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Abstract. The goal of scattered data interpolation techniques is to construct a
(typically smooth) function from a set of unorganized samples. These techniques
have a wide range of applications in computer graphics. For instance they
can be used to model a surface from a set of sparse samples, to reconstruct a
BRDF from a set of measurements, to interpolate motion capture data, or to
compute the physical properties of a fluid. This course will survey and compare
scattered interpolation algorithms and describe their applications in computer
graphics. Although the course is focused on applying these techniques, we
will introduce some of the underlying mathematical theory and briefly mention
numerical considerations.
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1 Introduction

Many computer graphics problem start with sampled data. For instance, per-
haps we are using a range scanner to create a 3D model out of a real object or
perhaps we are trying to deform a surface using motion capture data. In these
cases and many others, a set of sparse samples of a continuous function (e.g. a
surface or a motion) are available and our goal is to evaluate this function at
locations or times that were not sampled. Another way to think about this is
that we have low resolution representation of some data and we are trying to
find a higher resolution representation.

In some applications the sample locations are on a regular grid or other simple
pattern. For instance this is usually the case for image data since the image
samples are aligned according to a CCD array. Similarly, the data for a B-
spline surface are organized on a regular grid in parameter space. The well
known spline interpolation methods in computer graphics address these cases
where the data has a regular arrangement.

In other cases the data locations are unstructured or scattered. Methods for
scattered data interpolation (or approximation) are less well known in computer
graphics, for example, these methods are not yet covered in most graphics text-
books. These approaches have become widely known and used in graphics
research over the last decade however. This course will attempt to survey most
of the known approaches to interpolation and approximation of scattered data.

1.1 Applications

To suggest the versatility of scattered data interpolation techniques, we list a
few applications:

• Surface reconstruction [11, 41]. Reconstructing a surface from a point
cloud often requires an implicit representation of the surface from point
data. Scattered data interpolation lends itself well to this representation.

• Image restoration and inpainting [58, 47, 35]. Scattered data inter-
polation can be used to fill missing data. A particular case of this is
inpainting where missing data from an image needs to be reconstructed
from available data.

• Surface deformation [48, 40, 32, 33, 7]. Motion capture systems allow
the recording of sparse motions from deformable objects such as human
faces and bodies. Once the data is recorded, it needs to be mapped to a
3-dimensional representation of the tracked object so that the the object
can be deformed accordingly. One way to deform the object is to treat
the problem as a scattered data interpolation problem: the captured data
represents a spatially sparse and scattered sampling of the surface that
needs to be interpolated to all vertices in a (e.g. facial) mesh.
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Figure 1: Model fitting vs scattered data interpolation. The input (a) is a set of
samples from a 1-dimensional function. A fitted (linear) model (b) or scattered
data interpolation (c) can be used to represent the data.

• Motion interpolation and inverse kinematics [50].

• Meshless/Lagrangian methods for fluid dynamics. In Lagrangian
dynamics, the physical properties of a fluid are computed at the location
of a set of moving particles. Scattered data interpolation can be used to
produce a smooth representation of a field (e.g. velocity).

• Appearance representation [64, 59]. Interpolation of measured re-
flectance data is a scattered interpolation problem.

We will later revisit some of these to illustrate the techniques described in these
notes.

Any mathematical document of this size will contain typos.
Please obtain a corrected version of these notes at:
http://scribblethink.org/Courses/ScatteredInterpolation



Scattered Data Interpolation and Approximation for Computer Graphics 7

2 Problem formulation

From a mathematical point of view, a general scattered data interpolation prob-
lem can be formulated in the following way. Let f be an unknown function from
R

p to R. Let xi, . . . ,xn be a set of points in R
p and f1, . . . , fn be a set of values

in R. The goal is to find a function f̃ such that:

f̃(xi) = fi for 1 ≤ i ≤ n.

Note that in general there are many functions that would satisfy these condi-
tions. For instance the piecewise constant function f̃(x) = fi if x = xi and 0
otherwise is always a solution. What will usually be assumed is that f̃ obeys
some smoothness properties such as continuity or differentiability. Moreover,
often it will be the case that f̃ belongs to a family or class of functions. By
constraining the solution space, we are implicitly making some assumptions on
the type of function that f is.

To conclude, if we assume that f can be well represented within a function space
F , the scattered data interpolation problem can be specified as:

Find f̃ ∈ F
such that f̃(xi) = fi, for 1 ≤ i ≤ n.

This is the general setup for many types of interpolation problems, and it will
reappear in more specific forms in later sections.

2.1 Interpolation (parametric) vs. model fitting (non-
parametric)

Scattered data interpolation should be distinguished from model fitting. Al-
though both approaches can potentially provide a smooth function that passes
near the data, scattered interpolation requires all the original data in order to
do its work, whereas model fitting approximates and then discards the original
data.

Choosing between model fitting and scattered data interpolation depends on
what we know or believe about the data. If the data is free of noise but we do not
know any model that correctly summarizes it, then scattered data interpolation
is the way to go. If however, we know that the data is tainted by noise, or
there is too much data, or we are just happy with a rough representation of
the data, then model fitting might be the better choice. Figure 1 illustrates
the difference between model fitting and scattered data interpolation with a
simple 2D example. In the statistical literature this distinction between keeping
all the data and summarizing it is termed “non-parametric” or “parametric”.
Model fitting is termed parametric because a “model” has a fixed number of
parameters (for example, the 1-D Gaussian model has two parameters).
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2.2 Interpolation vs. approximation

In the literature, a difference is sometime made between scattered data inter-
polation (SDI) and scattered data approximation (SDA). The difference stems
from the behavior of the reconstructed function, f̃ , at the sample sites. In
scattered data interpolation, we require the function to perfectly fit the data:

f̃(xi) = fi, for 1 ≤ i ≤ n.

For scattered data approximation, we ask that the function merely pass close
to the data.

Stated this way SDI and SDA are two different techniques. For one thing,
the SDA formulation let us easily specify other soft constraints, for instance
a smoothness term proportional to ∇2f̃ . However, given the applications we
are interested in, from a practical point of view the difference can be glossed
over. This is mainly due to the fact that our “data”, {xi, f(xi)}, will always
contain some amount of noise; which makes it less relevant to fit the data
exactly. Also from a practical point of view, it is often desirable to specify some
smoothness constraints in the problem formulation. These can be specified
explicitly for instance as constraints on the derivatives of f̃ or implicitly by
using regularization.

Finally, there is a case though where a clear distinction between approximation
and interpolation should be made, it is when the number of samples is such that
a reconstruction based on all the samples cannot be computed. In such case,
we might be forced to build an approximation using a subset of the data.

2.3 Dimensionality

In the remainder of these notes individual techniques will usually be described
for the case of mapping from a multidimensional domain to a single field, R

p to
R

1, rather than the general multidimensional input to vector output (Rp to R
q)

case.

Producing a q-dimensional output can be done by running q separate copies
of R

p to R
1 interpolators. In most techniques some information can be shared

across these output dimensions – for example, in radial basis interpolation the
matrix of the kernel applied to distances (section 5.6) can be inverted once and
reused with each dimension.

Throughout the notes we strived to use the following typesetting conventions
for mathematical symbols:

• Scalar values in lower-case: e.g. the particular weight wk.

• Vector values in bold lower-case: e.g. the weight vector w or the particular
point xk.
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• Matrices in upper-case: e.g. the interpolation matrix A.

3 Issues

While we survey the various scattered data interpolation techniques we will use
these criteria as a basis for comparison:

• Smoothness. In general, continuity and differentiability are assumed. But
we might require higher order smoothness.

• Extrapolation. It is sometime desirable to be able to model the behavior
of f outside of the convex hull of the samples. How this is done can be
fairly tricky since by definition the further away we are from the sampled
point the less we know about f .

• Local versus global. For a local technique a change in one of the sample
value fi only affects the values of f̃ around xi. On the contrary with a
global technique, the evaluation of f̃ at any point is determined by all the
samples.

• Stability. Numerical stability refers to the ability of an algorithm not
to amplify errors in the input. Stability is a source of concern for some
scattered data interpolation techniques.

• Performance. Scattered data interpolation techniques can require large
amount of computation and memory. Some techniques scale better as a
function of the size of the dataset.

4 A bit of history

The modern approach (or at least the one covered in these notes) to scattered
data interpolation can be traced back to the 1960s with the pioneering work
of D. Shepard [55] on what is called today Shepard’s interpolation. Shepard’s
applied his method to surface modelling. In the 1970s, R. Hardy [27], an Iowa
State geodesist, invented different methods called the multiquadrics and the
inverse multiquadrics. Around the same time, a mathematician at the Université
Jean Fourier in France, Jean Duchon [14] took a variational approach similar
to that used for splines, and got different interpolants that led to thin plate
splines. A comparison, done by Richard Franke [23] at the Naval Postgraduate
school in Monterey California, concluded that Hardy’s multiquadric method and
Duchon’s thin plate spline approach were the best techniques.

The more recent history of scattered data interpolation and extrapolation is
marked by a great increase in interest for these techniques both theoretically
and in their application.
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5 Scattered Interpolation Algorithms

5.1 Shepard’s interpolation

Shepard’s Method [55] is probably the simplest scattered interpolation method,
and it is frequently re-invented. The interpolated function is

f̃(x) =
N
∑

k

wk(x)
∑

j wj(x)
f(xk),

where wi is the weight function at site i:

wj(x) = ‖x − xi‖−p,

the power p is a positive real number, and ‖x−xi‖ denotes the distance between
the query point x and data point xi. Since p is positive, the weight functions
decrease as the distance to the sample sites increase. p can be used to control the
shape of the approximation. Greater values of p assign greater influence to values
closest to the interpolated point. Because of the form of the weight function
this technique is sometime referred as inverse distance weighting. Notice that:

• For 0 < p ≤ 1, f̃ has sharp peaks.

• For p > 1, f̃ is smooth at the interpolated points, however its derivative
is zero at the data points (Fig. 3), resulting in evident “flat spots”.

Shepard’s method is not an ideal interpolator however, as can be clearly seen
from Figs. 2,3.

The Modified Shepard’s Method [41, 22] aims at reducing the impact of far away
samples. This might be a good thing to do for a couple of reasons. First,
we might want to determine the local shape of the approximation only using
nearby samples. Second, using all the samples to evaluate the approximation
does not scale well with the number of samples. The modified Shepard’s method
computes interpolated values only using samples within a sphere of radius r. It
uses the weight function:

wj(x) =

[

r − d(x,xi)

rd(x,xi)

]2

.

where d() notates the distance between points. Combined with a spatial data
structure such as a k-d tree or a Voronoi diagram [43] this technique can be
used on large data sets.

5.2 Moving least-squares

Moving least-squares builds an approximation by using a local polynomial func-
tion. The approximation is set to locally belong in Πp

m the set of polynomials
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Figure 2: Shepard’s interpolation with p = 1.

with total degree m in p dimensions. At each point, x, we would like the poly-
nomial approximation to best fit the data in a weighted least-squares fashion,
i.e.:

f̃(x) = arg min
g∈Πp

m

N
∑

i

wi(‖x − xi‖)(g(xi) − fi)
2,

where wi is a weighting function used to emphasize the contribution of nearby

samples, for instance wi(d) = e− d2

σ2 .

Figure 4 illustrates the technique with a 1-dimensional data set reconstructed
with a moving second order polynomial.

Using a basis of Πp
m, b(x) = {b1(x), . . . , bl(x)} we can express the polynomial

g as a linear combination in that basis: g(x) = b
t(x)c, where c is a vector of

coefficients. If we then call, a, the expansion of f̃ in the basis b, we can then
write:

f̃(x) = b
t(x)a(x)

with

a(x) = arg min
c∈Rl

N
∑

i

wi(‖x − xi‖)(bt(xi)c − fi)
2.

Computing, a(x), is a linear least-squares problem that depends on x. We can
extract the system by differentiating the expression above with respect to c and
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Figure 3: Shepard’s interpolation with p = 2. Note the the derivative of the
function is zero at the data points, resulting in smooth but uneven interpolation.
Note that this same set of points will be tested with other interpolation methods;
compare Figs. 7, 8, 12, etc.

setting it to 0:

∂

∂c

(

N
∑

i

wi(‖x − xi‖)(bt(xi)c − fi)
2

)

∣

∣

∣

∣

a

= 0

⇔
N
∑

i

wi(‖x − xi‖)b(xi)(b
t(xi)a − fi) = 0

⇔
(

N
∑

i

wi(‖x − xi‖)b(xi)b
t(xi)

)

a =

N
∑

i

fiwi(‖x − xi‖)b(xi).

This last equation can be written in matrix form Aa = d with:

A =

N
∑

i

wi(‖x − xi‖)b(xi)b
t(xi)

and

d =

N
∑

i

fiwi(‖x − xi‖)b(xi).

Note that the matrix A is square and symmetric. In the usual case, where w is
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Local reconstruction:

Global reconstruction: : Sample point (unused locally)

: Sample point (used locally)

xxi

f̃(x)

fi

g(xi)

Figure 4: Moving least-squares in 1-D. The function is locally reconstructed
using a polynomial of degree 2. The local approximating polynomial is refitted
for each evaluation of the reconstructed function.

non-negative A is also symmetric and positive semi-definite.

x
t
Ax = x

t

(

N
∑

i

wi(‖x − xi‖)b(xi)b
t(xi)

)

x

=

N
∑

i

wi(‖x − xi‖)x t
b(xi)b

t(xi)x )

=

N
∑

i

wi(‖x − xi‖)(x t
b(xi))

2 ≥ 0.

