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Course Abstract 

Data-driven animation using motion capture data has become a standard practice in character animation. A number 

of techniques have been developed to add flexibility on captured human motion data by editing joint trajectories, 

warping motion paths, blending a family of parameterized motions, splicing motion segments, and adapting motion 

to new characters and environments. Even with the abundance of motion capture data and the popularity of data-

driven animation techniques, programming with motion capture data is still not easy. A single clip of motion data 

encompasses a lot of heterogeneous information including joint angles, the position and orientation of the skeletal 

root, their temporal trajectories, and a number of coordinate systems. Due to this complexity, even simple operations 

on motion data, such as linear interpolation, are rarely described as succinct mathematical equations in articles. This 

course provides not only a solid mathematical background but also a practical guide to programming with motion 

capture data. The course will begin with the brief review of affine geometry and coordinate-invariant 

(conventionally called coordinate-free) geometric programming, which will generalize incrementally to deal with 

three-dimensional rotations/orientations, the poses of an articulated figure, and full-body motion data. It will lead to 

identifying a collection of coordinate-invariant operations on full-body motion data and their object-oriented 

implementation. Finally, we will discuss the practical use of our programming framework in a variety of contexts 

ranging from data-driven manipulation/interpolation to state-of-the-art biped locomotion control.  

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1900520.1900524&domain=pdf&date_stamp=2010-12-15


 

About the Presenter 
 

 

Jehee Lee 

Associate Professor 

School of Computer Science 

Seoul National University 

599 Gwanak-ro, Gwanak-gu 

Seoul 151-742, Korea   

(02) 880-1845 

(02) 871-4912 Fax 

jehee@cse.snu.ac.kr 

http://mrl.snu.ac.kr/~jehee 

 

 

Jehee Lee is an associate professor of Computer Science at Seoul National University. He 

received his B.S, M.S. and Ph.D. degrees in Computer Science from Korea Advanced Institute of 

Science and Technology in 1993, 1995, and 2000, respectively. He is leading the SNU 

Movement Research Laboratory. His research interests are in the areas of computer graphics and 

animation. More specifically, he is interested in developing new ways of understanding, 

representing, and animating human movements. This involves full-body motion analysis and 

synthesis, biped control and simulation, motion capture, motion planning, data-driven and 

physically based techniques, interactive avatar control, crowd simulation, and facial animation. 

 

  



 

Course Schedule and Syllabus 
 

 

Introduction and Overview (5 minutes) 

1. Data-driven animation using motion capture data 

2. Why is it difficult to do programming with motion capture data? 

3. Course overview 

  

Coordinate-Invariant Programming with Points and Vectors (20 minutes) 

1. What is coordinate-invariant geometric programming? 

2. Affine geometry 

3. Coordinate-invariant operations between points and vectors 

 

Programming with Orientations and Rotations (35 minutes) 

1. Representing orientations and rotations 

2. Analogy between points/vectors and orientations/rotations 

3. Coordinate-invariant operations with orientations and rotations 

 

Programming with Motion Capture Data (10 minutes) 

1. Representing motion data and motion displacements 

2. Coordinate-invariant operations for motion data 

 

Practical examples (30 minutes) 

1. Motion exaggeration and style transfer 

2. Hierarchical displacement mapping 

3. Interpolation and transitioning 
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Programming with Motion Capture

• Why is it difficult?

– Encompass a lot of heterogeneous information

– Joint angles

– Position/orientation of a skeletal root

– Their temporal trajectories

– A number of local/global coordinate systems

Mathematical Notation

• Can we describe operations in simple equations?

– Linear interpolation between two motion clips

– Splice two motion clips sequentially
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Course Objectives

• Mathematical framework and notation

• A practical guide to programming with motion 

capture
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Course Overview

• Introduction and Overview (5 min)

• Coordinate-Invariant Geometric Programming (20 min)

– What is coordinate-invariant?

– Affine geometry

– Coordinate-invariant operations between points and vectors

• Programming with Orientations and Rotations (35 min)

• Programming with Motion Capture Data (10 min)

• Practical examples (30 min)

Geometric Programming

• A way of handling geometric entities such as vectors, 
points, and transforms.

• Write geometric programs relying on geometric 
reasoning rather than coordinate manipulation

• Pioneered by Goldman and DeRose
– Geometric programming : A coordinate-free approach, 

SIGGRAPH 1988 Course #25 Notes

• Coodinate-Invariant vs Coordinate-Free
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Example of coordinate-dependence

• What is the “sum” of these two positions ?

Point p

Point q

If you assume coordinates, …

• The sum is (x1+x2, y1+y2)

– Is it correct ?

