.ewha.ac.kr



Comparison against Exact Solution

Accuracy

Performance

http://graphics.ewha.ac.kr



APPLICATIONS

http://graphics.ewha.ac.kr



Real-time Physics Simulation using PD

802K triangles in total214K triangles in total

http://graphics.ewha.ac.kr



Integration with Physics Engine

http://virtualphysics.kr

http://graphics.ewha.ac.kr

http://virtualphysics.kr/


Robotic Grasping using CCD

With Zhixing Xue @ FZI

http://graphics.ewha.ac.kr



CAD Disassembly using CCD

With Liangjun Zhang @ Stanford/UNC
http://graphics.ewha.ac.kr



Summary

CCD PD

Concept Collision avoidance Collision correction

Usages

1. Constraint-based 
dynamics

2. Exact motion
planning

3. Grasping

1. Penalty-, impulse-
based dynamics 

2. Retraction-based 
motion planning

Complexities O(mn) O(m3n3)

http://graphics.ewha.ac.kr



Future Work

• Continuous collision detection
– N-body
– Non-linear motion

• PD
– Articulated body
– Deformable
– N-body

http://graphics.ewha.ac.kr



Collision Culling of a Million Bodies on GPUs
Friday, 11:00 AM, Room E1-E4

Real-time Dynamics Simulation of 16,000 Rigid Bodieshttp://graphics.ewha.ac.kr
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Thank you for listening!
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I t ti C lli i D t ti fInteractive Collision Detection for 
Deformable and Fracturing Objectsg j

Sung-Eui Yoon
Scalable Graphics Lab.

KAIST

http://sglab.kaist.ac.kr/~sungeui/



GoalsGoals
Achieve interactive performance for● Achieve interactive performance for 
collision detection among deformable and 
fracturing modelsfracturing models 
● E.g.,  deforming models consisting of tens or 

hundreds of thousand triangles

<Cloth-ball 94K triangles> <Breaking dragon 252K triangles>

2

<Cloth ball, 94K triangles> <Breaking dragon, 252K triangles>



OverviewOverview
Background● Background

●HPCCD: Hybrid parallel continuous 
collision detectioncollision detection

● FASTCD: Fracturing-Aware Stable Collision 
DetectionDetection

3



OverviewOverview
Background● Background

●HPCCD: Hybrid parallel continuous 
collision detectioncollision detection

● FASTCD: Fracturing-Aware Stable Collision 
DetectionDetection

4



BackgroundBackground
BVH based collision detection● BVH-based collision detection

● BVH construction

●Updates BVHs as models deforms
● Reconstruction from scratch
● Refitting

S l ti t ti● Selective reconstruction

5



BVH RefittingBVH Refitting
Refit BVs with deformed vertices●Refit BVs with deformed vertices
● Performed efficiently in a bottom-up traversal
● Can have loose BVs when deformation levels● Can have loose BVs when deformation levels 

are high

Frame 1Frame 1 Frame 2Frame 2Frame 2Frame 2
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BVH Selective RestructuringBVH Selective Restructuring
Restructure only subsets of BVHs after●Restructure only subsets of BVHs after 
refitting BVs

RestructureRestructure

BVH
●Requires a metric indentifying such 

b

BVH

subsets
● Volume ratios of BVs of parent and child BVs 

[Zachmann 02 Larsson et al 06 Yoon et al

7

[Zachmann 02, Larsson et al. 06, Yoon et al. 
06]



OverviewOverview
Background● Background

●HPCCD: Hybrid parallel continuous 
collision detectioncollision detection

● FASTCD: Fracturing-Aware Stable Collision 
DetectionDetection

8



Discrete vs ContinuousDiscrete vs. Continuous

●Discrete collision detection (DCD)
● Detect collisions at each frame
● Fast, but can miss collisions

Miss collisions

Frame1 Frame2

9

Frame1 Frame2



Discrete vs ContinuousDiscrete vs. Continuous

●Discrete collision detection (DCD)
● Continuous collision detection (CCD)( )

● Identify the first time-of-contact (ToC)
● Accurate, but requires a long computation time, q g p
● Not widely used in interactive applications