If the matrix A has full rank the system can be solved using the Cholesky
decomposition.

It would seem that the computational cost of moving least-squares is excessive
since it requires solving a linear system for each evaluation of the reconstructed
function. While this is true, if the weight functions fall quickly to zero then the
size of the system can involve only a few data points.

5.2.1 Design issues

The formulation of moving least-squares exposes two sets of parameters that
determine what type of approximation is generated: the local approximation
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function, g, and the weight functions, wi. Let us examine their role in the
approximation.

The local approximation, g. The local approximation function, g, deter-
mines the local shape and degree of smoothness of the approximation. Typically
g is a polynomial function, but other classes of function can be selected. This
offers a great deal of flexibility especially if the goal is to enforce some local
properties. For instance, this is the case for as-rigid-as-possible surface trans-
formation [63], where g is chosen to be a similarity transformation (rotation and
uniform scaling). Solving for the transformation is an instance of the classical
weighted Procrustes problem [36].

The weight functions, wi. The role of the weight functions is to determine
how much influence each sample has when evaluating the reconstruction at a
given point. A weight is a function of the distance between the evaluation
point and a given sample. The main idea is that distant samples should have
less influence. In this respect, these are traditionally monotonically decreasing
positive functions. Beyond this simple observation, a few important issues are
determined by the weight function: interpolation, smoothness, and discontinu-
ities.

The way we have formulated the moving least-squares technique it would seem
that it provides an approximation to the data but does not interpolate the
samples. In fact if we chose a kernel such as:

wi(d) = d−β

with β > 0, we would observe that MLS indeed interpolates the data. This is
possible because in this case wi(xi) = ∞ which yields f̃(xi) = fi.

The shape of the weight functions is in a great part responsible for how smooth
the reconstruction is. This issue is clearly a trade-off, since a function that is
too narrow can result in spikes in the reconstruction, while a broad function
may over-smooth the data. There is an argument for constructing adaptive
weight functions (at least for non-uniform samples), such that the speed at
which the function falls off depends on the local sample density. This very issue
was explored by Pauly et al. [44, 45]. In their original attempt [44], they extract
the radius, r. of the sphere containing the k-nearest neighbor to build adaptive
weight functions of the form:

wi(d) = e−9 d2

r2

They use a similar function in their second attempt [45] that uses a more com-
plex algorithm for determining the shape parameter from the local sampling
density. Adamson and Alexa [1] use an anisotropic shape parameter that is
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determined by locally fitting an ellipse so that it aligns with the normal and the
two principal curvature directions.

If the original function has sharp features, the reconstruction has to be able
to handle discontinuities. This is an issue explored by Fleishman et al. [20].
They develop a robust framework that allows the detection of sharp features as
areas containing outliers. Points of sharp feature are assigned multiple surface
patches.

5.2.2 Applications

Surface reconstruction The use of moving least-squares for reconstructing
surfaces from unorganized data has been explored pretty thoroughly. Cheng et
al. [12] give an overview of the diverse techniques.

Fleishman et al. [20] uses moving least-squares to reconstruct piecewise smooth
surfaces from noisy point clouds. They introduce robustness in their algorithm
in multiple ways. One of them is an interesting variant on the moving least
squares estimation procedure. They estimate the parameters, β, of their model,
fβ , using a robust fitting function:

β = arg min
β

median
i

‖fβ(xi) − yi‖.

The sum in the original formulation has been replaced by a more robust median
operator.

Image warping Schaefer et al. [52] introduces a novel image deformation
technique using moving least-squares. Their approach is to solve for the best
transformation, lv(x), at each point, v, in the image by minimizing:

∑

i

wi‖lv(pi) − qi‖

where {pi} is a set of control points and {qi} an associated set of displacements.
By choosing different transform types for lv (affine, rigid, ..), they create differ-
ent effects.

5.3 Partition of unity

The Shephards and MLS methods are specific examples of a general partition
of unity framework for interpolation. The underlying principal of a partition of
unity method is that it is usually easier to approximate the data locally than to
find a global approximation that fits it all. Thus, partition of unity assembles
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Supports

Local reconstruction:

Global reconstruction:

Sample point:

Partition of unity

Figure 5: Partition of unity in 1-D. The partition of unity are a set of weigh-
ing functions that sum to 1 over a domain. These are used to blend a set
of (e.g. quadratic) functions fit to local subsets of the data to create a global
reconstruction.

a global approximation from a set of local approximations, i.e., a set of weight
functions {φk} compactly supported over a domain Ω such that:

∑

k

φk = 1 on Ω.

We say that the functions {φk} form a partition of unity. Now we consider a set
of approximations of f , {qk}, where qk is defined over the support of φk, then
we can compute a global approximation as:

f̃(x) =
N
∑

k

φk(x)qk(x).

In this description the functions, φk, only need to be non-negative.

To interpret Shepards method as a partition of unity approach, define

φk(x ) =
‖x − xk‖p

∑

j ‖x − x j‖p

and qk as the constant function defined by the kth data point.
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5.4 Natural neighbor interpolation

Natural Neighbor Interpolation was developed by Robin Sibson [56]. It is similar
to Shepard’s interpolation in the sense that the approximation is written as a
weighted average of the sampled values. It differs in that the weights are volume-
based as opposed to the distance-based weights of Shepard’s method.

Natural neighbor techniques uses a Voronoi diagram of the sampled sites to for-
malize the notion of “neighbor”: two sites are neighbors if they share a common
boundary in the Voronoi diagram. Using duality, this is equivalent to writing
that the sites form an edge in the Delaunay triangulation. By introducing the
evaluation point x in the Delaunay triangulation, the natural neighbors of x are
the nodes that are connected to it. The approximation is then written as:

f̃(x) =
∑

k∈N

αk(x)f(xk),

where N is the set of indices associated with the natural neighbors of x and
αk(x) are weight functions.

αk(x) =
uk

∑

j∈N uj

where uj is the volume of the intersection of the node associated with the
evaluation point and the node associated with the j-th neighbor in the original
Voronoi diagram.

5.4.1 Applications

Surface reconstruction In [9] Boisonnat and Cazals represent surfaces im-
plicitly as the zero-crossings of a signed pseudo-distance function. The function
is set to zero at the sampled points and is interpolated to the whole 3D space.

5.5 Wiener interpolation and Gaussian Processes

Wiener interpolation differs from polynomial interpolation approaches in that
it is based on the expected correlation of the data. Wiener interpolation of
discrete data is simple, requiring only the solution of a matrix equation. This
section describes two derivations for discrete Wiener interpolation.

Some advantages of Wiener interpolation are:

• The data can be arbitrarily spaced.

• The algorithm applies without modification to multi-dimensional data.

• The interpolation can be made local or global to the extent desired. This
is achieved by adjusting the correlation function so that points beyond a
desired distance have a negligible correlation.
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Figure 6: Non-fractal landscapes invented with Wiener interpolation, from [34]

• The interpolation can be as smooth as desired, for example an analytic
correlation function will result in an analytic interpolated curve or surface.

• The interpolation can be shaped and need not be “smooth”, for example,
the correlation can be negative at certain distances, oscillatory, or (in
several dimensions) have directional preferences.

• The algorithm provides an error or confidence level associated with each
point on the interpolated surface.

• The algorithm is optimal by a particular criterion (below) which may or
may not be relevant.

Some disadvantages of Wiener interpolation:

• It requires knowing or inventing the correlation function. While this may
arise naturally from the problem in some cases, in other cases it would
require interactive access to the parameters of some predefined correlation
models to be “natural”.

• It requires inverting a matrix whose size is the number of significantly
correlated data points. This can be a practical problem if a large neigh-
borhood is used. A further difficulty arises if the chosen covariance is
broad, causing the resulting covariance matrix (see below) to have similar
rows and hence be nearly singular. Sophistication with numerical linear
algebra will be required in this case.

Terminology

Symbols used below:

f value of a stochastic process at time x

f̂ estimate of f
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Figure 7: One-dimensional Wiener interpolation, using a Gaussian covariance
matrix.

fj observed values of the process at times or locations xj

The derivations require two concepts from probability:

• The correlation of two values is the expectation of their product, E[xy].
The autocorrelation or autocovariance function is the correlation of pairs
of points from a process:

C(x1, x2) = E {f(x1)f(x2)}

For a stationary process this expectation is a function only of the distance
between the two points: C(τ) = E[f(x)f(x+τ)]. The variance is the value
of the autocorrelation function at zero: var(x) = C(0). (Auto)covariance
usually refers to the correlation of a process whose mean is removed and
(usually) whose variance is normalized to be one. There are differences in
the terminology, so “Correlation function” will mean the autocovariance
function of a normalized process here.

• Expectation behaves as a linear operator, so any factor or term which is
known can be moved “outside” the expectation. For example, assuming a
and b are known,

E {af + b} = aEf + b

Also, the order of differentiation and expectation can be interchanged, etc.
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Figure 8: Similar to Fig. 7, but the variance of the Gaussian is too narrow for
this data set.

Definition

Wiener interpolation estimates the value of the process at a particular location
as a weighted sum of the observed values at some number of other locations:

f̂ =
∑

wjfj (1)

The weights wj are chosen to minimize the expected squared difference or error
between the estimate and the value of the “real” process at the same location:

E
{

(f − f̂)2
}

(2)

The reference to the “real” process in (2) seems troublesome because the real
process may be unknowable at the particular location, but since it is the expected
error which is minimized, this reference disappears in the solution.

Wiener interpolation is optimal among linear interpolation schemes in that it
minimizes the expected squared error (2). When the data have jointly Gaus-
sian probability distributions (and thus are indistinguishable from a realization
of a Gaussian stochastic process), Wiener interpolation is also optimal among
nonlinear interpolation schemes.
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Derivation #1

The first derivation uses the “orthogonality principle”: the squared error of a
linear estimator is minimum when the error is ‘orthogonal’ in expectation to
all of the known data, with ‘orthogonal’ meaning that the expectation of the
product of the data and the error is zero:

E
{

(f − f̂)fk

}

= 0 for all j

Substituting f̂ from (1),

E
{

(f −
∑

wjfj)fk

}

= 0 (3)

E
{

ffk −
∑

wjfjfk

}

= 0

The expectation of ffk is the correlation C(x− xk), and likewise for fjfk:

C(x− xk) =
∑

wjC(xj − xk)

or
Cw = c (4)

This is a matrix equation which can be solved for the coefficients wj . The coef-
ficients depend on the positions of the data fj though the correlation function,
but not on the actual data values; the values appear in the interpolation (1)
though. Also, (4) does not directly involve the dimensionality of the data. The
only difference for multi-dimensional data is that the correlation is a function
of several arguments: E[PQ] = C(xp − xq, yp − yq, zp − zq, . . .).

Derivation #2

The second derivation minimizes (2) by differentiating with respect to each wk.
Since (2) is a quadratic form (having no maxima), the identified extreme will
be a minimum (intuitively, a squared difference (2) will not have maxima).

d

dwk

[

E
{

(f −
∑

wjfj)
2
}]

= E

[

d

dwk
(f −

∑

wjfj)
2

]

= 0

2E

{

(f −
∑

wjfj)
d

dwk
(f −

∑

wjfj)

}

= 0

E
{

(f −
∑

wjfj)fk

}

= 0

which is (3).
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Cost

From (4) and (1), the coefficients wj are w = C−1c, and the estimate is f̂ =
xT C−1c. The vector c changes from point to point, but xT C−1 is constant
for given data, so the per point estimation cost is a dot product of two vectors
whose size is the number of data points.

Confidence

The interpolation coefficients wj were found by minimizing the expected squared
error (2). The resulting squared error itself can be used as a confidence mea-
sure for the interpolated points. For example, presumably the error variance
would be high away from the data points if the data are very uncharacteristic
of the chosen correlation function. The error at a particular point is found by
expanding (2) and substituting a = C−1c:

E
{

(f − f̂)2
}

= E
{

(f −
∑

wjfj)
2
}

= E
{

f2 − 2f
∑

wjfj +
∑

wjfj

∑

wkfk

}

= var(x) − 2
∑

wjC(x, xj) +
∑

wjwkC(xj , xk)

(switching to matrix notation)

= C(0) − 2wT c + wT Cw

= C(0) − 2(C−1c)T c + (C−1c)T CC−1c

= C(0) − cT C−1c

= C(0) −
∑

wjC(x, xj)

Applications: terrain synthesis, Kriging, Gaussian processes [34] used
Wiener interpolation in a hierarchical subdivision scheme to synthesize random
terrains at run time (Fig. 6). The covariance was specified, allowing the synthe-
sized landscapes to have arbitrary power spectra (beyond the fractal 1/fp family
of power spectra). The Wiener interpolation technique is also known as Kriging,
and is closely related to Gaussian processes. The latter two ideas have recently
been rediscovered in the machine learning (and graphics [38]) communities.