– Is it geometrically meaningful ?

p = (x1, y1)

q = (x2, y2)
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If you assume coordinates, …

p = (x1, y1)

q = (x2, y2)

Origin

(x1+x2, y1+y2)

• Vector sum
– (x1, y1) and (x2, y2) are considered as vectors from the origin to p

and q, respectively.

If you select a different origin, …

p = (x1, y1)

q = (x2, y2)

Origin

(x1+x2, y1+y2)

• If you choose a different coordinate frame, you will get a 

different result
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Vector and Affine Spaces

• Vector space

– Includes vectors and related operations

– No points

• Affine space

– Superset of vector space

– Includes vectors, points, and related operations

Points and Vectors

• A point is a position specified with coordinate values.

• A vector is specified as the difference between two points.

• If an origin is specified, then a point can be represented by a vector 

from the origin.

• But, a point is still not a vector in coordinate-free concepts.

Point p

Point q
vector (p-q)
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Vector spaces

• A vector space consists of

– Set of vectors, together with

– Two operations: addition of vectors and multiplication 

of vectors by scalar numbers

• A linear combination of vectors is also a vector

VV  wvuwvu ,,

Affine Spaces

• An affine space consists of

– Set of points, an associated vector space, and

– Two operations: the difference between two points 

and the addition of a vector to a point
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Coordinate-Free Geometric Operations

• Addition

• Subtraction

• Scalar multiplication

• Linear combination

• Affine combination

Addition

u

vu + v

p

p + w

u + v is a vector p + w is a point

w

u, v, w : vectors

p, q : points
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Subtraction

v

u - vu

q

p

u - v is a vector p - q is a vector

p - q

p

p - w

p - w is a point

-w

u, v, w : vectors

p, q : points

Scalar Multiplication

scalar • vector = vector

1 • point = point

0 • point = vector

c • point = (undefined)    if (c≠0,1)
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Linear Combination

vvvvv 
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0

• A linear space is spanned by a set of bases

– Any point in the space can be represented as a linear 

combination of bases

Affine Combination
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Examples

• (p + q) / 2 : midpoint of line pq

• (p + q) / 3 : not valid

• (p + q + r) / 3 : center of gravity of ∆pqr

• (p/2 + q/2 – r) : a vector from r to the midpoint of 

q and p

Summary
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Matrix Representation

• Use an “extra” coordinate

– In 3-dimensional spaces

• Point : (x, y, z, 1)

• Vector : (x, y, z, 0)

• For example
(x1, y1, z1, 1) + (x2, y2, z2, 1) = (x1+x2, y1+y2, z1+z2, 2)

point point undefined

(x1, y1, z1, 1) - (x2, y2, z2, 1) = (x1-x2, y1-y2, z1-z2, 0)

point point vector

(x1, y1, z1, 1) + (x2, y2, z2, 0) = (x1+x2, y1+y2, z1+z2, 1)

point vector point

Projective Spaces

• Homogeneous coordinates

– (x, y, z, w) = (x/w, y/w, z/w, 1)

– Useful for handling perspective projection

• But, it is algebraically inconsistent !!

)1,0,
3

2
,1()3,0,2,3()2,0,2,2()1,0,0,1(

)1,0,
2

1
,1()2,0,1,2()1,0,1,1()1,0,0,1(




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Course Overview

• Introduction and Overview (5 min)

• Coordinate-Invariant Geometric Programming (20 min)

• Programming with Orientations and Rotations (35 min)

– Representing orientations and rotations

– Analogy between points/vectors and orientations/rotations

– Coordinate-invariant operations between orientations and rotations

• Programming with Motion Capture Data (10 min)

• Practical examples (30 min)

Orientation and Rotation

• Not intuitive
– Formal definitions are also confusing

• Many different ways to describe
– Rotation (direction cosine) matrix

– Euler angles

– Axis-angle

– Rotation vector

– Helical angles

– Unit quaternions
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Orientation and Rotation

• Rotation

– Circular movement

• Orientation

– The state of being oriented

– Given a coordinate system, the orientation of an 

object can be represented as a rotation from a 

reference pose

Analogy

(point : vector) is similar to (orientation : rotation)

Both represent a sort of (state : movement)

Reference coordinate system
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Analogy

(point : vector) is similar to (orientation : rotation)

Both represent a sort of (state : movement)

Reference coordinate system

point : the 3d location of the bunny

vector : translational movement

Analogy

(point : vector) is similar to (orientation : rotation)

Both represent a sort of (state : movement)

Reference coordinate system

point : the 3d location of the bunny

vector : translational movement

orientation : the 3d orientation of the bunny

rotation : circular movement
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2D Orientation