Frame1 Frame2

The first time-of-contact (ToC)

10

Frame1 Frame2



Inter and Self CollisionsInter- and Self-Collisions

● Inter-collisions
● Collisions between two 

bj tobjects

● Self-collisions
● Collisions between two 

regions of a deformable 
object
Takes a long comp tation● Takes a long computation 
time to detect

11

From Govindaraju’s paper



Parallel Computing TrendsParallel Computing Trends

●Many core architectures
● Multi-core CPU architectures
● GPU architectures

●Heterogeneous architecturesg
● Intel’s Larabee and AMD’s Fusion

●Designing parallel algorithms is important 
to utilize these parallel architecturesto utilize these parallel architectures

12



Recent Parallel Collision 
Detection MethodsDetection Methods

● CPU-based CD method
● Tang et al., Solid and Physical Modeling, 2009

● gProximity● gProximity
● Laterbach et al., Eurographics 2010

●Hybrid parallel CD method●Hybrid parallel CD method
● Kim et al., Pacific Graphics 2009

13



Recent Parallel Collision 
Detection MethodsDetection Methods

● CPU-based CD method
● Tang et al., Solid and Physical Modeling, 2009

● gProximity● gProximity
● Laterbach et al., Eurographics 2010

●Hybrid parallel CD method●Hybrid parallel CD method
● Kim et al., Pacific Graphics 2009

14



HPCCD: Hybrid Parallel CCDHPCCD: Hybrid Parallel CCD

●Utilize both multi-core CPUs and GPUs
● No locking in the main loop of CD
● GPU-based exact CD between two triangles

●High scalability & interactive performanceg y p

GPU

CCDM eMulti-core
CPU

M eMulti-core
CPU

GPU

…

…

CCDCPU CPU
GPU

15



Task DistributionTask Distribution

BVH update BVH traversal Elementary tests

R d S l i bi ti-Random accesses - Solving cubic equations

CCD- Branch prediction Streaming processors 
CCD

Elementary 
tests

Branch prediction
- Caching optimized with floating 

point operations
BVH update and traversal

tests

Multi-core CPUs GPUs

16

GPUs



Testing EnvironmentTesting Environment
Machine●Machine
● One quad-core CPU (Intel i7 CPU, 3.2 GHz )
● Two GPUs (Nvidia Geforce GTX285)● Two GPUs (Nvidia Geforce GTX285)

●Run eight CPU threads by using Intel’s 
hyper threading technologyhyper threading technology

17



BVH based CCDBVH-based CCD
Axis aligned bounding boxes● Axis-aligned bounding boxes

● Linear interpolations on vertices for the 
continuous motioncontinuous motion
● Vertex-face and edge-edge tests for CCD 

[Provot 96][Provot 96]
● Feature based BVHs [Curtis et al., I3D 08]

● Assign each features (e.g., vertex and edge) to● Assign each features (e.g., vertex and edge) to 
each triangle

18



ResultsResults
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Results of a CPU-based Parallel 
CCDCCD
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●Remove locking in the main loop of CDg p
● Employ efficient dynamic load-balancing 

based on inter-CD task units
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Results of HPCCDResults of HPCCD

As the number of GPUs is increased we get● As the number of GPUs is increased, we get 
higher performances

21



LimitationLimitation
Low scalability for small rigid models● Low scalability for small rigid models

22



SummarySummary
A hybrid parallel algorithm● A hybrid parallel algorithm
● Utilize both multi-core CPUs and GPUs

●High scalability
● About 13 times performance improvement forThe implementation code is available as OpenCCD● About 13 times performance improvement for 

CCD by using a quad-core CPU and two GPUs 
compared with using a single CPU core

The implementation code is available as OpenCCD
library (http://sglab.kaist.ac.kr/OpenCCD)

p g g

● Interactive performance● Interactive performance
● Show 19-140 FPS for various deformable 

models consisting of tens or hundreds of 

23

thousand triangles



OverviewOverview
Background● Background

●HPCCD: Hybrid parallel continuous collision 
detectiondetection

● FASTCD: Fracturing-Aware Stable Collision 
DetectionDetection

24



CD for Fracturing ModelsCD for Fracturing Models
More widely used in various applications to●More widely used in various applications to 
create more realistic interactions