5.6 Radial basis functions

Radial basis functions are the most commonly used scattered data interpolation
technique. They are conceptually easy to understand and simple to implement.
From a high level point of view, a radial basis functions approximation works by
summing a set of replicates of a single basis function. Each replicate is centered
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Figure 9: Radial basis interpolation with a Gaussian kernel

at a data point and scaled to respect the interpolation conditions. This can be
written as:

f̃(x) =
N
∑

k

wkφ(‖x − xk‖),

where φ is a function from [0,∞[ to R and {wk} is a set of q-dimensional weights.
It should be fairly clear from this formula why this technique is called “radial”:
The influence of a single data point is constant on a sphere centered at that
point. Without any further information on the structure of the input space,
this seems a reasonable assumption. Note also that it is remarkable that the
function, φ, be univariate: Regardless of the number of dimensions of the input
space, we are interested in distances between points.

The choice of the kernel φ is an important choice and we delay this topic to
a later section. We here list some of the most common kernels in computer
graphics applications:

• Gaussian φ(r) = exp(−(r/c)2)

• Thin plate spline φ(r) = r2 log r (in two dimensions)

• Hardy multiquadratic φ(r) =
√
r2 + c2, c > 0

The thin plate spline kernel is of particular practical interest since it is related
to the minimization of a bending energy (see section 6).
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Figure 10: Radial basis interpolation with a Gaussian kernel, varying the kernel
width relative to Fig. 9

For a radial basis functions interpolation, the interpolation conditions are writ-
ten as follow:

f̃(xi) =

N
∑

k

wkφ(‖xi − xk‖) = fi, for 1 ≤ i ≤ n.

This is a linear system of equations where the unknowns are the vector of weights
{wk}. To see this, let us call φi,k = φ(‖xi − xk‖). We can then write the
equivalent matrix representation of the interpolation conditions:











φ1,1 φ1,2 φ1,3 · · ·
φ2,1 φ2,2 · · ·
φ3,1 · · ·

...





















w1

w2

w3

...











=











f1
f2
f3
...











This is a square system with as many equations as unknowns. Thus we can
form the radial basis function interpolation by solving this system of equations.

5.6.1 Radial basis function with polynomial term

It is sometime convenient to add a polynomial term to radial basis functions
approximation. There are several reasons for this:
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Figure 11: Radial basis interpolation with a Gaussian kernel, varying the kernel
width relative to Fig. 9,10. In this figure the kernel width is too narrow to
adequately interpolate the data.

• Polynomial reproducibility. In some cases it is useful to have an approxi-
mation that can faithfully reproduce polynomials of up to a given degree.
For instance, imagine that we are trying to model a 3-dimensional defor-
mation field. In the specific case where the deformation at the sample
points is affine, we probably want the RBF approximation to yield an
affine function; i.e. a polynomial of degree 1.

• Extrapolation. When using a kernel that vanishes at infinity we are faced
with an approximation that does not extrapolate well since its value far
from the data points decreases to zero. In these cases, it might be useful
to use a polynomial to model the far-field behavior of the function.

• Null space. Most importantly, the RBF kernels corresponding to the dif-
ferential operators ∇m have a non-trivial null space that contains exactly
these polynomials. For example, in one dimension the operator that pro-
duces the second derivative of a function responds zero for either a constant
or linear function.

From a mathematical point of view, a radial basis functions approximation with
a polynomial term can be written as:

f̃(x) =

N
∑

k

wkφ(‖x − xk‖) + g(x),
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Figure 12: The one-dimensional equivalent of thin-plate spline interpolation is
the natural cubic spline, with radial kernel |r|3 in one dimension. This spline
minimizes the integrated square of the second derivative (an approximate cur-
vature) and so extrapolates to infinity away from the data.

where g belongs to Πp
m, the set of real-valued polynomials of p variables and of

degree at most m − 1. Notice that our function f̃ is not now only determined
by the weights {wk} but also by the coefficients of the polynomial g.

Let us now examine the interpolation conditions to solve for our unknowns. The
conditions now become:

f̃(xi) =

N
∑

k

wkφ(‖xi − xk‖) + g(xi) = fi, for 1 ≤ i ≤ n.

The good news is that this is still a linear system of equations since it de-
pends linearly on both the weights {wk} and the coefficients of g. The bad
news is that we no longer have enough equations, in other words the system is
under-determined. This means that we need additional constraints to cover for
(

m− 1 + p
p

)

factors in the polynomial term. These constraints usually come

from what are called zero moment conditions:

N
∑

k

wkh(xk) = 0, for all h ∈ Πp
m.

There are different ways of justifying these conditions. For instance one could
make an orthogonality argument or use polynomial reproducibility (if all the
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Figure 13: Adding regularization to the plot in Fig. 12 causes the curve to
approximate rather than interpolate the data.

data points are on a polynomial of degree at most m − 1 then the RBF term
has to vanish).

To determine the interpolation function, we now have to solve the following
system of equations:

N
∑

k

wkφ(‖xi − xk‖) + g(xi)=fi, for 1 ≤ i ≤ n,

N
∑

k

wkh(xk)=0, for all h ∈ Πp
m.

The second condition is unwieldy since it represents an infinite set of equations
(one for each polynomial in Πp

m). Fortunately, since Πp
m is a vector space and

the condition is linear, it is necessary and sufficient for the condition to hold
true for each vector in a basis of Πp

m. This results in a finite number of equations
because Πp

m has a finite number of dimensions.

5.6.2 Design issues

The kernel, φ The choice of φ is the important decision in designing an RBF
reconstruction. It should be guided by broad considerations such as perfor-
mance, robustness, continuity, and other factors.
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Figure 14: Illustration of ill-conditioning and regularization. From left to right,
the regularization parameter is 0, .01, and .1 respectively. Note the vertical
scale on the plots.

In term of performance, in general training the RBF system is O(N3) (solving
a general N ×N linear system of equations) process and evaluating the recon-
struction is O(N). There are algorithms and data structures for speeding-up
these computations but one of the most effective performance gain is obtained
by using a kernel with a compact support. This has the immediate consequence
to make the interpolation matrix sparse and to limit the number of samples
participating in an evaluation to the samples within the domain. One of the
drawback with compact support kernels is that choosing the span of the support
can be tricky. Ideally it should be related to the local sample density in order to
avoid sampling issues (over-smoothing). If sampling is relatively uniform then
compactly support kernels become attractive.

The shape parameter, c For any kernel, φ, we can introduce a shape param-
eter, c ∈ R

+, by replacing φ(d) by φ(d/c). In general this narrows or broadens
the kernel, and the effect is particularly significant for compactly supported
kernels. The shape parameter can be used to “tune-up” the reconstruction.
The scattered data interpolation problem as we stated it in section 2 does not
constrain the shape parameter rather it is a free parameter and we must look
elsewhere to estimate it. For instance, the shape parameter affects the condi-
tioning of the collocation matrix. As the shape parameter decreases (and the
kernel widens), the condition number increases but in some sense the recon-
structed function becomes smoother. There have been research efforts [16] to
explore algorithms, such as cross-validation, for finding shape parameters that
optimize the approximation error.

The use of a broad kernel can cause surprising effects. Fig. 14 shows a section
through simple a two-dimensional interpolation problem. The data are zero at
the corners of a square, with a single non-zero value in the center. Noting the
vertical scale on the plots, the subfigures on the left show wild oscillation that
is not motivated by the simple data. In the figures we used regularization to
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achieve a more sensible solution. In this approach an original linear system

Φw = f

is replaced by the alternate system

(Φ + λI)w = f

thereby reducing the condition number of the matrix. This also has the effect
of causing the reconstructed curve to approximate rather than interpolate the
data (Fig. 13).

Another way of estimating the shape parameter could be to optimize the geo-
metric property of the reconstruction. For instance, one might be interested in
minimizing the total curvature of the reconstruction.

The polynomial, g The main role of the polynomial g is to provide polygonal
reproducibility. That is to say if g ∈ Πp

m then the reconstruction can perfectly
fit any polygon of degree at most m. This can be a very useful property for
many applications. For instance for a 3-D deformation system being able to
reproduce affine transformations is useful. Another advantage of including a
polynomial might be for extrapolation. Specially in the case where a kernel
with compact support is used, the polynomial can be used to model a global
trend in the data. In practice, it is rare to use polynomials of degree higher than
1 (linear function) but it is certainly possible. Finally, when using a polynomial
term in the reconstruction, care must be taken that there is enough data to
fit the polynomial. This is not a problem in the typical case of dealing with
polynomials of degree 1.

5.6.3 Applications

Mesh deformation. One application of scattered data interpolation is in
image-based modeling. The work by Pighin et al. [48] describes a system for
modeling 3-dimensional faces from facial images. The technique works as follow:
after calibrating the cameras, the user selects a sparse set of correspondences
across the multiple images. After triangulation, these correspondences yield a
set of 3-dimensional constraints. These constraints are used to create a defor-
mation field from a set of radial basis functions. Following their notation, the
deformation field f can be written:

f(x) =
∑

i

ciφ(x − xi) +Mx + t, ,

where φ is an exponential kernel. M is a 3×3 matrix and t a vector that jointly
represent an affine deformation. The vanishing moment conditions can then be
written as:

∑

i

ci = 0 and
∑

i

cix
T
i = 0
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(a) cartoon face

(b) jellyfish drawing

Figure 15: Examples of doodles by [3]. The left images were drawn by an artist;
the right images were synthesized using the proposed technique.

This can be simplified to just
∑

i cix
T
i = 0 by using the notation that x ≡

{1, x, y, z}.

Learning doodles by example. Baxter and Anjyo [3] proposed the concept
of a latent doodle space, a low-dimensional space derived from a set of input
doodles, or simple line drawings. The latent space provides a foundation for
generating new drawings that are similar, but not identical to, the input ex-
amples, as shown in Figure 15. This approach gives a heuristic algorithm for
finding stroke correspondences between the drawings, and then proposes a few
latent variable methods to automatically extract a low-dimensional latent doo-
dle space from the inputs. Let us suppose that several similar line drawings are
resampled by (1), so that each of the line drawings is represented as a feature
vector by combining all the x and y coordinates of each point on each stroke
into one vector. One of the latent variable methods in (2) then employs PCA
and thin plate spline RBF as follows. We first perform PCA on these feature
vectors, and form the latent doodle space from the first two principal compo-
nents. With the thin plate spline RBF, we synthesize new drawings from the
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Figure 16: The interpolation problem in [57]. (a) is the original cartoon-shaded
face; (b-1) is the close-up view of (a) and (b-2) is the corresponding intensity
distribution (continuous gradation); (c-1) is the painted dark area and (c-2) is
the corresponding intensity distribution that we wish to obtain.

latent doodle space. The drawings are then generated at interactive rates with
the prototype system in [3].

Locally controllable stylized shading. Todo et al. [57] proposes a set
of simple stylized shading algorithms that allow the user to freely add local-
ized light and shade to a model in a manner that is consistent and seamlessly
integrated with conventional lighting techniques. The algorithms provide an in-
tuitive, direct manipulation method based on a paint-brush metaphor to control
and edit the light and shade locally as desired. For simplicity we just consider
the cases where the thresholded Lambertian model is used for shading surfaces.
This means that, for a given threshold c, we define the dark area A on surface
S as being {p ∈ S|d(p) ≡ 〈L(p), N(p)〉 < c}, where L(p) is a unit light vector,
and N(p) is the unit surface normal at p ∈ S. Consider the cartoon-shaded area
as shown in Figure 16, for example. Then let us enlarge the dark area in Figure
16 (a) using the paint-brush metaphor, as illustrated in (c-1) from the original
area (b-1). Suppose that the dark area A′ enlarged by the paint operation is
given in the form: A′ = {p ∈ S|f(p) < c}. Since we define the shaded area by
the thersholded Lambertian, we’d like to find such a continuous function f as
described above. Instead of finding f , let us try to get a continuous function
o(x) := d(x) − f(x), which we may call an offset function. The offset function
may take 0 outside a neighborhood of the painted area. More precisely, let U be
an open neighborhood of the painted area C. The desired function o(x) should
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Figure 17: The constraint points for the interpolation problem in Figure 16.
The triangle meshes cover the shaded face in Figure 16 (c-1). A is the initial
dark area, whereas C and U denote the painted area and its neighborhood,
respectively. U is the area surrounded by the closed yellow curve. The blue or
red dots mean the boundary points {xi} of these areas.

Figure 18: Toon-shaded 3D face in animation. left : with a conventional shader;
right : result by [57].
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then be a continuous function satisfying:

o(x) =

{

0 , if x ∈ ∂U ∪ (∂A− C)

c− d(x) , if x ∈ U − ∂(A ∪ C).
(5)

To get o(x), we discretize the above condition (5), as shown in Figure 17. Sup-
pose that S consists of small triangle meshes. Using a simple linear interpolation
method, we get the points {xi} on the triangle mesh edges (or as the nodes)
which represent the constraint condition (5) to find an RBF f in the form:

f(x) =

l
∑

i=1

wiφ(x − xi) + p(x), (6)

where φ(x) = ‖x‖. This means that we find f in (6) under the condition (5)
for {xi}l

i=1 as a function defined on R3, rather than on S. We consequently set
o(x) := f(x). Figure 18 demonstrates the painted result. Just drawing a single
image, of course, would not need the continuous function f . The reason why
we need such an RBF technique as described above is that we wish to make
the light and shade animated. This can be performed using a simple linear
interpolation of the offset functions at adjacent keyframes.