0

2



2









or



Polar Coordinates

2D Orientation

Although the motion is continuous, 

its representation could be discontinuous

0

2



2









or

)(t 





Time
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2D Orientation

Many-to-one correspondences 

between 2D orientations and their 

representations

0

2



2









or

)(t 





Time

Extra Parameter



),( yx

X

Y
122  yx
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Extra Parameter



),( yx

X

Y
122  yx








 





cossin

sincos

2x2 Rotation matrix is yet 

another method of using 

extra parameters

Complex Number of Unit Length



iyx 

Real

Imaginary
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Complex Exponentiation



iyx 

Real

Imaginary




ie

iiyx



 sincos

2D Rotation

• Complex numbers of unit length are

– good for representing 2D orientations,

– but inadequate for 2D rotations

• A complex number cannot distinguish different rotational 

movements that result in the same final orientation

Turn 120 degree counter-clockwise

Turn -240 degree clockwise

Turn 480 degree counter-clockwise

Real

Imaginary



 2
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2D Rotation and Orientation

• 2D Rotation

– The consequence of any 2D rotational movement can be 

uniquely represented by a turning angle

• 2D Orientation

– The non-singular parameterization of 2D orientations requires 

extra parameters

– Eg) Complex numbers, 2x2 rotation matrices

Operations in 2D

• (orientation) : complex number

• (rotation) : scalar value

• exp(rotation) : complex number



22

2D Rotation and Displacement

iyxc 1

Real

Imaginary

2D Rotation and Displacement

 iyxc 1

Real

Imaginary





i

i

ecc

or

ecc







2

1

1

12

2c
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2D Orientation Composition 

Real

Imaginary

1c2c

)(21 undefinedcc 

2D Rotation Composition

 iii eee  )(

Real

Imaginary




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Analogy

X

Y

Z

X 

Y 

Z 

3D Rotation

• Given two arbitrary orientations of a rigid object,
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3D Rotation

• We can always find a fixed axis of rotation and 

an angle about the axis

v̂



Rotation Vector

• Rotation vector (3 parameters)

• Axis-Angle (2+1 parameters)

v̂



),,(ˆ zyx vv 

)ˆ,( v

anglescalar  : 

runit vecto : ˆ



v
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3D Orientations and Rotations

Orientations and rotations are different in 

coordinate-invariant geometric programming

Use unit quaternions for orientation representation

– 3x3 orthogonal matrix is theoretically identical

Use 3-vectors for rotation representation

Unit Quaternions

),(

),,,(

v

q

w

zyxw

kzjyixw







12222  zyxw

3
S

Real

i

j

k
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Tangent Vector
(Infinitesimal Rotation)

3
SqT

q

Tangent Vector
(Infinitesimal Rotation)

3
SqT

q

1
q
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Tangent Vector
(Infinitesimal Rotation)

3
SIT

),,,( 0001I

),,,0( zyx

qq 12 

Angular Velocity

Exp and Log

log exp

I

)sinˆ,(cos)ˆexp()exp(  vvv 
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v̂



Rotation about an Arbitrary Axis

• Rotation about axis     by angle

)2exp()2exp( vv  pp ),,,0( zyxpwhere

),,( zyx

),,( zyx 

Purely Imaginary Quaternion

v̂ 

3D Rotation and Displacement

1p

12 ppu 

2p

2q

)( 121

12

ppp

upp





1q
3

S3
R
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3D Rotation and Displacement
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Spherical Linear Interpolation

• SLERP [Shoemake 1985]

– Linear interpolation between two orientations

t

t1

))(logexp(t

)(),(slerp

2

1

11

2

1

1121

qqq

qqqqq


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 t

t

Spherical Linear Interpolation
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 t
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Analogy

(point : vector) is similar to (orientation : rotation)

Coordinate-Invariant Operations
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Linear Combination of Rotations

Affine Combination of Orientations
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Course Overview

• Introduction and Overview (5 min)

• Coordinate-Invariant Geometric Programming (20 min)

• Programming with Orientations and Rotations (35 min)

• Programming with Motion Capture Data (10 min)

– Representing motion data and motion displacements

– Coordinate-invariant operations for motion data

• Practical examples (30 min)

Motion Representation

• Configuration of an articulated figure

– Linear components:

– Angular components:

3)( Rp t
3)( Sq ti

























)(

)(

)(

)(

)( 1

0

t

t

t

t

t

nq

q

q

p

m



The position of the root segment

The orientations of body segments

w.r.t. their parents (joint angles)

The orientation of the root segment
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Motion Displacement

• Independent translation and rotation

 

 

 

 

















 





























































































)(exp)(

)(exp)(

)()(

)(exp

)(exp

)(

)(

)(

)(

)(

)(

)(

px~e

)(

)(

)(

))(exp()()('