● Fracturing● Fracturing 
● Changes the connectivity of a mesh: pre-

computed hierarchies show low culling ratioscomputed hierarchies show low culling ratios
● Places many objects in close proximity: CD cost 

is increasing

● Fracturing is one of the most 
h ll i i fchallenging scenarios of 

collision detection

25



Our ApproachOur Approach
FASTCD: Fracturing Aware Stable CD● FASTCD: Fracturing-Aware Stable CD
● Incrementally update meshes and BVHs by 

utilizing topological changes of modelsutilizing topological changes of models
● Design a simple self-CD culling method without 

much pre-computationsp p

26



CCD Performance with the 
Breaking Dragon ModelBreaking Dragon Model

FASTCD

252K triangles dynamic topology
Tang et al. 08

252K triangles, dynamic topology

● FASTCD shows stable performance

27



Selective Restructuring of BVHsSelective Restructuring of BVHs
A d l d f lli ffi i f th i BVH● As models deform, culling efficiency of their BVHs 
can be getting lower
● Selective restructuring can address the● Selective restructuring can address the 

problem

Deform Restructuring

● How to determine a culling efficiency of a BVH?
● Heuristic metrics have been proposed

● A cost metric that measures the expected number 

28

of intersection tests is proposed



Metric ValidationMetric Validation
E ti t d # f t t Ob d # f t t● Estimated # of tests vs. Observed # of tests

Observed # of intersection tests

Estimated costs

● Linear Correlation : 0.71 
● Tested with various models ( 0.28 ~ 0.76 , average 0.48 )

29

● Tested with various models ( 0.28 ~ 0.76 , average 0.48 )



Result of Selective RestructuringResult of Selective Restructuring

● LM metric : [Larsson and Akenine-Möller 2006]
252K triangles, dynamic topology

● LM metric : [Larsson and Akenine Möller 2006]
● Performance degradations at topological changes 
 unstable

30

 unstable 



Fast BVH Construction MethodFast BVH Construction Method
At f t i t BVH f f t d t● At a fracturing event, BVHs for fractured parts 
should be updated for high culling efficiencies
● Causes noticeable performance degradations● Causes noticeable performance degradations

● Propose a BVH construction method 
based on grid and hashing,based on grid and hashing,
instead of typical NlogN methods

● Constructed hierarchies have
low culling efficiencies, but g
use less construction times
● Improve the overall performance 

f i
31

at fracturing events



Result of Fast BVH ConstructionResult of Fast BVH Construction

● Performance degradations at fracturing 
events are reduced

32

events are reduced



Comparison on CCDComparison on CCD

FASTCD

252K triangles dynamic topology
Tang et al. 08

252K triangles, dynamic topology

● FASTCD shows more stable performance
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Comparison (Discrete CD)Comparison (Discrete CD)

FASTCD

Spatial hashing

f h i i d i l h hi [ h

42~140K triangles, dynamic topology

● 20x faster than optimized spatial hashing [Teschner et 
al, 2003]
St bl f

34

● Stable performance



SummarySummary
Presented two recent BVH based methods● Presented two recent BVH-based methods 
for interactive CD among large-scale 
deforming modelsdeforming models
● HPCCD: Hybrid Parallel Continuous Collision 

Detection
● FASTCD: Fracturing-Aware Stable Collision 

Detection The code of HPCCD is available as OpenCCD
library (http://sglab kaist ac kr/OpenCCD)library (http://sglab.kaist.ac.kr/OpenCCD)

 T f t i d l il bl Two fracturing models are available
(http://sglab.kaist.ac.kr/FASTCD/)
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Future DirectionsFuture Directions
Various parallel proximity queries and● Various parallel proximity queries and 
their applications
● g-Planner (GPU-based motion planner) AAAI● g Planner (GPU based motion planner), AAAI 

10
● Hybrid proximity queries, under progressy p y q , p g
● Their applications to time-critical applications 

(e.g., robot motion planning)

● Volumetric representations
l l● VolCCD, Tang et al. 2010, 

under progress
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