Example-based skinning. Kurihara and Miyata [33] introduced the weighted
pose-space deformation algorithm. This general approach interpolates the skin
of character as a function of the degrees of freedom of the pose of its skele-
ton (Fig. 19). Particular sculpted or captured example shapes are located at
particular poses and then interpolated with a scattered intepolation technique.

In the case of [33], the shapes were captured using a medical scan of one of the
authors’ hands, resulting in very plausible and detailed shapes (Fig. 20). The
video accompanying the paper shows that the interpolation of these shapes as
the fingers move is also very realistic.

Kurihara and Miyata used a cardinal interpolation scheme, normalized radial
basis. In this scheme, for n sample shapes there are n separate radial basis
interpolators, with the kth interpolator using data that is 1 at the k training
pose and 0 at all the other poses. The RBF matrix is based on the distance
between the poses (in pose space) and so has to be formed and inverted only
once.

Another important development in this paper is the way it uses skinning weights
to effectively determine a separate pose space for each vertex. That is, the
distance between two poses is defined as

dj(xa,x b) =

√

√

√

√

n
∑

k

wj,k(xa,k − x b,k)2
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Figure 19: Scattered interpolation of a creature’s skin as a function of skeletal
pose.

Figure 20: Hand poses synthesized using weighted pose space deformation (from
[33]).

where wj,k are the skinning weights for the kth degree of freedom for the jth
vertex, and xa,k denotes the kth component of location xa in the pose space.
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5.6.4 Computational considerations

We recall from this section that the RBF reconstruction with a polynomial term
is determined by two sets of equations:

N
∑

k

wkφ(‖xi − xk‖) + g(xi)=fi, for 1 ≤ i ≤ n,

N
∑

k

wkh(xk)=0, for all h ∈ Πp
m.

To better understand these equations, we choose a basis of Πp
m, {q1, . . . , ql},

with l = dim(Πp
m) and let, a = {a1, . . . , al}, be the expansion of g on this basis

(i.e. g(x) =
∑l

j ajqj(x)). Thus the previous equations become:

N
∑

k

wkφ(‖xi − xk‖) +

l
∑

j

ajqj(xi)=fi, for 1 ≤ i ≤ n,

N
∑

k

wkqj(xk)=0, for 1 ≤ j ≤ l.

We can rewrite these in matrix form as:
[

Φ Q
Qt 0

] [

w
a

]

=

[

f
0

]

where Φi,j = φ(‖xi−xj‖), Qi,j = qj(xi), w = {w1, . . . , wN}, and f = {f1, . . . , fN}.
From a computational point of view the RBF reconstruction requires solving a
linear system of equations with the matrix:

A =

[

Φ Q
Qt 0

]

A is called the interpolation or collocation matrix. From here on, we will study
this matrix to answer two questions. First, we would like to know if the system
of equations admits a solution and if it is unique. Second, we would like to
use to use an efficient procedure to estimate the solution and a procedure that
would ideally scale well with large number of samples.

Well-posedness
We would like to know when this system of equations has a solution and if it
is unique. The first think to notice about A is that it is square (the number
of equations equals the number of unknowns) and symmetric (At = A). Linear
algebra tells us that a square system of equations always has a solution. If
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the matrix is non-invertible or rank-deficient, the system has multiple solutions
that form a vector space. But in practice we would like the system to have a
single solution (in such case we would qualify the problem as being “well-posed”)
because if there is more than a single solution it means that some of the data is
not being used (we could drop some rows and columns of the matrix and still
get a solution).

Determining the uniqueness of the solution (or the well-posedness of the prob-
lem) depends on three quantities:

• The position of the samples {xi}. Clearly if there is redundancy in the
data, the system will be rank-deficient.

• The kernel φ.

• The degree, m, of the polynomial.

Unfortunately, necessary and sufficient conditions to characterize this general
non-singular case are still open. If we restrict the kernel, φ, to a particular space
of function then more can be said. One such restriction is the space of kernels
that produce symmetric definite matrices. Roughly speaking, it can be shown
that these kernels always produce invertible interpolation matrices assuming
that the sample sites do not lie on a polynomial of degree less than m [10].

Alternately, one way to circumvent uniqueness issues is to cast the problem
where we seek to minimize the squared norm of [wt at]

t
subject to a set of linear

constraints. This yields an objective function that is a quadratic form. This
problem is guaranteed to have a unique solution (convex objective function).

Estimating the solution
From a numerical point of view, solving the system depends on two quantities:

• The fill distance [60]. The fill distance expresses how well the data, D,
fills a region of interest Ω:

hD,Ω = sup
x∈Ω

min
xj∈D

‖x − xj‖2.

It is the radius of the largest “data-site free ball” in Ω. The fill distance
can be used to bound the approximation error.

• The separation distance [60]. The separation distance, qD, measures how
close the samples are together. If two data sites are very close then the
interpolation matrix will be near-singular.

qD =
1

2
min
j 6=k

‖xj − xk‖2.

It can be shown that the minimum eigenvalue of A, hence its condition
number, is related to the separation distance:

λmin(A) ≥ Cq2τ−d
D
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The matrix A is usually not sparse and for large number of samples tends to be
ill-conditioned (if the density of the samples augment the separation distance
will likely decrease).

Stable procedures (e.g. QR or SVD decomposition) for solving such system are
of time complexity O((N + l)3/6) with order O((N + l)2) in storage. As the size
of the training set grows this quickly becomes prohibitive. There are a several
venues for addressing this scalability issue.

For instance Beastson et al. [5] propose a numerical approach combining an it-
erative solver and a preconditioner. The preconditioner is a matrix representing
a change of coordinate system. The main idea is that in a different coordi-
nate system the system of equations requires fewer iterations to obtain a good
estimate of the solution. As a solver, they recommend using the generalized
minimal residual method (GMRES).

The most common approach is to perform a far field expansion of the kernel
φ. This method called fast multipole expansion [62] allows speeding up the

computations of
∑N

k wkφ(‖x−xk‖) by splitting the kernel into sums of separable
functions.

In the domain decomposition method [4] the data set is subdivided into several
smaller data sets and the interpolations equations are solved iteratively. This
technique has the advantage of allowing parallel computations.

A different approach is to process the data incrementally: Start from a small
sub-set and leave the rest for refining or validating the approximation. Hon et
al. [29] offers such a greedy approach.

Most of these techniques would introduce errors in the computation of the solu-
tion but since the reconstruction is an approximation of the true function, these
errors might be acceptable.

5.7 Scattered interpolation on meshes: Laplace, Poisson,
Thinplate

The previous subsection on radial basis methods mentioned choices of kernels
for using RBFs to produce thin-plate interpolation. There is an equivalent
formulation that does not use RBFs. This formulation is a boundary value
problem where the differential equation represents a penalty on roughness and
the boundary conditions are the known values of the interpolation problem.
In practice, this results in a single linear system solve for the unknowns via
discretization of the Laplacian operator on a mesh. In this mesh-based approach
the problem domain is often on a regular grid, so initially this may not seem like
scattered interpolation. However, the unknowns can be scattered at arbitrary
sites in this grid, so it is effectively a form of scattered interpolation in which
the locations are simply quantized to a fine grid. In addition, forms of the
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Figure 21: Laplace/Poisson interpolation in one dimension is piecewise linear
interpolation. Note that this figure was created by solving the appropriate linear
system (rather than by plotting the expected result).

Laplacian (Laplace Beltrami) operator have been devised for triangular meshes
[26], allowing scattered interpolation on irregular geometry.

Scattered interpolation of sites on regular meshes is commonly used in the work
on image editing, in particular e.g. [47], and operations with irregular mesh
(manifold) Laplacians are also finding frequent use in mesh deformation (e.g.
[7]).

The connection between the mesh-based Laplacian interpolation and RBFs is
through the definition of the thin-plate. Specifically, the Laplace or Poisson
equation seeks to minimize the integral of the squared first derivative over the
domain, with the solution (via the calculus of variations ) that the second deriva-
tive is zero:

min
f

∫

‖∇f‖2dΩ ⇒ ∇2f = 0

Similarly, the thin plate seeks to minimize the integral of the squared second
derivative over the domain, with the solution that the fourth derivative is zero:

min
f

∫

(
d2

dx2
f(x, y))2 + (

d2

dy2
f(x, y))2 dxdy ⇒ ∇2f = 0

The Laplace equation can be solved via finite differences, resulting in a linear
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system. The finite-difference approximation for the second derivative is:

d2f

dx2
≈ 1

h2
(1 · f(x+ 1) − 2 · f(x) + 1 · f(x− 1))

The weight stencil (1,−2, 1) is important. If f(x) is digitized into a vector
f = [f [1], f [2], · · · , f [m]] then the second derivative can be approximated with
a matrix expression

Lf ∝













−1 1
1 −2 1

1 −2 1
1 −2 1 · · ·
. . .























f [1]
f [2]
f [3]

...











In two dimensions the corresponding finite difference is the familiar Laplacian
stencil





1
1 −4 1

1



 (7)

These weights are applied to the pixel sample f(x, y) and its four neighbors
f(x, y−1), f(x−1, y), f(x+1, y), f(x, y+1). A two-dimensional array of pixels
is in fact regarded as being “vectorized” into a single column vector f(x, y) ≡ fk

with k = y × xres + x.

Regardless of dimension the result is a linear system of the form Lf = 0, with
some additional constraints that specify the value of f(xk) at specific positions.
When the constraints are applied this becomes an Ax = b system rather than a
Ax = 0 nullspace problem.

In matrix terms the corresponding thin-plate problem is simply

L2f = 0

where (again) some entries of f are known (i.e. constrained) and are pulled to
the right hand side.

In both cases the linear system is typically huge, with the number of equations
being the number of unknown pixels in the image inpainting case (this can
easily be 10,000 or more). On the other hand, the matrix is sparse, so a sparse
solver can (and must) be used. The Laplace/Poisson equations are also suitable
for solution via multigrid techniques, which have time linear in the number of
variables. A Python implementation of Laplace interpolation can be found in
appendix A.

5.7.1 Mesh-based vs. meshless methods

There is a fundamental difference between mesh-based (e.g. Laplacian) and
meshless (e.g. RBFs) methods. It has to do with the space in which the dis-
tance/influence in sampling space is measured. With a meshless method the
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distance is measured in the input space of the reconstruction. With a mesh-
based method the distance or influence is measured following the geometry of
the mesh.

Let us illustrate this through a practical example. Imagine we have recorded
some motion data around the mouth of a performer for the purpose of lip-
synching a digital clone. Now we face the problem of deforming the lips of the
facial mesh according to the mocap data. If we apply an RBF-based solution,
the motion recorded on the upper-lip will influence the lower-lip geometry far
too much especially if the lips are close. This is because we measure influence
in 3-space regardless of the mesh or face geometry. If we apply a Laplace-style
method, the motion bleeding will be much less noticeable because the influence
of the sample gets propagated along the mesh not in 3-space.

Based on this example it would seem that mesh-based methods are always
preferable. This is often true but it does assume that a “mesh” is available.
For most data sets we do not have a mesh even though we might suspect that
the samples have some structure or (in mathematical terminology) belong to a
manifold. Finding a good parameterization of the data so that its properties are
preserved via interpolation is one of the most important and difficult issues in
scattered data interpolation. Section 8 gives a brief overview of scattered data
interpolation on manifolds.

5.8 Comparison and Performance

Several general statements about the performance of the various methods can
be made.

• Radial Basis and Wiener interpolation both generally require solving a
linear system to determine the weights wk. This typically requires O(N3)
time (though the matrix is symmetric so Choleski can be used), but this
can be done as a setup or “training” precomputation.

• Shepard’s method is simple and has no setup or training cost. On the
other hand it provides rather poor interpolation.

• All methods except for moving least squares have a runtime cost that is
linear in the number of data points.

• Moving least squares have no training cost, but require solving a linear
system at runtime. On the other hand this system may involve a small
subset of the total number of data points.

• For the roughness penalty methods that have equivalent RBF and relax-
ation formulations, the RBF approach scales with the number of known
data points, whereas the direct (Laplace/Poisson) approach scales with the
number of unknown points (i.e. locations to be synthesized). Laplace/Poisson
interpolation is poor (e.g. it is piecewise linear in the one dimensional case).
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The iterated Laplacian provides better interpolation but is more difficult
to solve with fast (multigrid) methods.

6 Where do RBFs come from?

In the previous section we saw that Radial Basis Functions are a simple and
versatile method for interpolating scattered data, generally involving only a
standard linear system solve to find the interpolation weights, followed by in-
terpolation of the form

f(x) =
∑

k

wkφ(||x − xk||)

where (x) is the resulting interpolation at point x, and φ is a radially symmetric
“kernel” function.

Several choices for the kernel were mentioned, such as exp(−r2/σ2) and some
more exotic choices such as r2 log r.

Where do these kernels come from and how should you choose one? This section
provides the theory to answer this question.

6.1 What kernels will interpolate?

Conditions for the choice of kernel are given in [10], p. 100, but the discussion
there involves functional analysis and is more technical than needed in this
section. Roughly speaking, strictly monotonic kernels work well.

This becomes evident by considering the solution for the weights,










φ1,1 φ1,2 φ1,3 · · ·
φ2,1 φ2,2 · · ·
φ3,1 · · ·

...





















w1

w2

w3

...