11

0

1

0

11

0

1

tt

tt

tt

t

t

t

t

t

t

t

t

t

t

t

t

ttt

nn

nnnn

vq

vq

vp

v

v

v

q

q

p

v

v

v

q

q

p

dmm





Motion Displacement

• Rigid Transformation at the root segment
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Motion Displacement

• Rigid Transformation at the root segment
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Element-wise Operations

• Translation

• Rotation
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Element-wise Operations

• Exercise joints
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Operations

• Valid operations

• Invalid operations
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Operations

• Time warping

• Properties

))(()(' tst mm 
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Coordinate-Invariant Operations
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Course Overview

• Introduction and Overview (5 min)

• Coordinate-Invariant Geometric Programming (20 min)

• Programming with Orientations and Rotations (35 min)

• Programming with Motion Capture Data (10 min)

• Practical examples (30 min)

– Motion exaggeration and style transfer

– Aligning and warping

– Interpolation and transitioning

Motion Exaggeration

Jehee Lee and Sung Yong Shin, A Coordinate-Invariant Approach to 

Multiresolution Motion Analysis and Synthesis, Graphical Models, 2001.
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Motion Exaggeration

 )()()()( tttt LMLM 

filtered lowpass and simplified : )(
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Turn with a limp
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Walk

Limp

Turn

Turn with a limp

Walk

Strut

Run
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Style Transfer

A

B

A’

B’

 )()()()( tttt AABB 

Transition Graph

Stand

Right foot

forward
Start

Stop

TurnR
TurnL

Loop
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Transition Graph

Jehee Lee, Jinxiang Chai, Paul Reitsma, Jessica Hodgins, Nancy Pollard, 

Interactive Control of Avatars Animated with Human Motion Data, 

SIGGRAPH 2002

Connecting Motion Segments

First Motion

Second Motion Alignment
Rotate and translate

the second motion

to align two motions

Warping
Warp the motions

at the boundary

so that they can be

connected smoothly
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Alignment

• The end of one motion A should be aligned to the 

beginning of the next motion B

– The root location of the end of A:

– The root location of the beginning of B:

– Apply                              to motion B, that is
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Alignment Using In-Plane Transformation

• Rigid transformation restricted within a plane

– Rotation about the vertical axis, followed by

– Translation along two horizontal axes

• Finding in-plane rotation close to given rotation

– Using Euler angles

– Discard rotation about x- and z-axes

– Not optimal
zyx RRRR 
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Optimal In-Plane Transformation

• The geodesic curve represents a set of 

orientation that can be reached by rotating about 

a fixed axis from any orientation on the curve
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Optimal In-Plane Transformation

Hyun Joon Shin, Jehee Lee, Michael Gleicher, Sung Yong Shin, 

Computer Puppetry: An Importance-based Approach

ACM Transactions on Graphics, 2001
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Warping

• Deform a motion smoothly so that it is 

seamlessly connected its previous motion

• A scalar transition function s(t)

First Motion Second Motion
d BA

n 0mmd 

 dm  )()( tstB

)(tS

t

1

Blending for Smooth Transition

• Case study: walk-to-sneak

– Transit smoothly over one cycle of locomotion

– “Walk” is faster than “sneak”

– One cycle of “sneak” is longer than one cycle of “walk”

Jehee Lee and Sung Yong Shin, A Hierarchical Approach to Interactive 

Motion Editing for Human-like Characters, SIGGRAPH 99
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Blending for Smooth Transition

• Blend over the overlapping time interval

Walk Walk

Sneak Sneak

Walk

Sneak

Blend

Time scaling

Time scaling

Linear Interpolation

Blending for Smooth Transition

• Linear interpolation between motions

– Slerp for orientation components

– A scalar transition function s(t)
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Time Scaling

• Uniform resampling

– Motion data may be given as a sequence of discrete 

frames

– It can be considered as a piecewise linear signal

0t 1t 2t 3t 4t 5t 6t 7t

Time Scaling

• Uniform resampling

– Motion data may be given as a sequence of discrete 

frames

– It can be considered as a piecewise linear signal

0t 1t 2t 3t 4t 5t 6t 7t

ii

i
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Time Scaling

• Cubic resampling

– piecewise cubic interpolation

0t 1t 2t 3t 4t 5t 6t 7t

Time Scaling

• Discontinuity in velocity

Walk

Sneak

Blend

Walk Blend Sneak

Uniform resampling + Linear Interpolation

Discontinuity in velocity
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Time Scaling

• Non-uniform resampling

Walk
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Blend
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Wrap Up

• Coordinate-Invariance does matter

• Distinguish orientations from rotations as we 

do points from vectors

• The algebraic structure of motion data is similar 

to the structure of orientation/rotation data