=











f1
f2
f3
...











where φa,b denotes φ(‖xa − xb‖). We can imagine choices of φ that will result
in the matrix above having identical rows, and thus prevent finding suitable
weights. To the extent that φ is monotonic, however, the rows of the R matrix
will be distinct.

6.2 Kernels, Differential Operators, and “roughness penal-
ties”

Although Laplace and thin-plate interpolation is usually done by either sparse
linear solves or relaxation/multigrid, it can also be done by radial basis inter-
polation, and this is faster if there are relatively few points to interpolate.
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In these cases the kernel φ is the “Green’s function of the corresponding squared
differential operator”. This section will explain what this means, and give an
informal derivation for simplified case. Specifically we’re choosing a a discrete
one-dimensional setting with uniform sampling, so the problem can be expressed
in linear algebra terms rather than with calculus.

The goal is find a function f that interpolates some scattered data points dk

while simultaneously minimizing the roughness of the curve. The roughness is
measured in concept as

∫

|Df(x)|2dx (8)

where D is a “differential operator”.

Whereas a “function” takes a single number and returns another number, an
“operator” is something that takes a whole function and returns another whole
function. The derivative is a prototypical operator, since the derivative of a
function is another function. A differential operator is simply an operator that

involves some combination of derivatives, such as such as d2

dx2 for example.

We’re working discretely, so D is a matrix that contains a finite-difference ver-
sion the operator. For example, for the second derivative, the finite difference
is

d2

dx2
≈ 1

h2
(ft+1 − 2ft + ft−1)

This finite difference has the weight pattern 1,−2, 1, and for our purposes we
can ignore the data spacing h by considering it to be 1, or alternately by folding
it into the solved weights.

The finite difference version of the whole operator can be expressed as a matrix
as

D =













−2 1
1 −2 1

1 −2 1
1 −2 1 · · ·
. . .













The discrete equivalent of the integral (8) is then ‖Df‖2 = fTDTDf .

Then our goal (of interpolating some scattered data while minimizing the rough-
ness of the resulting function) can be expressed as

min
f

‖Df‖2 + λTS(f − d).

= min
f
fTDTDf + λTS(f − d). (9)

S is a “selection matrix”, a wider-than-tall permutation matrix that selects
elements of f that correspond to the known values in d. So for example, if f is
a vector of length 100 representing a curve to be computed that passes through
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5 known values, S will be 5×100 in size, with all zeros in each row except a 1 in
the element corresponding to the location of the known value. The known value
itself is in dk, a vector of length 5. λ is a Lagrange multiplier that enforces the
constraint.

Now take the derivative of Eq. (9) with respect to f ,

d

df
= 2DTDf + STλ

and we can ignore the 2 by folding it into λ.

If we know λ, the solution is then

f = (DTD)−1STλ (10)

• Although continuously speaking the differential operator is an “instanta-
neous thing”, in discrete terms it is a convolution of the finite difference
mask with the signal. Its inverse also has interpretation as a convolution.

• if D is the discrete version of d
dx then DTD is the discrete Laplacian,

or the “square” of the original differential operator. Likewise if D is the
discrete Laplacian then DTD will be the discrete thin plate, etc.

• λ has the same size as d, so STλ is a vector of discrete deltas of various
strengths. In the example STλ has 5 non-zero values out of 100.

6.3 Green’s functions

Earlier we said that the kernel is the “Green’s function of the corresponding
squared differential operator”.

A Green’s function is a term from differential equations. A linear differential
equation can be abstractly expressed as

Df = b

whereD is a differential operator as before, f is the function we want to find (the
solution), and b is some “forcing function”. In the Greens function approach
to solving a differential equation, the solution is assumed to take the form of
a convolution of the Green’s function with the right hand side of the equation
(the forcing function). (We are skipping a detail involving boundary conditions,
but the statement is essentially correct). For linear differential equations the
solution can always (in theory) be expressed in this form.

The Green’s function G is the “convolutional inverse” of the squared differential
operator. It is the function such that the operator applied to it gives the delta
function,

DG = δ (11)
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While the theory of Green’s functions is normally expressed with calculus, we’ll
continue to rely on linear algebra instead. In fact, the appropriate theory has
already been worked out in the previous subsection and merely needs to be
interpreted.

Specifically, in Eq. (10), (DTD)−1 is the Green’s function of the squared differ-
ential operator. In discrete terms Eq. 11 is

DTD(DTD)−1 = I

with the identity matrix rather than the δ function on the right hand side.
And STλ is a sparse set of weighted impulses that is “convolved” (via matrix
multiplication) with the Green’s function. Thus we see that Eq. 10 is the Green’s
function solution to the original “roughness penalty” goal.

7 Modeling physical systems with scattered data
interpolation

Scattered data interpolation techniques have also found many applications in
solving physics problems. There are generally three ways SDI techniques can
come into play for solving physical problems. First, it could well be we are
dealing with sampled data that represents physical quantities such as velocity.
These quantities often obey physical properties that have to be maintained
during interpolation. Second, scattered data interpolation can be used within
a physical simulation as a way of expressing a physical function or field and
its derivatives from a set of values at specific locations. Finally, scattered data
interpolation can also be used when simulating coupled systems with fluid-
structure interaction.

7.1 Interpolating physical properties

Many quantities in physics are expressed as vector fields (velocity, magnetic
field). A vector field can be represented as a mapping from R

3 to R
3. The

domain does not have to be R
3 but could well be a manifold embedded in R

3

(e.g. a surface) but we leave this case to the next section.

A case that is of particular interest in computer graphics is the situation where
the data stems from an incompressible fluid, i.e. a fluid having neither sources
nor sinks. In such case, we say that the fluid has a velocity field v that is
divergence-free if:

∇ · v =
∂v

∂x
+
∂v

∂y
+
∂v

∂z
= 0

This property is not trivial to maintain during a simulation.
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If the velocity was sampled from a divergence-free phenomenon then the inter-
polated values should be divergence-free as well. RBF-based interpolants can
be constructed to be divergence-free. One examples of these are called matrix-
valued radial basis functions [39]. The procedure for constructing such an in-
terpolant can be explained in the following way: Let us assume a scalar-valued
function, φ, we can form the matrix valued function:

Φdiv := (∆I + ∇∇tφ),

where ∆ is the gradient operator and ∇∇t (or ∇2 ) is the laplacian oper-
ator. One can prove that Φdiv is a matrix-valued function with divergence-
free columns. Although, Φdiv , is not an RBF, if φ is an RBF, we can build
divergence-free interpolants:

f̃(x) =

N
∑

k

Φdiv(x − xk)wk,

where {wk} is a set of weight vectors that can be computed from the following
constraints:

f̃(xi) =

N
∑

k

Φdiv(xi − xk)wk = fi, for 1 ≤ i ≤ n.

Recent work by H. Wendland [61] has shown that divergence-free kernels can
be used to solve stationary Navier-Stokes problems.

Another classical property of physical fields is to be curl-free. For instance this
is the case for the gravity field. There are techniques for interpolating curl-free
phenomena. One way of doing this is to perform a Helmholtz-Hodge decompo-
sition on the kernel to obtain a divergence-free and a curl-free component [25].
E.J. Fuselier [24] also proposes curl-free matrix-valued RBFs.

7.2 Scattered data interpolation in mesh-free methods

The simulation of physical phenomena often require solving partial differen-
tial equations. It is impossible to solve these equations except for the simplest
problems, as a result discretization techniques are used to perform the computa-
tions using a discrete number of locations. Methods such as the finite elements
method use a mesh to represent the computational volume. The physical un-
knowns are estimated at each node in the mesh. These mesh-based or Eulerian
methods are well-suited when the volume of the simulation is well defined (e.g.
the interior of a piston). For open system such as splashing fluid, mesh-free,
particle or Lagrangian methods are better suited. In a mesh-free approach the
computation volume is not defined by a static mesh but rather the medium
is represented by a set of moving particles. In this framework, running the



Scattered Data Interpolation and Approximation for Computer Graphics 46

simulation involves computing the trajectory of the particles and their physical
properties (velocity, temperature, etc.) through time. Scattered data interpola-
tion naturally comes into play in mesh-free methods from the need to interpolate
simulated values form the particles to the entire computation volume.

Mesh-free methods can be more computationally demanding than their Eulerian
counterparts, also handling boundary conditions is more difficult.

In what follows we briefly look at the use of radial basis functions and moving
least-squares in mesh-free methods.

7.2.1 RBF-based mesh-free methods

Radial basis functions can also be used to solve partial differential equations
(PDE) [21, 15, 30]. RBF based methods are collocation methods that proceeds
by choosing a finite-dimensional space (usually, polynomials up to a certain
degree) and a number of points or sites in the domain (called collocation points).
The goal is then to select that solution which satisfies the given equation at
the collocation points. Solving PDEs through radial basis functions is a fairly
new approach. A key advantage of using RBF is that, unlike Eulerian-type
techniques, it does not require a grids. As such these techniques fall within the
category of mesh-free or mesh-less techniques. They have been applied to linear
elliptic PDEs, time-dependent problems, and to non-linear problems.

Let us consider the case of an elliptic partial differential equations. A standard
formulation could be:

Lu=f, in Ω

u=g, in ∂Ω

where L is a differential operator, Ω is the domain and interest, and ∂Ω is the
boundary of the region. The first set of equations represent a law of evolution
and the second are boundary conditions. The vector-field quantity u can be
approximated using radial basis functions, uφ, for instance:

uφ(x, t) =

N
∑

k

wk(t)φ(‖x − xk‖) + g(x), with x ∈ Ω.

Note that we assumed uφ to be a function of time, t but does not need to. We
can bring the approximation, uφ, in the original equations:
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N
∑

k

wk(t)Lφ(‖xi − xk‖) + Lg(xi)=fi, for 1 ≤ i ≤ n,

N
∑

k

wk(t)φ(‖xi − xk‖) + g(xi)=gi, for 1 ≤ i ≤ q,

N
∑

k

wk(t)h(xk)=0, for all h ∈ P p
m.

This results in a linear system of equations that is traditionally solved using
a preconditioned iterative solver. In this framework, the sites {xi}, are called
collocations sites. The idea is to choose a finite-dimensional space of candidate
solutions (usually, polynomials up to a certain degree) and a number of points in
the domain (called collocation points), and to select that solution which satisfies
the given equation at the collocation points.

RBF collocation methods have been shown numerically (and theoretically) to
be very accurate even for a small number of collocation points.

7.3 Fluid-structure interaction

Simulating a system with fluid-structure interaction requires using two different
simulators. For instance, if we are interested in studying the behavior of an
aircraft wing, we need to simulate the flow around the wing perhaps using a
grid-based Navier-Stokes solver. Part of the grid will be modeling the exterior
surface of the wing. We also need to simulate the structural deformations of the
wing using structural mechanics with a different mesh. The simulator would al-
ternate between a computational fluid dynamic and a computational structural
dynamics solvers. When switching solver loads must be transferred from a mesh
to the other and the CFD mesh needs to be deformed repeatedly.

Along these lines, Jakobson describes a practical method for wing optimiza-
tion [31].

8 Scattered data interpolation on a manifold

So far we have assumed that our sample space is a subset of Rp without consid-
ering any topological information. Indeed this is the best we can do if there is
no topological information available 1. For many applications though we have

1A different approach could be to use a manifold learning technique to recover some topo-
logical information as well as approximating the data but this is beyond the topics of these
notes.
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some information about the topology of the domain. For instance, if we are
dealing with BRDF samples, we know these should be distributed on a sphere.
Or if we are dealing with orientation, we know these should belong to the space
SO(3). It is always possible to perform scattered data interpolation without
taking topological information into account but the penalty for doing so can
be severe, for instance interpolating two rotations might produce a non-rigid
transformation.

Computer graphics applications give rise to far more complex manifold than
the 3- or 4 -dimensional sphere. For instance, consider the space of all possible
configurations of a facial mesh or the set of all possible images of an object.

Because of the practical importance of spherical data, we treat the well studied
case of the sphere before moving on to the more general case.

8.1 Interpolating on a manifold

We do not pretend to provide a mathematically accurate presentation of inter-
polation theory or techniques on a manifold, rather we strive to provide some
intuitions.

Manifolds are mathematical objects that have properties similar to surfaces. In
general, a manifold is a space for which at every point, we can find a neighbor-
hood that can be mapped to Rp in a continuous and bijective way (both prop-
erties are important). These maps are called charts and a collection of charts
is called an atlas. This definition infers some string structure on a manifold be-
cause we can use the charts to reason in Euclidian space and use the Euclidian
norm. Also if we endow our manifolds with some differential structure such as
a tangent space, we can define curves over the manifolds and from then derive
the notion of shortest path, or geodesic, between two samples. This notion of
geodesic is important because if we would like to interpolate smoothly between
two samples at constant speed, it would correspond to following a geodesic with
run-length parameterization.

The observation then is that by passing through the tangent space and using
geodesic distance. it becomes possible to reduce much of the work to Euclidian
space. For instance, once can consider so called zonal kernels of the form:

κ(x, y) = ψ(d(x, y)),

where ψ is a real function of a single variable and d is the geodesic distance.
Also an interesting result for providing error estimate is the fact that for a
differentiable manifold M if (U,ϕ) is a chart and Φ : M ×M → R is a positive
definite kernel on M , then:

Ψ(u, v) := Φ(ϕ−1(u), ϕ−1(v)),

is a positive definite kernel on ϕ(U).
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8.2 Interpolating on the sphere

Interpolating data on the sphere is a rich topic. For a more comprehensive
survey of the topic we refer to Fasshauer and Schumaker [17]. A lot of work
has been done on polynomial interpolation and more recently on radial basis
functions. We restrict our discussion to spherical harmonics and RBFs.

8.2.1 Spherical harmonics

There are multiple ways to define spherical harmonics. For instance, if we define
harmonic functions, the functions, f , that satisfy ∆f = 0; a spherical harmonic
of degree l is the restriction of a homogeneous harmonic polynomial of degree
l to the sphere. So we can build spherical harmonics of order d in terms of
cartesian coordinates by considering functions of the form:

g(x, y, z) =
∑

i+j+k=d

ai,j,kx
iyjzk, such that ∆g = 0.

Then from these functions we can build a basis by extracting linearly indepen-
dent vectors a. The popularity of spherical harmonics can be explained by their
ability to approximate well smooth functions over the sphere.

8.2.2 RBF on the sphere

There are different ways to consider RBF on a sphere. The simplest way is
to consider the points to be in the ambient space R

3 and then restrict the
evaluation of approximation to the sphere. This would not however respect
geodesic distance but this is easily fixable by using the geodesic distance instead
of the Euclidian distance in the RBF expression:

f̃(x) =

N
∑

k

wkφ(d(x − xk)).

Whether the resulting linear system has full rank or not is a difficult question to
answer. But wide classes of functions that yield positive definite systems have
been identified.

Another interesting issue is polynomial reproducibility. We can augment an
RBF reconstruction with a polynomial term. In spherical context, the polyno-
mial term takes the form of spherical harmonics:

f̃(x) =

N
∑

k

wkφ(d(x − xk)) +
∑

k

∑

l

dk,lYk,l(x).
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8.2.3 Interpolating rotations

Interpolating rotations in R3 is of great practical importance in computer graph-
ics (e.g. keyframing). The space of rotations is called the special orthogonal
group (written SO(3)). Its two most common parameterization are in terms of
Euler angles or the 3-dimensional projective space (quaternions). The quater-
nion representation identifies an element A in SO(3) with a vector, ωx, in R3

such that Ax = x and ‖x‖ = 1. x is the rotation axis and ω the rotation angle
(chosen in [0, π]).

Whereas interpolating between two rotations can be done using the well-known
Spherical Linear Interpolation (SLERP) formula, interpolation between an ar-
bitrary number of rotations is less studied. Let us first treat the case of inter-
polating between two rotations. This is best understood using quaternion. Let
us consider p and q two elements of SOP (3) in quaternion form. We have:

slerp(p, q, t) = p(p−1q)t

where, p and q are quaternions and t is a parameter ranging from 0 to 1. Or,
alternatively:

slerp(p, q, t) =
sin((1 − t)θ)

sin(θ)
p+

sin(tθ)

sin(θ)
q,

where θ is the angle between p and q (i.e. cos(θ) = p · q).
There are several ad-hoc procedures for interpolating between multiple quater-
nions [46, 42]. Generally these methods tend to lift the problem onto the tangent
space around some average, do the interpolation in Euclidian space, and project
back onto the 4-dimensional sphere. This works well for orientations are bundled
close together but not so well for rotations that are far apart.

There is some theoretical work on defining positive definite kernels on SO(3) [19]
but it has yet to find practical applications.

9 Guide to the deeper theory

This chapter does not aim at developing a rigorous mathematics behind the
techniques described in this course, but at giving intuitive meanings to the
mathematical concepts that support those techniques. We do hope that this
chapter will give a good introduction to learn the mathematics behind the scene
more deeply.

Those mathematical concepts come mainly from functional analysis, the math-
ematical field of modern calculus. The modern calculus introduces a variety
of function spaces, such as Hilbert space or Sobolev space, while generalizing
concepts in classical calculus. As described below, this gives us a theoretical
basis for solving the optimization problems or regularization problems of our
practical situations.
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9.1 Elements of functional analysis

A function classically means a mapping that gives a real value, denoted by f(x),
for a given real number x. One of the motivations for generalizing the concept
of function was to give a mathematical validation of Dirac delta function, δ,
which has following properties:

f(0) =

∫

f(x)δ(x)dx (12)

or

f(t) =

∫

f(x)δ(t− x)dx

for any ordinary function f(x).

Alternatively the Dirac delta function could be expressed as

δ(t) =

{

+∞ (t = 0)

0 (otherwise).

But this suggests that δ function is not an ordinary function. The Heaviside
function H(t) is also well-known (mainly in signal processing) with its derivative
being δ function:

H(t) =

{

1 (t ≥ 0)

0 (otherwise).

However, H(t) is not differentiable nor continuous at t = 0 in a classical sense.
How can we explain these things in a mathematically correct way? What we
need is therefore to give alternative definitions of functions, derivative, and many
more technical terms in classical calculus.

9.2 Brief Introduction to the theory of generalized func-
tions

To achieve a new concept of “derivative”, we first take a look at the formula,
known as integration by parts. For simplicity, we consider a one-dimensional
case. Then we have:

∫ b

a

f ′(x)g(x)dx = −
∫ b

a

f(x)g′(x)dx+ [f(t)g(t)]t=b
t=a. (13)

We derive this formula, supposing that both f and g are smooth (differentiable).
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Next let us suppose that g vanishes at the boundary (i.e., g(a) = g(b) = 0 in
(13)). We then have:

∫ b

a

f ′(x)g(x)dx = −
∫ b

a

f(x)g′(x)dx. (14)

Further, what if the above f is not differentiable (for example, f = δ)? The left
hand in (14) is therefore meaningless, but the right hand is still valid. Equation
(14) might therefore tell us that, instead of taking the derivative of f , we can
think of doing so for g. This could be understood if we consider f as a functional,
rather than a function, as described later.

Function space and functional Keeping the above things in mind, we next
introduce a concept of function space. A function space ℑ is a collection of
functions defined on a certain domain (typically, region Ω in Rn). Here are the
examples of function spaces:

Function Space Examples:

1. Pm := {P (x)|P (x) is a polynomial of at most m-th order2 }.
2. Cm(Ω) is the totality of m-th order smoothly differentiable functions on

Ω, where m = 0 (the totality of continuous functions), 1, 2, · · · , or ∞.

3. C∞
0 (Ω) is the totality of infinitely many times differentiable functions on

Ω with compact support (i.e., each function of this function space vanishes
outside a large ball in Rn).

4. Lp(Ω) := {f : Ω → R ∪ {±∞}|
∫

|f(x)|pdx < ∞}3, where p is a positive
number.

A function space ℑ is usually treated as a linear topological space. This means
that ℑ is a vector space, where convergence of a function sequence is defined
(see the section on Hilbert space for details). Next recall a function f : Ω → R.
f is then defined on Ω, and gives a real number f(x) when x is specified. Now
we consider mapping F from a function space ℑ to R. We call the mapping
F : ℑ → R a functional. A functional F is defined on a function space, and
gives a real number F (ϕ) when an element ϕ of the function space is specified.

Functional Examples:

1. (Thin plate spline) Let Ω be a domain in R2. Let B2
2(Ω) be the function

space defined as:

B2
2(Ω) := {ϕ(x) : Ω → R ∪ {±∞}| ∂

2ϕ

∂x2
1

,
∂2ϕ

∂x1∂x2
,
∂2ϕ

∂x2
2

∈ L2(Ω)}. (15)

2This space was denoted Πm+1 in subsection 5.6.1
3Rigorously, dx should be denoted by dµ(x) with Lebesgue measure µ. But we don’t have

to consider such mathematical details in these course notes.



Scattered Data Interpolation and Approximation for Computer Graphics 53

To get a thin plate spline curve, we then consider the functional F on B2
2

as:

F (ϕ) :=

∫∫

Ω

(

∣

∣

∣

∣

∂2ϕ

∂x2
1

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∂2ϕ

∂x1∂x2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂2ϕ

∂x2
2

∣

∣

∣

∣

2
)

dx1dx2. (16)

2. An ordinary function f can also be identified with a functional. The
functional, denoted by Tf , is defined as

Tf (ϕ) :=

∫

Ω

f(x)ϕ(x)dx, (17)

for any ϕ in a certain function space ℑ4.

3. (Dirac delta function) Consider the function space C∞
0 (Ω), where 0 ∈ Ω.

For any element ϕ ∈ C∞
0 (Ω), Dirac delta function is defined as:

Tδ(ϕ) := ϕ(0). (18)

We then note that the functionals in (17) and (18) are linear. This means, for
instance, that we have:

Tf (αϕ+ βψ) = αTf (ϕ) + βTf (ψ),

for any ϕ,ψ and any α, β ∈ R.

We will show that, a (continuous) linear functional is the generalized function
which gives the theoretical basis on discussions in this course notes. Before
doing this, we need to investigate more about the relation between f and Tf .

Functions as functionals Now go back to Tf , for an ordinary function f .
Then we want to identify the function f with the functional Tf . To make it, we
should investigate whether the following property holds:

Tf = Tg ⇔ f = g (19)

For example, it is easy to see that this property holds, if f is a continuous
function on Ω, and if the linear functional Tf is defined on C∞

0 (Ω). Moreover we
can get this identification (19) for a wider class of functions. Let’s skip, however,
the mathematical proof of (19) and mathematical details in the background.
Rather, what we should recognize now is that an ordinary function fcan be
identified with a functional Tf on a certain function space through (19).

4We of course assume Tf (ϕ) in (17) takes a finite value for any ϕ in ℑ.
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Generalized function and its derivative We thus define a generalized func-
tion in the following way.

Definition: Let ℑ be a function space5. Let T be a functional: ℑ → R. T
is called a generalized function (or distribution), if it satisfies the following con-
ditions:

1. T is linear:

T (αϕ+ βψ) = αT (ϕ) + βT (ψ), for ϕ,ψ ∈ ℑ, α, β ∈ R. (20)

2. T is continuous:

lim
n→∞

ϕn = ϕ in ℑ ⇒ lim
n→∞

T (ϕn) = T (ϕ) in R. (21)

Next we define derivative of a generalized function. The hint of making it again
lies in the formula of integration by parts in (14). For simplicity we consider one-
dimensional case, taking ℑ = C∞

0 (Ω). Suppose that f is smooth (differentiable).
We then note that equation (14) suggests

T df
dx

(ϕ) =

∫

df

dx
ϕdx = −

∫

f
dϕ

dx
dx = −Tf

(

dϕ

dx

)

. (22)

It therefore seems natural to define the derivative of the generalized function T ,
as follows:

Definition: Let T be a generalized function: ℑ → R.The derivative of T , de-
noted by T ′, is defined by

T ′(ϕ) = −T (
dϕ

dx
). (23)

We note that T ′ itself is also a generalized function. The above definition by
(23) is reasonable, because, if we consider the case where T is induced by a
smooth function (i.e., T = Tf ), it follows from (22) that T ′(ϕ) = T df

dx
(ϕ). In

the following T ′ is sometimes denoted by dT
dx .

As an exercise, let us calculate the derivative of Heaviside function H(x) ( = 1
if x ≥ 0, and = 0, otherwise) in the sense of distribution. Instead of H itself,
we therefore consider TH . Then we can differentiate it as a linear functional.

dTH

dx
(ϕ) = −TH

(

dϕ

dx

)

= −
∫ +∞

−∞

h(x)
dϕ

dx
dx = −

∫ ∞

0

dϕ(x)

dx
dx

= −[ϕ(t)]t=∞
t=0 = ϕ(0) ≡ Tδ(ϕ)

5ℑ could be C∞
0

(Ω), C∞(Ω), and other function spaces, which would bring us various
generalized functions [54]. However, in our course notes, we mostly set ℑ as C∞

0
(Ω).
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Similarly we can inductively define the n-th order derivative of T .

Definition: The n-order derivative of a generalized derivative of T , denoted by
dnT
dxn (or by T (n)), is defined by

dnT

dxn
(ϕ) := (−1)nT (

dnϕ

dxn
). (24)

Again dnT
dxn is a generalized function. We could therefore say that any generalized

function (on ℑ) is infinitely many times differentiable. Let ℑ′ be the totality
of the generalized functions on ℑ. We call ℑ′ the dual space of ℑ, which again
constitutes a vector space.

The dual space ℑ′ includes δ function, Heaviside function, and regular functions
(such as continuous or smooth functions). In practice we can consider most
generalized function as being in the form Tf with an ordinary function f . More
precisely, if a function f is locally integrable6, Tf is then a generalized function.
The regular functions and Heaviside function are locally integrable, while δ
function is not. On the other hand, though the definition of Dirac δ in (18) looks
a bit artifical, if we symbolically use the integral representation like

∫

ϕ(x)δ(x)dx
instead of Tδ(ϕ), we still have equation (12) valid in the sense of distribution,
which simply means

∫

ϕ(x)δ(x)dx ≡ Tδ(ϕ) = ϕ(0).

Once we get such a mathematical concept of generalized function as described
above7, we can reformulate the problems in classical calculus. For instance
the problems of solving ordinary/partial differential equations (ODE/PDE) is
described in the following way. Let P (ξ) be an m-th order polynomial with
constant coefficients. For a one-dimensional case, P (ξ) =

∑m
n=0 anξ

n. We

then define the differential operator P ( d
dx ) as being P ( d

dx )u =
∑m

n=0 an
dnu
dxn .

Similarly, in a multi-dimensional case, we consider P (ξ) ≡ P (ξ1, ξ2, · · · , ξn) =

P (ξ) ≡
m
∑

|α|=α1+α2+···+αn≥0

Cα1,α2,··· ,αn
ξα1

1 · ξα2

2 · · · ξαn
n ,

where Cα1,α2,··· ,αn
are constant coefficients. Then we set

P (D) ≡ P

(

∂

∂x1
,
∂

∂x2
, · · · , ∂

∂xn

)

6This means that
R

K
|f(x)|dx < +∞ holds for any compact set (i.e., bounded and closed)

K in Ω.
7The theory of hyperfunction [51] gives an alternative theoretical basis on calculus. How-

ever, it requires algebraic concepts, such as sheaf and cohomology, so that it is not so elemen-
tary, compared to the distribution theory [54], which we discuss in these course notes.
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as a partial differential operator. If P (D) is a monomial, for instance, like

Dα = ∂|α|

∂x
α1

1
∂x

α2

2
···∂xαn

n
, we put

Dαu :=
∂|α|u

∂xα1

1 ∂xα2

2 · · · ∂xαn
n
.

Classically, for a given function f on Ω, we want to find a (smooth) solution
u that satisfies P (D)u = f on Ω8. Now this is understood as the following
problem:

Solving differential equation in ℑ′:
For a given F ∈ ℑ′, find a T ∈ ℑ′ such that P (D)T = F.

Of course we may take the given F as an ordinary function f , in the sense that
we put F = Tf . According to the above formulation, we want to find a solution
in the much wider space ℑ′. Even if we can find the solution in ℑ′, it is not
easy to see whether the solution can be represented as an ordinary function.
The solution would therefore be called a weak solution. In addition, when we
differentiate a generalized function T , we would then refer to dT

dx as the weak
derivative of T . In this theoretical approach, what we should do first is to assure
the existence of the solution, whereas we need a practical solution. So there still
exists a gap between the theory and our practical demand. However, it should
be noted that Finite Element Methods (FEM) and several related approaches
have the theoretical basis from the distribution theory.

9.3 Hilbert Space

We first explain pre-Hilbert space. To make it, we need the following definition.

Definition: Let F be a vector space over R. The two-term operation, denoted
by 〈 , 〉 (or 〈 , 〉F ), is called the inner product, if it satisfies the following
conditions:

• 〈, 〉 is symmetric and bilinear:
〈f, g〉 = 〈g, f〉,
〈α1f1 + α2f2, g〉 = α1〈f1, g〉 + α2〈f2, g〉,
〈f, β1g1 + β2g2, 〉 = β1〈f, g1〉 + β2〈f, g2〉
for any f, f1, f2, g, g1, g2 ∈ F , and any α, α1, α2, β, β1, β2 ∈ R.

• 〈f, f〉 ≥ 0, for anyf ∈ F , and 〈f, f〉 = 0, if and only if f = 0.

The vector space with the inner product is called a pre-Hilbert space. It is then
noted that any pre-Hilbert space F is a normed space with the norm ‖ ‖ (or

8We skip the discussion on the initial condition, for simplicity.
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denoted by ‖ ‖F , if necessary), which is induced by the inner product: ‖f‖ :=
√

〈f, f〉. The following formula always holds, known as Schwarz’ inequality:

|〈f, g〉| ≤ ‖f‖‖g‖, for any f, g ∈ F . (25)

Now, similar to the case of ℑ and ℑ′, we consider F and its dual space F ′,
which is the totality of continuous linear functionals on F . Let T be a linear
functional on F . This means that T satisfies the condition (20) for ℑ = F ).
The continuity of T in (21) is then expressed using the norm:

There exists a constant C such that |T (f)| ≤ C‖f‖ holds for any f ∈ F . (26)

Further, if the pre-Hilbert space F is complete, i.e., any Cauchy sequence (fn) ⊂
F has its limit in F , F is then called a Hilbert space.

Hilbert Space Examples:

1. Rn. For x = (x1, x2, ..., xn)T and y = (y1, y2, ..., yn)T ∈ Rn, we have
〈x,y〉 :=

∑n
i=1 xiyi.

2. l2 := {c = (cj)
∞
j=1|cj ∈ R,

∑∞
j=1 |cj |2 < ∞}. The inner product is given

by: 〈c,d〉 :=
∑∞

i=1 cidi, where c = (cj)
∞
j=1 and d = (dj)

∞
j=1 ∈ l2.

3. L2 space: L2(Ω) = {f : Ω → R ∪ {±∞}|
∫

Ω
|f(x)|2dx < ∞}. For f and

g ∈ L2(Ω), we have 〈f, g〉 :=
∫

Ω
f(x)g(x)dx.

4. Sobolev space: Wm
2 (Ω) := {f ∈ L2(Ω)|Dαf ∈ L2(Ω), |α| ≤ m}, where

Dαf means a weak derivative. The inner product is given by 〈f, g〉 :=
∑

|α|≤m

∫

Ω
Dαf(x)Dαg(x)dx.

We will use the following basic theorem in explaining RKHS in the next section:

Theorem 1 (Riesz): Let H be a Hilbert space, and T be a real-valued continu-
ous linear functional on H. Then there exists one and only one function t ∈ H

such that
T (f) = 〈t, f〉 (27)

for all f ∈ H.

This theorem says that Hilbert space H is isomorphic to its dual space H ′ as
linear topological spaces9

9 The norm ‖ ‖ in H′ is then given by ‖T‖ := sup‖f‖≤1|T (f)|, for T ∈ H′.
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Fourier Analysis in Hilbert Space We first recall the orthogonal relation
between trigonometric functions:

∫ π

−π

cosnx cosmx dx =

{

π (m = n)

0 (m 6= n),

∫ π

−π

sinnx sinmx dx =

{

π (m = n)

0 (m 6= n),
∫ π

−π

cosnx sinmx dx = 0.

Let f and g be the elements of a Hilbert space H. We say that f is orthogonal
to g, if 〈f, g〉 = 0.

Consider now the function space L2(−π, π), where the inner product is given by:
〈f, g〉 := 1

π

∫ π

−π
f(x)g(x)dx. The subset S := {1, cosnx, sinnx |n = 1, 2, · · · } of

L2(−π, π) is then known as a complete orthonormal system of L2(−π, π). This
means that the system S ≡ {ϕ1, ϕ2, · · · } satisfies the following conditions:

〈ϕi, ϕj〉 = δij for i, j = 1, 2, · · · . (28)

f =

∞
∑

j=1

〈f, ϕj〉ϕj , for any f ∈ L2(−π, π). (29)

The conditions (28) and (29) of course give the definition of complete orthonor-
mal system (CONS) for a general Hilbert space. The coefficients 〈f, ϕj〉 in (29)
are then referred to as the Fourier coefficients of f . The right hand of equation
(29) is called the Fourier series of f , with regard to the CONS S.

CONS Examples

1. Legendre polynomials {Pn(x)}

Pn(x) :=
1

2nn!

dn

dxn
(x2 − 1)n (n = 0, 1, · · · ).

Then we have
∫ 1

−1

Pm(x)Pn(x)dx =
2

2n+ 1
δmn.

Therefore {
√

2n+1
2 Pn(x);n = 0, 1, 2, · · · } constitutes a CONS of L2(−1, 1).

2. Laguerre polynomials {Ln(x)}

Ln(x) := ex dn

dxn
(xne−x) (n = 0, 1, · · · ).

This time we have
∫ ∞

0

Lm(x)Ln(x)dx = (n!)2δmn.
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Therefore { 1
n!Ln(x)e−x/2;n = 0, 1, 2, · · · } constitutes a CONS of L2(0,∞).

For our practical purposes, we may assume that Hilbert space always has a
complete orthonormal system10.

9.4 Reproducing Kernel Hilbert Space

A radial basis function (RBF) is closely related to a reproducing kernel Hilbert
space (RKHS). Actually an RBF appear in solving a regularization problem on
a certain RKHS H(Ω), where Ω is a domain in Rn or Rn itself. As mentioned
in earlier sections, there are several RBFs that are used in scattered data inter-
polation, such as Gaussian, and thin plate spline. The choice of an RBF that
is most suited in solving an interpolation/regularization problem depends not
only on the smoothness of the function to be desired but also on the dimension
n. In this section we will briefly sketch this interesting relation among RBF,
smoothness of the function, and the space dimension. Now let us start with the
definition of RKHS.

9.4.1 Reproducing Kernel

Let E be an abstract set, and H be a Hilbert space consisting of the (real-
valued11) functions defined on E, with the inner product 〈, 〉.
Definition The function K : E × E → R is called a reproducing kernel of H,
if it satisfies the following conditions12:

1. For any fixed y ∈ E, K(x, y) belongs to H as a function of x on E.

2. For any f ∈ H, we have f(y) = 〈f(x),K(x, y)〉x .

Definition If Hilbert space H has the reproducing kernel, which satisfies the
above conditions (1) and (2), then H is referred to as a reproducing kernel
Hilbert space (RKHS).

The following proposition will be used in characterizing the reproducing kernel
in the next section.

Proposition 1. For the reproducing kernel K, we have:

K(y, z) = 〈K(x, y),K(x, z)〉x (30)

10Rigorously, it is a necessary and sufficient condition for Hilbert space H to have a complete
orthonormal system that H is separable as a metric space. This means that there exists a
dense, and countable subset of H. However we don’t have to care about it for our practical
situations.

11Formally, we can treat complex-valued functions, but the “complex” case may be skipped
in this course.

12In condition (2), the inner product 〈, 〉x means that we get the inner product value of the
two functions with variable x.
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Proof. From condition (1) of the reproducing kernel, we have K(y, z) ∈ H for
a fixed z. Then, by putting f(y) = K(y, z) in condition (2), we have

K(y, z) = 〈K(x, z),K(x, y)〉x = 〈K(x, y),K(x, z)〉x.

The next theorem is well known as a classical result in the reproducing kernel
theory (N. Aronszajn [2], S. Bergman [6]).

Theorem 2: Hilbert space H(E) has a reproducing kernel, if and only if the
following condition is satisfied:
For any y ∈ E, there exists a positive constant C = Cy, such that

|f(y)| ≤ Cy‖f‖, for any f ∈ H. (31)

Proof. [only if part] The assertion follows from Schwarz’ inequality (25). [if
part] For a fixed y ∈ E, let us consider the linear functional δy : H(E) → R,
which is defined as δy(f) := f(y), for f ∈ H(E). According to (26), condition
(31) means that δy is continuous. The assertion thus follows from Riesz’ Theo-
rem (Theorem 1 with (27)).

Relating to the above theorem, we note that the reproducing kernel K is
uniquely determined for an RKHS H(E) (also see Theorem 3 in the next sec-
tion).

RKHS Examples

1. R: Let E be {1}. Here we identify H(E) with R. An arbitrary element
of H(E) is a map f : E ≡ {1} → R. Specifying f ∈ H(E) therefore
means specifying a real number x with f(1) = x. Let the inner product
〈, 〉 for H(E) be the ordinary multiplication in R : 〈x, y〉 = x · y. We
define K : E × E → R as K(1, 1) := 1. It is then easy to see K satisfies
condition (1) in the definition of the reproducing kernel. As for condition
(2), we have: 〈f(1),K(1, 1)〉 = f(1)1 = f(1).

2. l2: Let a = (aj)
∞
j=1 ∈ l2. Then a defines a map α : N → R with

α(i) := ai(i ∈ N). We thus identify a ↔ α. By setting E = N , we have
H(N) ≡ {α : N → R|

∑∞
i=1 |α(i)|2 < ∞} ∼= l2 with its kernel function

K as being K(i, j) = δij .

3. Let A be an n-th order, symmetric, and positive semi-definite matrix.
Then A(Rn) is RKHS and its reproducing kernel is A (see the discussions
in the next section):

A(Rn) ≡ {Ax ∈ Rn | x ∈ Rn}.

9.5 Fundamental Properties

Proposition 2. Let K : E × E → R be the kernel function of RKHS H(E).
Then K is a symmetric, positive semi-definite function.
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Proof. (30) in Proposition 1 says that K is symmetric, since the inner product
itself is symmetric. For (x1, x2, · · · , xn)T ∈ En and (a1, a2, · · · , an)T ∈ Rn, we
have, using (30),

n
∑

i,J=1

aiajK(xi, xj) =

n
∑

i,j=1

aiaj〈K(x, xi),K(x, xj)〉x

=

〈

n
∑

i=1

ajK(x, xi),

n
∑

j=1

ajK(x, xj)

〉

x

=

∥

∥

∥

∥

∥

n
∑

k=1

akK(x, xk)

∥

∥

∥

∥

∥

2

x

≥ 0.

The following theorem says that RKHS is constructed by spedifying a symmet-
ric, positive semi-definite function. It should also be noted that the proof is
constructive so that it might be useful even in our practical situations.

Theorem 3. Suppose that K is a symmetric, positive semi-definite function
on E × E. Then there exists a Hilbert space H that has K as its reproducing
kernel.

Sketch of the proof. We put F := {∑l
i=1 αiK(x, xi)| l ∈ N , αi ∈ R, xi ∈ E}.

By defining addition and multiplication by constant as usual, we can make F a
vector space. Also we can introduce the inner product for f =

∑m
i=1 αiK(x, xi)

and g =
∑n

j=1 βjK(x, xj) ∈ F as follows: 〈f, g〉 :=
∑m

i=1

∑n
j=1 αiβjK(xi, xj) ∈

R. Since K is positive semi-definite, it follows that 〈f, f〉 ≥ 0. It is easy to
see that F is a pre-Hilbert space. Next we set H as the completion13 of F .
Then, with g(x) ≡ gy(x) = K(x, y), we have 〈(f(x),K(x, y)〉x = 〈f, hy〉 =
∑m

i=1 αiK(xi, y) =
∑m

i−1 αiK(y, xi) = f(y), for any f ∈ F . This also holds for
any f of H, because, for any Cauchy sequence {fm} of F , we have

|fm(y) − fn(y)| ≤ |〈(fm − fn)(x),K(x, y)〉x|
≤ ‖fm − fn‖x · ‖K(x, y)‖x = ‖fm − fn‖ ·K(y, y).

This means that {fm(y)} ⊂ R converges at any y. H therefore includes f =
limn→∞ fn, because f also satisfies condition (2) in the definition of reproducing
kernel.

One more remark is about an RKHS that has the complete orthonormal system
(CONS). Let us describe the reproducing kernel K with CONS ≡ {ϕj}∞j=1.
From condition (1) of the reproducing kernel, we first get

K(x, y) =

∞
∑

i=1

αi(y)ϕi(x).

13 The completion simply means that all the limits of Cauchy sequences of F are included
into its completion. For example, for Q, the totality of rational numbers, its completion is R,
the totality of real numbers.
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Then, taking f(y) = ϕi(y) in condition (2), we have

ϕi(y) = 〈ϕi,K(·, y)〉 = 〈ϕi,
∞
∑

k=1

αk(y)ϕk〉

=
∞
∑

k=1

αk(y)〈ϕi, ϕk〉 =
∞
∑

k=1

αk(y)δik = αi(y).

We therefore have

K(x, y) =

∞
∑

i=1

ϕi(x)ϕi(y).

9.6 RKHS in L
2 space

We briefly describe an infinite-dimensional RKHS in L2(E). E is assumed to
be a domain in Rn, and we say L2 instead of L2(E) from now on. Supposing
that K is a symmetric, positive semi-definite function on E ×E, we first define
the real-valued function κ(f) on E : κ(f)(y) := 〈K(x, y), f(x)〉x, for any y ∈ E.
Let us further suppose that

∫∫

|K(x, x′)|2dxdx′ <∞. (32)

Then κ can be considered as a linear operator: L2 → L2, because, using Schwarz’
inequality (25), we have

∫

|κ(f)(y)|2dy =

∫

〈K(x, x′), f(x)〉2xdx′

=

∫
(
∫

K(x, x′)f(x)dx

)2

dx′

≤
∫∫

|K(x, x′)|2dx
∫

|f(y)|2dydx′

=

∫∫

|K(x, x′)|2dxdx′
∫

|f(y)|2dy

= ‖f‖2
L2 ·

∫∫

|K(x, x′)|2dxdx′ <∞.

This yields that κ(f) ∈ L2 and that κ is a continuous linear operator, known
as Hilbert-Schmidt integral operator. According to Mercer’s theorem, we then
have the eigen decomposition: K(x, x′) =

∑

ν≥1 λνφν(x)φν(x′) where ν ∈ N ,
and λν , φν are eigen value and eigen functions of κ, respectively. Assumption
(32) yields

∑

ν≥1 λ
2
ν < ∞, so that we have limk→∞ λk = 0. We now assume

that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · > 0. We then know that {φn}∞n=1 is a CONS of
L2, which consequently gives the following result:
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Theorem 4. Let Hκ be the totality of the functions f ∈ L2, satisfying
∑

k≥1
fkgk

λk
<∞. We then have:

1. Hκ is a Hilbert space with the inner product: 〈f, g〉κ =
∑

k≥1
fkgk

λk
<∞

2. For g ∈ Hκ, we have

〈g, φν〉κ =
〈g, φν〉L2

λν
, 〈φν , φν〉κ =

1

λν
(i.e., ‖φν‖κ =

1√
λν

) (ν = 1, 2, · · · ).

3. K is the reproducing kernel of Hκ : f(x) = 〈f,K(·, x)〉κ for any f ∈ Hκ.

We skipped the mathematical details and the rigorous proof of the above theo-
rem. Instead, we should keep in mind the relation between Hκ and L2 through
the CONS derived from the Hilbert-Schmidt operator κ. We also note that a
similar result is obtained in a finite-dimesional case, where K simply means an
n-th order symmetric, positive semi-definite matrix and L2 ∼= Rn.

9.7 RBF and RKHS

In this section, though a few theorems are stated, we don’t give any rigorous
explanations and proofs for them. We would just like to sketch the overall flow
from the theory to our practice.

9.7.1 Regularization problem in RKHS

For simplicity, let E = Ω = Rn. Suppose that (xi, fi) are given as sample
points, where fi ∈ R, xi ∈ Rn(i = 1, 2, · · · , N). Let us consider the following
regularization problem: Find a function f defined on Rn such that

min
f

{

N
∑

i=1

(fi − f(xi))
2 + λJn

m(f)

}

, (33)

where

Jn
m(f) :=

∑

α1+α2+···+αn=m

m!

α1!α2! · · ·αn!
‖Dαf‖2

L2 , (34)

Dαf :=
∂mf

∂xα1

1 ∂xα2

2 · · · ∂xαn
n
.

The regularization term λJn
m(f) in (33) prescribes smoothness of a solution.

Now where can we find a solution of this problem (33)? According to the
definition of Jn

m(f), we should find a solution to (33) in the following space:

Bn
m := {f : Rn → R ∪ {±∞}|Dαf ∈ L2(Rn), for any α(|α| = m)}. (35)
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So recall the thin plate spline case. We then start with B2
2 in (15) to minimize

the energy functional (16).

In the following we want to solve the regularization problem like (33) in RKHS.
The main reason for this is the following nice property of RKHS:

Representer Theorem14 Let H be an RKHS, with its reproducing kernel K and
norm ‖ ‖H . Consider the regularization problem of the following form: Find
f ∈ H such that

min
f∈H

{

N
∑

i=1

(fi − f(xi))
2 + λ‖f‖2

H

}

. (36)

The solution f can then be found in the form:

f(x) =

N
∑

i=1

αiK(x,xi). (37)

It would therefore be nice, if we could have Bn
m as the RKHS in the above

theorem. However, Jn
m cannot be the squared norm for Bn

m, as described next.

The functional Jn
m has the following properties:

1. Jn
m(f) = 0 ⇔ f ∈ Pm−1 (the totality of at most (m-1)-th order polyno-

mials).

2. Jn
m(f) = (−1)m〈f,∆mf〉L2 .

Since the null space of Jn
m is equal to Pm−1, we first represent Bn

m as being the
direct sum of the two function spaces: Bn

m = Hn
m ⊕ Pm−1. Then let us solve

the regularization problem on Hn
m:

Theorem 5 [37]. If m > n
2 , then Hn

m is an RKHS with:

〈f, g〉Hn
m

:=
∑

α1+α2+···+αn=m

m!

α1!α2! · · ·αn!
〈Dαf,Dαg〉L2 = 〈(−1)m∆mf, g〉L2 .

(38)

This also means ‖f‖2
Hn

m
= Jn

m(f).

With the above theorem, the regularization problem (33) is restated as:

min
f∈Bn

m

{

N
∑

i=1

(fi − f(xi))
2 + λJn

m(f)

}

⇔ min
g∈Hn

m, p∈Pm−1

{

N
∑

i=1

{fi − (g(xi) + p(xi))}2 + λ‖g‖2
Hn

m

}

. (39)

14This is one of the variations of the representer theorem. Please refer to [53].
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We thus know the solution to (39) is represented in the form of

f(x) =

N
∑

i=1

αiK(x,xi) + pm−1(x), (40)

where pm−1(x) ∈ Pm−1.

9.7.2 RBF as Green’s function

Considering the inner product of Hn
m (38) in Theorem 5, we assume that

K(x,y) = G(x − y). Let G then be a Green’s function in the sense that

∆mG(x) = δ(x), (41)

where δ means a generalized function as Dirac δ. We therefore have the solution
f in (40) as

f(x) =

N
∑

i=1

αiG(x − xi) + p(x), (42)

where p is a polynomial ∈ Pm−1.

This brings us to our familiar class of radial basis functions:

G(x) =

{

βmn|x|2m−n log |x| if 2m− n is an even integer,

γmn|x|2m−n otherwise,
(43)

where βmn and γmn are constants.

For example, for the thin plate spline, we have m = n = 2 so that G(x) =
|x|2 log |x| and the polynomial p in (42) is of the first order (linear). Another
familiar case is where m = 2 and n = 3. The we have G(x) = |x| and a linear
polynomial for (42).

Regularization with RKHS norm Let us consider another regularization
problem, where, instead of Jn

m(f) in (33) and (34), we take
∑

m≥0 amJ
n
m(f)

with am being constants and a0 6= 0. According to the scenario of establishing
the above theorems, we have the following result in which the regularization
problem is directly solved in an RKHS.

1. We can find a Green’s function for the operator
∑

m≥0(−1)m∆m. The

solution is then given by f(x) =
∑N

k=1 ckG(x − xk). Note that this time
we don’t need a polynomial term like (42).

2. Gaussian RBF. In a particular case, where am = σ2m

m!2m (σ > 0), we have

the Green’s function as G(x) = c exp(−‖x‖2

2σ2 ).
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10 Open issues

In this section, we look into some more recent research related to scattered data
interpolation. Not surprisingly, a lot of this research focusses on radial basis
functions and their variants.

10.1 Optimal sampling

So far we have assumed that the input samples are given to us and that for the
sampling process was completely our of our control. For some applications, this
is not the case. For instance, maybe we are using building an RBF reconstruc-
tion in order to approximate an expensive rendering algorithm. In this case we
are using RBFs as a procedural approximation of an algorithm. Here we control
sampling and can decide how many samples we want to use and what they are
(by changing the orientation of the incoming and outgoing rays and also per-
haps the wavelength). This problem is also important in machine learning for
instance for training neural networks.

There has been some investigation conducted in this area. For instance De
Marchi et al. [13] study optimal sampling with respect to stability and conclude
that good interpolation points are always uniformly distributed according to
some criteria (e.g. asymptotically). Rendall and Allen [49] study this problem
in the context of volume mesh deformation driven by surface motion. They
develop a technique for selecting a subset of the surface points.

10.2 Non-data centered RBFs

In these notes we have considered that the RBF kernels are centered at the
sample sites. This might not be optimal nor desirable for some application. For
instance, if my data set is very dense, using a kernel per sample might lead
to unacceptable performance. Instead we could use much fewer kernel in the
reconstruction than there are samples. One way of doing this is to use a so-called
center selection algorithm to pick as many sampling sites as needed to center
the kernels. A different approach is to have ”free floating” kernels where the
center of the kernels are also parameters to be determined. This could be solved
as an optimization problem by choosing the center locations that minimizes the
reconstruction error at the sample points.

The problem of center selection is a component of a wider problem called struc-
ture selection whose goal is to find an optimal number of radial basis functions
and their centers. This has been a subject of investigation in the neural network
community. For instance, Hatanaka et al. [28] uses a genetic algorithm to solve
this problem.
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11 Further Readings

There are several recent books [10, 60, 18] covering scattered data interpolation
topics though unfortunately all of them require a level of mathematics well
beyond that required for this course. [18] is perhaps the most accessible. Radial
basis and other interpolation methods are also covered in machine learning texts
[8] since they can be used for regression and classification.
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12 Appendix

A Python program for Laplace interpolation

def solve(d,constrained):

n = d.size

nc = constrained.size

A00 = sparse.lil_matrix((n,n))

A = sparse.lil_matrix((n+nc,n+nc))

A00.setdiag(-2.*n_.ones(n))

koff = 1

A00.setdiag(n_.ones(n),koff)

A00.setdiag(n_.ones(n),-koff)

A00[0,0] = -1.

A00[n-1,n-1] = -1.

A[0:n,0:n] = A00

S = sparse.lil_matrix((nc,n))

for ir in range(nc):

S[ir,constrained[ir]] = 1.

St = S.T

A[0:n,n:(n+nc)] = St

A[n:(n+nc),0:n] = S

A = A.tocsr()
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b = n_.zeros((n+nc,1))

for i in range(nc):

b[n+i] = d[constrained[i]]

f = linsolve.spsolve(A,b)

f = f[0:n]

return f

def test():

x = n_.array([2.,4., 6., 8., 13., 14.])

y = n_.array([2.,7., 8., 9., 12., 12.5])

n = x.size

LEN = 200

x = x * LEN / 20.

X = n_.arange(float(LEN))

Y = n_.zeros((LEN,))

for i in range(x.size):

ii = int(x[i])

Y[ii] = y[i]

f1 = solve(Y,x)
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